Address Contract Partially Verified
Address
0x05908b89c56ba6753B4C29C18Eaf8741eFa487Da
Balance
0 ETH
Nonce
17
Code Size
2349 bytes
Creator
0x630f461c...a10B at tx 0xb2fa60bd...e82371
Indexed Transactions
0
Contract Bytecode
2349 bytes
0x6080604081815260048036101561001557600080fd5b600092833560e01c90816301ffc9a7146106f457508063248a9ca3146106cb5780632a0acc6a146106a85780632f2ff15d1461067f5780632f328a4d1461065d57806336568abe146106165780633e68680a1461049057806350ef5a161461044f5780635c60da1b146104265780635de5607c146103fd5780635feb21fd146103de578063715018a6146103805780638da5cb5b146103575780638dc251e31461031757806390c5518a146102d757806391d14854146102935780639fbc87131461026a578063a217fddf1461024b578063c2dd1ad814610224578063d547741f146101e6578063d784d426146101a35763f2fde38b1461011557600080fd5b3461019f57602036600319011261019f5761012e610763565b906101376108f4565b6001600160a01b03918216928315610189575050600154826001600160601b0360a01b821617600155167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b83346101e35760203660031901126101e3576101bd610763565b6101c5610779565b60018060a01b03166001600160601b0360a01b600654161760065580f35b80fd5b50903461019f578060031936011261019f57610220913561021b600161020a610748565b9383875286602052862001546107db565b61087f565b5080f35b503461019f578260031936011261019f575490516001600160a01b03909116815260209150f35b50503461026657816003193601126102665751908152602090f35b5080fd5b50503461026657816003193601126102665760035490516001600160a01b039091168152602090f35b503461019f578160031936011261019f57816020936102b0610748565b92358152808552209060018060a01b0316600052825260ff81600020541690519015158152f35b83346101e35760203660031901126101e3576102f1610763565b6102f9610779565b60018060a01b03166001600160601b0360a01b600554161760055580f35b83346101e35760203660031901126101e357610331610763565b610339610779565b60018060a01b03166001600160601b0360a01b600354161760035580f35b50503461026657816003193601126102665760015490516001600160a01b039091168152602090f35b83346101e357806003193601126101e3576103996108f4565b600180546001600160a01b031981169091556000906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b5050346102665781600319360112610266576020906002549051908152f35b50503461026657816003193601126102665760055490516001600160a01b039091168152602090f35b50503461026657816003193601126102665760065490516001600160a01b039091168152602090f35b8382346102665760203660031901126102665761046a610763565b610472610779565b81546001600160a01b0319166001600160a01b039190911617905580f35b503461019f578160031936011261019f576104a9610763565b906104b2610748565b600654608881901c62ffffff16763d602d80600a3d3981f3363d3d373d3d3d363d7300000017865260781b6effffffffffffffffffffffffffffff19166e5af43d82803e903d91602b57fd5bf317602052926001600160a01b0390816037600988f0169384156106065760025493836003541684825416856005541691883b156106025786808751966371a258eb60e11b88523387890152169a8b602488015216978860448701526064860152608485015260a484015260c4830152878260e481838a5af180156105f8576105c8575b50506002549160035416928151958652602086015284015260608301527f827662cc895c842cdddb2ddbd9493a10572113a703757ba7a349f6cdeaef202b60803393a380f35b67ffffffffffffffff82989398116105e557508652943880610582565b634e487b7160e01b835260419052602482fd5b83513d8a823e3d90fd5b8a80fd5b81516330be1a3d60e21b81528490fd5b50919034610266578060031936011261026657610631610748565b90336001600160a01b0383160361064e575061022091923561087f565b5163334bd91960e11b81528390fd5b83823461026657602036600319011261026657610678610779565b3560025580f35b50903461019f578060031936011261019f5761022091356106a3600161020a610748565b610801565b505034610266578160031936011261026657516420a226a4a760d91b8152602090f35b503461019f57602036600319011261019f57816020936001923581528085522001549051908152f35b9250503461019f57602036600319011261019f573563ffffffff60e01b811680910361019f5760209250637965db0b60e01b8114908115610737575b5015158152f35b6301ffc9a760e01b14905038610730565b602435906001600160a01b038216820361075e57565b600080fd5b600435906001600160a01b038216820361075e57565b3360009081527fff164f808567eb9100129b1d5aead1611f532533c7a4cedced7e7f0a6271f53160205260409020546420a226a4a760d91b9060ff16156107bd5750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b80600052600060205260406000203360005260205260ff60406000205416156107bd5750565b9060009180835282602052604083209160018060a01b03169182845260205260ff6040842054161560001461087a57808352826020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b9060009180835282602052604083209160018060a01b03169182845260205260ff60408420541660001461087a5780835282602052604083208284526020526040832060ff1981541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4600190565b6001546001600160a01b0316330361090857565b60405163118cdaa760e01b8152336004820152602490fdfea164736f6c6343000814000a
Verified Source Code Partial Match
Compiler: v0.8.20+commit.a1b79de6
EVM: paris
Optimization: Yes (200 runs)
LotteryItem.sol 7 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
struct LotteryItem {
uint256 tokenId;
uint256 supply;
}
ITukuruERC1155.sol 9 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
interface ITukuruERC1155 {
function totalSupply(uint256 _tokenId) external view returns (uint256);
function externalMint(address _address, uint256 _tokenId, uint256 _amount) external;
function hasRole(bytes32 role, address account) external view returns (bool);
function grantRole(bytes32 role, address account) external;
}
Clones.sol 95 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
/**
* @dev A clone instance deployment failed.
*/
error ERC1167FailedCreateClone();
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(0, 0x09, 0x37)
}
if (instance == address(0)) {
revert ERC1167FailedCreateClone();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(0, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert ERC1167FailedCreateClone();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := keccak256(add(ptr, 0x43), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
Context.sol 24 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Pausable.sol 119 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
TukuruLotterySeller1155.sol 295 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "./ITukuruERC1155.sol";
import "./LotteryItem.sol";
contract TukuruLotterySeller1155 is AccessControl, Ownable, Pausable {
event TukuruLotteryMinted(address indexed contractAddress, address indexed sender, uint256[] tokenIds, uint256[] counts);
struct WithdrawSetting {
address receiver;
uint256 ratio;
}
// Role
bytes32 public constant ADMIN = "ADMIN";
bytes32 public constant PIEMENT = "PIEMENT";
// Mint
ITukuruERC1155 public tukuruERC1155;
IERC20 public currency;
uint256 public mintCost;
LotteryItem[] public lotteryItems;
mapping(uint256 => uint256) public mintedAmountPerToken;
// AL Mint
bool public isAllowlistSale;
uint256 public mintLimit;
bytes32 merkleRoot;
mapping(address => uint256) public mintedAmountPerAddress;
// Withdraw
WithdrawSetting[] public withdrawSettings;
uint256 public systemRoyalty;
address public royaltyReceiver;
address public royaltyReceiverCurrency;
// Modifier
modifier enoughEth(uint256 _amount) {
if (address(currency) == address(0)) {
require(msg.value >= _amount * mintCost, 'Not Enough Eth');
} else {
require(currency.balanceOf(msg.sender) >= _amount * mintCost, 'Not Enough Currency');
}
_;
}
modifier isValidProof(address _address, uint256 _allowlistedAmount, bytes32[] calldata _merkleProof) {
bytes32 node = keccak256(abi.encodePacked(_address, _allowlistedAmount));
require(MerkleProof.verifyCalldata(_merkleProof, merkleRoot, node), "Invalid proof");
_;
}
constructor() Ownable(msg.sender) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(ADMIN, msg.sender);
}
function initialize(
address _owner,
address _tukuruERC1155Address,
address _withdrawAddress,
uint256 _systemRoyalty,
address _royaltyReceiver,
address _royaltyReceiverCurrency,
address _piementMinter
) external {
// Role
_grantRole(DEFAULT_ADMIN_ROLE, _owner);
_grantRole(ADMIN, _owner);
// Withdraw
withdrawSettings = [WithdrawSetting(_withdrawAddress, 100)];
// Payment
systemRoyalty = _systemRoyalty;
royaltyReceiver = _royaltyReceiver;
royaltyReceiverCurrency = _royaltyReceiverCurrency;
_grantRole(PIEMENT, _piementMinter);
// Tukuru
tukuruERC1155 = ITukuruERC1155(_tukuruERC1155Address);
}
// Mint
function mint(address _address, uint256 _amount) external payable {
_publicMintCommon(_address, _amount, msg.sender);
}
function piementMint(address _address, uint256 _amount) external payable onlyRole(PIEMENT) {
_publicMintCommon(_address, _amount, _address);
}
function _publicMintCommon(address _address, uint256 _amount, address _senderAddress) internal
whenNotPaused
enoughEth(_amount)
{
require(!isAllowlistSale, "Now AL Sale");
require(mintLimit == 0 || mintLimit >= mintedAmountPerAddress[_senderAddress] + _amount, 'Over Mint Limit');
_mintCommon(_address, _amount);
}
function allowlistMint(address _address, uint256 _amount, uint256 _allowlistedAmount, bytes32[] calldata _merkleProof) external payable {
_allowlistMintCommon(_address, _amount, _allowlistedAmount, _merkleProof, msg.sender);
}
function piementAllowlistMint(address _address, uint256 _amount, uint256 _allowlistedAmount, bytes32[] calldata _merkleProof) external payable onlyRole(PIEMENT) {
_allowlistMintCommon(_address, _amount, _allowlistedAmount, _merkleProof, _address);
}
function _allowlistMintCommon(address _address, uint256 _amount, uint256 _allowlistedAmount, bytes32[] calldata _merkleProof, address _senderAddress) internal
whenNotPaused
enoughEth(_amount)
{
require(isAllowlistSale, "Now Not AL Sale");
require(MerkleProof.verifyCalldata(_merkleProof, merkleRoot, keccak256(abi.encodePacked(_senderAddress, _allowlistedAmount))), "Invalid proof");
require(mintedAmountPerAddress[_senderAddress] + _amount <= _allowlistedAmount, "Over Allowlist Amount");
_mintCommon(_address, _amount);
}
function _mintCommon(address _address, uint256 _amount) private {
if (currency != IERC20(address(0))) {
currency.transferFrom(msg.sender, address(this), _amount * mintCost);
}
(uint256[] memory _tokenIds, uint256[] memory _counts) = _lotteryToken(_amount);
for (uint256 i = 0; i < _tokenIds.length; i++) {
uint256 _tokenId = _tokenIds[i];
uint256 _count = _counts[i];
if (_count == 0) continue;
tukuruERC1155.externalMint(_address, _tokenId, _count);
mintedAmountPerToken[_tokenId] += _count;
}
mintedAmountPerAddress[msg.sender] += _amount;
emit TukuruLotteryMinted(address(tukuruERC1155), msg.sender, _tokenIds, _counts);
}
// Withdraw
function withdraw(uint256 _withdrawAmount) public onlyRole(ADMIN) {
uint256 _balance = address(this).balance;
require(_balance >= _withdrawAmount && _balance > 0, "Not Enough Balance");
uint256 _remainAmount = 0;
if (_withdrawAmount == 0) {
_remainAmount = _balance;
} else {
_remainAmount = _withdrawAmount;
}
bool success;
if (systemRoyalty > 0) {
uint256 _royaltyAmount = _remainAmount * systemRoyalty / 100;
(success, ) = payable(royaltyReceiver).call{value: _royaltyAmount}("");
require(success);
_remainAmount -= _royaltyAmount;
}
uint256 _totalDistribution = _remainAmount;
uint256 _totalRatio = 0;
for (uint256 i = 0; i < withdrawSettings.length; i++) {
_totalRatio += withdrawSettings[i].ratio;
}
for (uint256 i = 0; i < withdrawSettings.length; i++) {
WithdrawSetting memory _withdrawSetting = withdrawSettings[i];
if (i == withdrawSettings.length - 1) {
(success, ) = payable(_withdrawSetting.receiver).call{value: _remainAmount}("");
require(success);
} else {
uint256 payAmount = _totalDistribution * _withdrawSetting.ratio / _totalRatio;
(success, ) = payable(_withdrawSetting.receiver).call{value: payAmount}("");
require(success);
_remainAmount -= payAmount;
}
}
}
function withdrawCurrency(address _currencyAddress, uint256 _withdrawAmount) public onlyRole(ADMIN) {
IERC20 _currency = IERC20(_currencyAddress);
uint256 _balance = _currency.balanceOf(address(this));
require(_balance >= _withdrawAmount && _balance > 0, "Not Enough Balance");
uint256 _remainAmount = 0;
if (_withdrawAmount == 0) {
_remainAmount = _balance;
} else {
_remainAmount = _withdrawAmount;
}
if (systemRoyalty > 0) {
uint256 _royaltyAmount = _remainAmount * systemRoyalty / 100;
_currency.transfer(royaltyReceiverCurrency, _royaltyAmount);
_remainAmount -= _royaltyAmount;
}
uint256 _totalDistribution = _remainAmount;
uint256 _totalRatio = 0;
for (uint256 i = 0; i < withdrawSettings.length; i++) {
_totalRatio += withdrawSettings[i].ratio;
}
for (uint256 i = 0; i < withdrawSettings.length; i++) {
WithdrawSetting memory _withdrawSetting = withdrawSettings[i];
if (i == withdrawSettings.length - 1) {
_currency.transfer(_withdrawSetting.receiver, _remainAmount);
} else {
uint256 payAmount = _totalDistribution * _withdrawSetting.ratio / _totalRatio;
_currency.transfer(_withdrawSetting.receiver, payAmount);
_remainAmount -= payAmount;
}
}
}
// Getter
function totalSupply(uint256 _tokenId) public view returns (uint256) {
return tukuruERC1155.totalSupply(_tokenId);
}
function _lotteryToken(uint256 _amount) private view returns (uint256[] memory tokenIds, uint256[] memory counts) {
uint256 length = lotteryItems.length;
tokenIds = new uint256[](length);
counts = new uint256[](length);
uint256[] memory supplies = new uint256[](length);
uint256[] memory minted = new uint256[](length);
uint256 _remainAmount = 0;
for (uint256 i = 0; i < length; i++) {
LotteryItem memory item = lotteryItems[i];
tokenIds[i] = item.tokenId;
supplies[i] = item.supply;
minted[i] = mintedAmountPerToken[item.tokenId];
uint256 remainForToken = supplies[i] - minted[i];
_remainAmount += remainForToken;
}
require(_remainAmount >= _amount, "Not enough items left to mint");
for (uint256 i = 0; i < _amount; i++) {
uint256 randomIndex = uint256(keccak256(abi.encodePacked(block.timestamp, blockhash(block.number - 1), msg.sender, i))) % _remainAmount;
for (uint256 j = 0; j < length; j++) {
uint256 _remain = supplies[j] - minted[j] - counts[j];
if (_remain == 0) continue;
if (randomIndex < _remain) {
counts[j]++;
break;
}
randomIndex -= _remain;
}
_remainAmount--;
}
return (tokenIds, counts);
}
function getBalance() public view returns (uint256) {
return address(this).balance;
}
// Setter
function setWithdrawSettings(WithdrawSetting[] memory _value) public onlyRole(ADMIN) {
withdrawSettings = _value;
}
function setSalesInfo(LotteryItem[] memory _lotteryItems, uint256 _mintCost, uint256 _mintLimit, address _currency) external onlyRole(ADMIN) {
isAllowlistSale = false;
delete lotteryItems;
for (uint256 i = 0; i < _lotteryItems.length; i++) {
lotteryItems.push(_lotteryItems[i]);
}
mintCost = _mintCost;
mintLimit = _mintLimit;
currency = IERC20(_currency);
}
function setAllowlistSalesInfo(LotteryItem[] memory _lotteryItems, uint256 _mintCost, bytes32 _merkleRoot, address _currency) external onlyRole(ADMIN) {
isAllowlistSale = true;
delete lotteryItems;
for (uint256 i = 0; i < _lotteryItems.length; i++) {
lotteryItems.push(_lotteryItems[i]);
}
mintCost = _mintCost;
merkleRoot = _merkleRoot;
currency = IERC20(_currency);
}
// Pause
function setPause(bool _value) external onlyRole(ADMIN) {
if (_value) {
_pause();
} else {
_unpause();
}
}
// interface
function supportsInterface(bytes4 interfaceId) public view virtual override(AccessControl) returns (bool) {
return
AccessControl.supportsInterface(interfaceId) ||
super.supportsInterface(interfaceId);
}
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
AccessControl.sol 209 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
IAccessControl.sol 98 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
TukuruLotterySeller1155Factory.sol 66 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./TukuruLotterySeller1155.sol";
import "./LotteryItem.sol";
contract TukuruLotterySeller1155Factory is AccessControl, Ownable {
event TukuruLotterySeller1155Created(address indexed contractAddress, address indexed owner, address tukuruERC1155Address, address withdrawAddress, uint256 systemRoyalty, address royaltyReceiver);
// Role
bytes32 public constant ADMIN = "ADMIN";
// Royalty
uint256 public systemRoyalty = 5;
address public royaltyReceiver = 0x1476468886C76575CdB78b2cCBa37eAd1b3ea181;
address public royaltyReceiverCurrency = 0x474f057fFd4184cE80236d39C88E8ECFe8589931;
address public piementMinter;
// Clone
using Clones for address;
address public implementation;
// Constructor
constructor() Ownable(msg.sender) {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(ADMIN, msg.sender);
implementation = address(new TukuruLotterySeller1155());
}
// Setter
function setSystemRoyalty(uint256 _value) external onlyRole(ADMIN) {
systemRoyalty = _value;
}
function setRoyaltyReceiver(address _value) external onlyRole(ADMIN) {
royaltyReceiver = _value;
}
function setRoyaltyReceiverCurrency(address _value) external onlyRole(ADMIN) {
royaltyReceiverCurrency = _value;
}
function setPiementMinter(address _value) external onlyRole(ADMIN) {
piementMinter = _value;
}
function setImplementation(address _value) external onlyRole(ADMIN) {
implementation = _value;
}
function create(
address _tukuruERC1155Address,
address _withdrawAddress
) external {
address clone = Clones.clone(implementation);
TukuruLotterySeller1155(clone).initialize(
msg.sender,
_tukuruERC1155Address,
_withdrawAddress,
systemRoyalty,
royaltyReceiver,
royaltyReceiverCurrency,
piementMinter
);
emit TukuruLotterySeller1155Created(clone, msg.sender, _tukuruERC1155Address, _withdrawAddress, systemRoyalty, royaltyReceiver);
}
}
ERC165.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
MerkleProof.sol 232 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
Read Contract
ADMIN 0x2a0acc6a → bytes32
DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
getRoleAdmin 0x248a9ca3 → bytes32
hasRole 0x91d14854 → bool
implementation 0x5c60da1b → address
owner 0x8da5cb5b → address
piementMinter 0x5de5607c → address
royaltyReceiver 0x9fbc8713 → address
royaltyReceiverCurrency 0xc2dd1ad8 → address
supportsInterface 0x01ffc9a7 → bool
systemRoyalty 0x5feb21fd → uint256
Write Contract 11 functions
These functions modify contract state and require a wallet transaction to execute.
create 0x3e68680a
address _tukuruERC1155Address
address _withdrawAddress
grantRole 0x2f2ff15d
bytes32 role
address account
renounceOwnership 0x715018a6
No parameters
renounceRole 0x36568abe
bytes32 role
address callerConfirmation
revokeRole 0xd547741f
bytes32 role
address account
setImplementation 0xd784d426
address _value
setPiementMinter 0x90c5518a
address _value
setRoyaltyReceiver 0x8dc251e3
address _value
setRoyaltyReceiverCurrency 0x50ef5a16
address _value
setSystemRoyalty 0x2f328a4d
uint256 _value
transferOwnership 0xf2fde38b
address newOwner
Recent Transactions
No transactions found for this address