Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x06A491e3EFeE37eB191D0434F54be6E42509F9d3
Balance 0 ETH
Nonce 1
Code Size 9611 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

9611 bytes
0x608060405234801561000f575f80fd5b5060043610610225575f3560e01c8063728a16111161012e578063c63d75b6116100b6578063d905777e1161007a578063d905777e14610761578063dd62ed3e14610791578063e190febc146107c1578063ef8b30f7146107dd578063fb183a021461080d57610225565b8063c63d75b614610683578063c6e6f592146106b3578063c765f605146106e3578063ce96cb7714610701578063d01ab8ee1461073157610225565b8063a9059cbb116100fd578063a9059cbb14610593578063aa9b074e146105c3578063b3d7f6b9146105f3578063b460af9414610623578063ba0876521461065357610225565b8063728a161114610509578063732e86fe1461052757806394bf804d1461054557806395d89b411461057557610225565b80632a994166116101b1578063404b9d8111610180578063404b9d81146104195780634cdad50614610449578063621b1b7c146104795780636e553f65146104a957806370a08231146104d957610225565b80632a9941661461038f578063313ce567146103ad57806338d52e0f146103cb578063402d267d146103e957610225565b80630a28a477116101f85780630a28a477146102c557806313bac820146102f557806318160ddd1461032557806320b9353b1461034357806323b872dd1461035f57610225565b806301e1d1141461022957806306fdde031461024757806307a2d13a14610265578063095ea7b314610295575b5f80fd5b61023161083d565b60405161023e9190611cf2565b60405180910390f35b61024f610853565b60405161025c9190611d95565b60405180910390f35b61027f600480360381019061027a9190611de7565b6108e3565b60405161028c9190611cf2565b60405180910390f35b6102af60048036038101906102aa9190611e6c565b6109b3565b6040516102bc9190611ec4565b60405180910390f35b6102df60048036038101906102da9190611de7565b6109d5565b6040516102ec9190611cf2565b60405180910390f35b61030f600480360381019061030a9190611edd565b6109db565b60405161031c9190611cf2565b60405180910390f35b61032d610b01565b60405161033a9190611cf2565b60405180910390f35b61035d60048036038101906103589190611f1b565b610b0a565b005b61037960048036038101906103749190611f46565b610b0d565b6040516103869190611ec4565b60405180910390f35b610397610b3b565b6040516103a49190611fa5565b60405180910390f35b6103b5610b3f565b6040516103c29190611fd9565b60405180910390f35b6103d3610b47565b6040516103e09190611fa5565b60405180910390f35b61040360048036038101906103fe9190611f1b565b610b6e565b6040516104109190611cf2565b60405180910390f35b610433600480360381019061042e9190611de7565b610c03565b6040516104409190611cf2565b60405180910390f35b610463600480360381019061045e9190611de7565b610c0c565b6040516104709190611cf2565b60405180910390f35b610493600480360381019061048e9190611ff2565b610c1d565b6040516104a09190611cf2565b60405180910390f35b6104c360048036038101906104be9190611edd565b610c72565b6040516104d09190611cf2565b60405180910390f35b6104f360048036038101906104ee9190611f1b565b610e23565b6040516105009190611cf2565b60405180910390f35b610511610e68565b60405161051e9190611cf2565b60405180910390f35b61052f610e76565b60405161053c9190611fa5565b60405180910390f35b61055f600480360381019061055a9190611edd565b610e91565b60405161056c9190611cf2565b60405180910390f35b61057d610ec4565b60405161058a9190611d95565b60405180910390f35b6105ad60048036038101906105a89190611e6c565b610f54565b6040516105ba9190611ec4565b60405180910390f35b6105dd60048036038101906105d89190611de7565b610f76565b6040516105ea9190611cf2565b60405180910390f35b61060d60048036038101906106089190611de7565b610f7f565b60405161061a9190611cf2565b60405180910390f35b61063d60048036038101906106389190612056565b610f85565b60405161064a9190611cf2565b60405180910390f35b61066d60048036038101906106689190612056565b610fb8565b60405161067a9190611cf2565b60405180910390f35b61069d60048036038101906106989190611f1b565b611264565b6040516106aa9190611cf2565b60405180910390f35b6106cd60048036038101906106c89190611de7565b61126a565b6040516106da9190611cf2565b60405180910390f35b6106eb6112fe565b6040516106f89190612101565b60405180910390f35b61071b60048036038101906107169190611f1b565b611316565b6040516107289190611cf2565b60405180910390f35b61074b6004803603810190610746919061211a565b61131c565b6040516107589190611cf2565b60405180910390f35b61077b60048036038101906107769190611f1b565b61136f565b6040516107889190611cf2565b60405180910390f35b6107ab60048036038101906107a6919061216a565b6113c3565b6040516107b89190611cf2565b60405180910390f35b6107db60048036038101906107d69190612209565b611445565b005b6107f760048036038101906107f29190611de7565b611449565b6040516108049190611cf2565b60405180910390f35b61082760048036038101906108229190612056565b6114dd565b6040516108349190611cf2565b60405180910390f35b5f61084e610849610b01565b6108e3565b905090565b60606003805461086290612281565b80601f016020809104026020016040519081016040528092919081815260200182805461088e90612281565b80156108d95780601f106108b0576101008083540402835291602001916108d9565b820191905f5260205f20905b8154815290600101906020018083116108bc57829003601f168201915b5050505050905090565b5f807f0000000000000000000000000000000000000000000000000de0b6b3a76400008361091191906122de565b90507f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee273ffffffffffffffffffffffffffffffffffffffff16631f2dc5ef6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561097c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109a09190612333565b816109ab919061238b565b915050919050565b5f806109bd611658565b90506109ca81858561165f565b600191505092915050565b5f919050565b5f806109e5611658565b90505f6109f185610c03565b90507399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff166323b872dd8330886040518463ffffffff1660e01b8152600401610a44939291906123bb565b6020604051808303815f875af1158015610a60573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a84919061241a565b50610a8f8482611671565b8373ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f764bd851d2423ff95fbc9b4db718c64299b808c0948fa9eec41c3b30001aea5e8784604051610aee929190612445565b60405180910390a3809250505092915050565b5f600254905090565b50565b5f80610b17611658565b9050610b248582856116f0565b610b2f858585611783565b60019150509392505050565b5f90565b5f6012905090565b5f7f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee2905090565b5f7f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee273ffffffffffffffffffffffffffffffffffffffff1663e83157426040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bd8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bfc9190612333565b9050919050565b5f819050919050565b5f610c16826108e3565b9050919050565b5f80610c2a8686866114dd565b905082811015610c66576040517ff033da7000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050949350505050565b5f80610c7c611658565b90507f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee273ffffffffffffffffffffffffffffffffffffffff166323b872dd8230876040518463ffffffff1660e01b8152600401610cdb939291906123bb565b6020604051808303815f875af1158015610cf7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d1b919061241a565b507399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff1663ea598cb0856040518263ffffffff1660e01b8152600401610d699190611cf2565b6020604051808303815f875af1158015610d85573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610da99190612333565b9150610db58383611671565b8273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d78685604051610e14929190612445565b60405180910390a35092915050565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f610e71610b01565b905090565b5f7399999999999999cc837c997b882957dafdcb1af9905090565b5f6040517f6a1d18c200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b606060048054610ed390612281565b80601f0160208091040260200160405190810160405280929190818152602001828054610eff90612281565b8015610f4a5780601f10610f2157610100808354040283529160200191610f4a565b820191905f5260205f20905b815481529060010190602001808311610f2d57829003601f168201915b5050505050905090565b5f80610f5e611658565b9050610f6b818585611783565b600191505092915050565b5f819050919050565b5f919050565b5f6040517fad28754300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f80610fc2611658565b90508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611003576110028382876116f0565b5b61100d8386611873565b5f7f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee273ffffffffffffffffffffffffffffffffffffffff166370a08231866040518263ffffffff1660e01b81526004016110679190611fa5565b602060405180830381865afa158015611082573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110a69190612333565b90507399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff16637647691d87876040518363ffffffff1660e01b81526004016110f792919061246c565b6020604051808303815f875af1158015611113573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111379190612333565b50807f000000000000000000000000de17a000ba631c5d7c2bd9fb692efea52d90dee273ffffffffffffffffffffffffffffffffffffffff166370a08231876040518263ffffffff1660e01b81526004016111929190611fa5565b602060405180830381865afa1580156111ad573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111d19190612333565b6111db9190612493565b92508373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db868a604051611253929190612445565b60405180910390a450509392505050565b5f919050565b5f7399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff1663404b9d81836040518263ffffffff1660e01b81526004016112b89190611cf2565b602060405180830381865afa1580156112d3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112f79190612333565b9050919050565b7399999999999999cc837c997b882957dafdcb1af981565b5f919050565b5f8061132885856109db565b905082811015611364576040517ff033da7000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b809150509392505050565b5f7f0000000000000000000000000000000000000000000000000de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6113bc919061238b565b9050919050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5050565b5f7399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff1663404b9d81836040518263ffffffff1660e01b81526004016114979190611cf2565b602060405180830381865afa1580156114b2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114d69190612333565b9050919050565b5f806114e7611658565b90508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611528576115278382876116f0565b5b5f61153286610f76565b905061153e8487611873565b7399999999999999cc837c997b882957dafdcb1af973ffffffffffffffffffffffffffffffffffffffff1663a9059cbb86836040518363ffffffff1660e01b815260040161158d9291906124c6565b6020604051808303815f875af11580156115a9573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115cd919061241a565b508373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddce703dce003cfc0a2d7cddef5f904f35cc1d27200a1b9153a656dc5208a8498985604051611644929190612445565b60405180910390a480925050509392505050565b5f33905090565b61166c83838360016118f2565b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036116e1575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016116d89190611fa5565b60405180910390fd5b6116ec5f8383611ac1565b5050565b5f6116fb84846113c3565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81101561177d578181101561176e578281836040517ffb8f41b2000000000000000000000000000000000000000000000000000000008152600401611765939291906124ed565b60405180910390fd5b61177c84848484035f6118f2565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036117f3575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016117ea9190611fa5565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611863575f6040517fec442f0500000000000000000000000000000000000000000000000000000000815260040161185a9190611fa5565b60405180910390fd5b61186e838383611ac1565b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036118e3575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016118da9190611fa5565b60405180910390fd5b6118ee825f83611ac1565b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603611962575f6040517fe602df050000000000000000000000000000000000000000000000000000000081526004016119599190611fa5565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036119d2575f6040517f94280d620000000000000000000000000000000000000000000000000000000081526004016119c99190611fa5565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015611abb578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051611ab29190611cf2565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611b11578060025f828254611b059190612522565b92505081905550611bdf565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611b9a578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401611b91939291906124ed565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611c26578060025f8282540392505081905550611c70565b805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611ccd9190611cf2565b60405180910390a3505050565b5f819050919050565b611cec81611cda565b82525050565b5f602082019050611d055f830184611ce3565b92915050565b5f81519050919050565b5f82825260208201905092915050565b5f5b83811015611d42578082015181840152602081019050611d27565b5f8484015250505050565b5f601f19601f8301169050919050565b5f611d6782611d0b565b611d718185611d15565b9350611d81818560208601611d25565b611d8a81611d4d565b840191505092915050565b5f6020820190508181035f830152611dad8184611d5d565b905092915050565b5f80fd5b5f80fd5b611dc681611cda565b8114611dd0575f80fd5b50565b5f81359050611de181611dbd565b92915050565b5f60208284031215611dfc57611dfb611db5565b5b5f611e0984828501611dd3565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611e3b82611e12565b9050919050565b611e4b81611e31565b8114611e55575f80fd5b50565b5f81359050611e6681611e42565b92915050565b5f8060408385031215611e8257611e81611db5565b5b5f611e8f85828601611e58565b9250506020611ea085828601611dd3565b9150509250929050565b5f8115159050919050565b611ebe81611eaa565b82525050565b5f602082019050611ed75f830184611eb5565b92915050565b5f8060408385031215611ef357611ef2611db5565b5b5f611f0085828601611dd3565b9250506020611f1185828601611e58565b9150509250929050565b5f60208284031215611f3057611f2f611db5565b5b5f611f3d84828501611e58565b91505092915050565b5f805f60608486031215611f5d57611f5c611db5565b5b5f611f6a86828701611e58565b9350506020611f7b86828701611e58565b9250506040611f8c86828701611dd3565b9150509250925092565b611f9f81611e31565b82525050565b5f602082019050611fb85f830184611f96565b92915050565b5f60ff82169050919050565b611fd381611fbe565b82525050565b5f602082019050611fec5f830184611fca565b92915050565b5f805f806080858703121561200a57612009611db5565b5b5f61201787828801611dd3565b945050602061202887828801611e58565b935050604061203987828801611e58565b925050606061204a87828801611dd3565b91505092959194509250565b5f805f6060848603121561206d5761206c611db5565b5b5f61207a86828701611dd3565b935050602061208b86828701611e58565b925050604061209c86828701611e58565b9150509250925092565b5f819050919050565b5f6120c96120c46120bf84611e12565b6120a6565b611e12565b9050919050565b5f6120da826120af565b9050919050565b5f6120eb826120d0565b9050919050565b6120fb816120e1565b82525050565b5f6020820190506121145f8301846120f2565b92915050565b5f805f6060848603121561213157612130611db5565b5b5f61213e86828701611dd3565b935050602061214f86828701611e58565b925050604061216086828701611dd3565b9150509250925092565b5f80604083850312156121805761217f611db5565b5b5f61218d85828601611e58565b925050602061219e85828601611e58565b9150509250929050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f8401126121c9576121c86121a8565b5b8235905067ffffffffffffffff8111156121e6576121e56121ac565b5b602083019150836001820283011115612202576122016121b0565b5b9250929050565b5f806020838503121561221f5761221e611db5565b5b5f83013567ffffffffffffffff81111561223c5761223b611db9565b5b612248858286016121b4565b92509250509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061229857607f821691505b6020821081036122ab576122aa612254565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6122e882611cda565b91506122f383611cda565b925082820261230181611cda565b91508282048414831517612318576123176122b1565b5b5092915050565b5f8151905061232d81611dbd565b92915050565b5f6020828403121561234857612347611db5565b5b5f6123558482850161231f565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61239582611cda565b91506123a083611cda565b9250826123b0576123af61235e565b5b828204905092915050565b5f6060820190506123ce5f830186611f96565b6123db6020830185611f96565b6123e86040830184611ce3565b949350505050565b6123f981611eaa565b8114612403575f80fd5b50565b5f81519050612414816123f0565b92915050565b5f6020828403121561242f5761242e611db5565b5b5f61243c84828501612406565b91505092915050565b5f6040820190506124585f830185611ce3565b6124656020830184611ce3565b9392505050565b5f60408201905061247f5f830185611ce3565b61248c6020830184611f96565b9392505050565b5f61249d82611cda565b91506124a883611cda565b92508282039050818111156124c0576124bf6122b1565b5b92915050565b5f6040820190506124d95f830185611f96565b6124e66020830184611ce3565b9392505050565b5f6060820190506125005f830186611f96565b61250d6020830185611ce3565b61251a6040830184611ce3565b949350505050565b5f61252c82611cda565b915061253783611cda565b925082820190508082111561254f5761254e6122b1565b5b9291505056fea26469706673582212206119f481e219aaeea3a3202a1cd7a72776551731ed94f168e54aa110049f7b7964736f6c63430008140033

Verified Source Code Full Match

Compiler: v0.8.20+commit.a1b79de6 EVM: shanghai Optimization: No
SpectraWrappedWusdn.sol 230 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import { ERC20 } from "@openzeppelin-contracts-5/token/ERC20/ERC20.sol";
import { Math } from "@openzeppelin-contracts-5/utils/math/Math.sol";
import { IUsdn } from "@smardex-usdn-contracts-1/interfaces/Usdn/IUsdn.sol";
import { IWusdn } from "@smardex-usdn-contracts-1/interfaces/Usdn/IWusdn.sol";

import { IERC4626, ISpectra4626Wrapper } from "./spectra/interfaces/ISpectra4626Wrapper.sol";

/// @title Spectra ERC-4626 Wrapper for USDN/WUSDN.
contract SpectraWrappedWusdn is ERC20, ISpectra4626Wrapper {
    using Math for uint256;

    /// @notice The address of the wrapped USDN token.
    IWusdn public constant WUSDN = IWusdn(0x99999999999999Cc837C997B882957daFdCb1Af9);

    /// @notice The address of the USDN token.
    /// @dev Retrieve with {asset}.
    IUsdn private immutable USDN;

    /// @notice The ratio of USDN to WUSDN shares.
    uint256 private immutable SHARES_RATIO;

    /// @notice The {withdraw} function is not implemented.
    error WithdrawNotImplemented();

    /// @notice The {mint} function is not implemented.
    error MintNotImplemented();

    constructor() ERC20(_wrapperName(), _wrapperSymbol()) {
        USDN = WUSDN.USDN();
        SHARES_RATIO = WUSDN.SHARES_RATIO();
        USDN.approve(address(WUSDN), type(uint256).max);
    }

    /* -------------------------------------------------------------------------- */
    /*                              ERC4626 Functions                             */
    /* -------------------------------------------------------------------------- */

    /// @inheritdoc IERC4626
    function asset() external view returns (address assetTokenAddress_) {
        return address(USDN);
    }

    /// @inheritdoc IERC4626
    function totalAssets() external view returns (uint256 assets_) {
        // 1 wrapper share = 1 WUSDN token,
        // so we can use the total supply of the wrapper instead of its balance of WUSDN to spare a call
        return convertToAssets(totalSupply());
    }

    /// @inheritdoc IERC4626
    function convertToShares(uint256 assets) external view returns (uint256 shares_) {
        return WUSDN.previewWrap(assets);
    }

    /// @inheritdoc IERC4626
    function convertToAssets(uint256 shares) public view returns (uint256 assets_) {
        uint256 usdnShares = shares * SHARES_RATIO;
        return usdnShares / USDN.divisor();
    }

    /// @inheritdoc IERC4626
    function maxDeposit(address) external view returns (uint256 maxAssets_) {
        return USDN.maxTokens();
    }

    /// @inheritdoc IERC4626
    function previewDeposit(uint256 assets) external view returns (uint256 shares_) {
        return WUSDN.previewWrap(assets);
    }

    /// @inheritdoc IERC4626
    function deposit(uint256 assets, address receiver) external returns (uint256 shares_) {
        address caller = _msgSender();
        USDN.transferFrom(caller, address(this), assets);
        shares_ = WUSDN.wrap(assets);
        _mint(receiver, shares_);
        emit Deposit(caller, receiver, assets, shares_);
    }

    /// @inheritdoc IERC4626
    function maxMint(address) external pure returns (uint256) {
        return 0;
    }

    /// @inheritdoc IERC4626
    function previewMint(uint256) external pure returns (uint256) {
        return 0;
    }

    /// @inheritdoc IERC4626
    function mint(uint256, address) external pure returns (uint256) {
        revert MintNotImplemented();
    }

    /// @inheritdoc IERC4626
    function maxWithdraw(address) external pure returns (uint256) {
        return 0;
    }

    /// @inheritdoc IERC4626
    function previewWithdraw(uint256) external pure returns (uint256) {
        return 0;
    }

    /// @inheritdoc IERC4626
    function withdraw(uint256, address, address) external pure returns (uint256) {
        revert WithdrawNotImplemented();
    }

    /// @inheritdoc IERC4626
    function maxRedeem(address) external view returns (uint256 maxShares_) {
        return type(uint256).max / SHARES_RATIO;
    }

    /// @inheritdoc IERC4626
    function previewRedeem(uint256 shares) external view returns (uint256 assets_) {
        return convertToAssets(shares);
    }

    /// @inheritdoc IERC4626
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets_) {
        address caller = _msgSender();
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }
        _burn(owner, shares);
        uint256 balanceBefore = USDN.balanceOf(receiver);
        WUSDN.unwrap(shares, receiver);
        assets_ = USDN.balanceOf(receiver) - balanceBefore;
        emit Withdraw(caller, receiver, owner, assets_, shares);
    }

    /* -------------------------------------------------------------------------- */
    /*                         Spectra Specific Functions                         */
    /* -------------------------------------------------------------------------- */

    /// @inheritdoc ISpectra4626Wrapper
    function vaultShare() external pure returns (address) {
        return address(WUSDN);
    }

    /// @inheritdoc ISpectra4626Wrapper
    function totalVaultShares() external view returns (uint256) {
        return totalSupply();
    }

    /// @inheritdoc ISpectra4626Wrapper
    function rewardsProxy() public pure returns (address) {
        return address(0);
    }

    /// @inheritdoc ISpectra4626Wrapper
    function previewWrap(uint256 vaultShares) public pure returns (uint256) {
        return vaultShares;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function previewUnwrap(uint256 shares) public pure returns (uint256) {
        return shares;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function wrap(uint256 vaultShares, address receiver) public returns (uint256) {
        address caller = _msgSender();
        uint256 sharesToMint = previewWrap(vaultShares);
        WUSDN.transferFrom(caller, address(this), vaultShares);
        _mint(receiver, sharesToMint);
        emit Wrap(caller, receiver, vaultShares, sharesToMint);
        return sharesToMint;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function wrap(uint256 vaultShares, address receiver, uint256 minShares) external returns (uint256) {
        uint256 sharesToMint = wrap(vaultShares, receiver);
        if (sharesToMint < minShares) {
            revert ERC5143SlippageProtectionFailed();
        }
        return sharesToMint;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function unwrap(uint256 shares, address receiver, address owner) public returns (uint256) {
        address caller = _msgSender();
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }
        uint256 vaultSharesToTransfer = previewUnwrap(shares);
        _burn(owner, shares);
        WUSDN.transfer(receiver, vaultSharesToTransfer);
        emit Unwrap(caller, receiver, owner, shares, vaultSharesToTransfer);
        return vaultSharesToTransfer;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function unwrap(uint256 shares, address receiver, address owner, uint256 minVaultShares)
        external
        returns (uint256)
    {
        uint256 vaultSharesToTransfer = unwrap(shares, receiver, owner);
        if (vaultSharesToTransfer < minVaultShares) {
            revert ERC5143SlippageProtectionFailed();
        }
        return vaultSharesToTransfer;
    }

    /// @inheritdoc ISpectra4626Wrapper
    function setRewardsProxy(address) external { }

    /// @inheritdoc ISpectra4626Wrapper
    function claimRewards(bytes calldata) external { }

    /* -------------------------------------------------------------------------- */
    /*                         Spectra Internal Functions                         */
    /* -------------------------------------------------------------------------- */

    /// @notice Internal getter to build wrapper name.
    /// @return wrapperName The wrapper token name.
    function _wrapperName() internal view returns (string memory wrapperName) {
        wrapperName = string.concat("Spectra ERC4626 Wrapper: ", WUSDN.name());
    }

    /// @notice Internal getter to build wrapper symbol.
    /// @return wrapperSymbol The wrapper token symbol.
    function _wrapperSymbol() internal view returns (string memory wrapperSymbol) {
        wrapperSymbol = string.concat("sw-", WUSDN.symbol());
    }
}
ERC20.sol 312 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
Math.sol 685 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
IUsdn.sol 201 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

import { IRebaseCallback } from "./IRebaseCallback.sol";
import { IUsdnErrors } from "./IUsdnErrors.sol";
import { IUsdnEvents } from "./IUsdnEvents.sol";

/**
 * @title USDN token interface
 * @notice Implements the ERC-20 token standard as well as the EIP-2612 permit extension. Additional functions related
 * to the specifics of this token are included below.
 */
interface IUsdn is IERC20, IERC20Metadata, IERC20Permit, IUsdnEvents, IUsdnErrors {
    /**
     * @notice Returns the total number of shares in existence.
     * @return shares_ The number of shares.
     */
    function totalShares() external view returns (uint256 shares_);

    /**
     * @notice Returns the number of shares owned by `account`.
     * @param account The account to query.
     * @return shares_ The number of shares.
     */
    function sharesOf(address account) external view returns (uint256 shares_);

    /**
     * @notice Transfers a given amount of shares from the `msg.sender` to `to`.
     * @param to Recipient of the shares.
     * @param value Number of shares to transfer.
     * @return success_ Indicates whether the transfer was successfully executed.
     */
    function transferShares(address to, uint256 value) external returns (bool success_);

    /**
     * @notice Transfers a given amount of shares from the `from` to `to`.
     * @dev There should be sufficient allowance for the spender. Be mindful of the rebase logic. The allowance is in
     * tokens. So, after a rebase, the same amount of shares will be worth a higher amount of tokens. In that case,
     * the allowance of the initial approval will not be enough to transfer the new amount of tokens. This can
     * also happen when your transaction is in the mempool and the rebase happens before your transaction. Also note
     * that the amount of tokens deduced from the allowance is rounded up, so the `convertToTokensRoundUp` function
     * should be used when converting shares into an allowance value.
     * @param from The owner of the shares.
     * @param to Recipient of the shares.
     * @param value Number of shares to transfer.
     * @return success_ Indicates whether the transfer was successfully executed.
     */
    function transferSharesFrom(address from, address to, uint256 value) external returns (bool success_);

    /**
     * @notice Mints new shares, providing a token value.
     * @dev Caller must have the MINTER_ROLE.
     * @param to Account to receive the new shares.
     * @param amount Amount of tokens to mint, is internally converted to the proper shares amounts.
     */
    function mint(address to, uint256 amount) external;

    /**
     * @notice Mints new shares, providing a share value.
     * @dev Caller must have the MINTER_ROLE.
     * @param to Account to receive the new shares.
     * @param amount Amount of shares to mint.
     * @return mintedTokens_ Amount of tokens that were minted (informational).
     */
    function mintShares(address to, uint256 amount) external returns (uint256 mintedTokens_);

    /**
     * @notice Destroys a `value` amount of tokens from the caller, reducing the total supply.
     * @param value Amount of tokens to burn, is internally converted to the proper shares amounts.
     */
    function burn(uint256 value) external;

    /**
     * @notice Destroys a `value` amount of tokens from `account`, deducting from the caller's allowance.
     * @param account Account to burn tokens from.
     * @param value Amount of tokens to burn, is internally converted to the proper shares amounts.
     */
    function burnFrom(address account, uint256 value) external;

    /**
     * @notice Destroys a `value` amount of shares from the caller, reducing the total supply.
     * @param value Amount of shares to burn.
     */
    function burnShares(uint256 value) external;

    /**
     * @notice Destroys a `value` amount of shares from `account`, deducting from the caller's allowance.
     * @dev There should be sufficient allowance for the spender. Be mindful of the rebase logic. The allowance is in
     * tokens. So, after a rebase, the same amount of shares will be worth a higher amount of tokens. In that case,
     * the allowance of the initial approval will not be enough to transfer the new amount of tokens. This can
     * also happen when your transaction is in the mempool and the rebase happens before your transaction. Also note
     * that the amount of tokens deduced from the allowance is rounded up, so the `convertToTokensRoundUp` function
     * should be used when converting shares into an allowance value.
     * @param account Account to burn shares from.
     * @param value Amount of shares to burn.
     */
    function burnSharesFrom(address account, uint256 value) external;

    /**
     * @notice Converts a number of tokens to the corresponding amount of shares.
     * @dev The conversion reverts with `UsdnMaxTokensExceeded` if the corresponding amount of shares overflows.
     * @param amountTokens The amount of tokens to convert to shares.
     * @return shares_ The corresponding amount of shares.
     */
    function convertToShares(uint256 amountTokens) external view returns (uint256 shares_);

    /**
     * @notice Converts a number of shares to the corresponding amount of tokens.
     * @dev The conversion never overflows as we are performing a division. The conversion rounds to the nearest amount
     * of tokens that minimizes the error when converting back to shares.
     * @param amountShares The amount of shares to convert to tokens.
     * @return tokens_ The corresponding amount of tokens.
     */
    function convertToTokens(uint256 amountShares) external view returns (uint256 tokens_);

    /**
     * @notice Converts a number of shares to the corresponding amount of tokens, rounding up.
     * @dev Use this function to determine the amount of a token approval, as we always round up when deducting from
     * a token transfer allowance.
     * @param amountShares The amount of shares to convert to tokens.
     * @return tokens_ The corresponding amount of tokens, rounded up.
     */
    function convertToTokensRoundUp(uint256 amountShares) external view returns (uint256 tokens_);

    /**
     * @notice Returns the current maximum tokens supply, given the current divisor.
     * @dev This function is used to check if a conversion operation would overflow.
     * @return maxTokens_ The maximum number of tokens that can exist.
     */
    function maxTokens() external view returns (uint256 maxTokens_);

    /**
     * @notice Decreases the global divisor, which effectively grows all balances and the total supply.
     * @dev If the provided divisor is larger than or equal to the current divisor value, no rebase will happen
     * If the new divisor is smaller than `MIN_DIVISOR`, the value will be clamped to `MIN_DIVISOR`.
     * Caller must have the `REBASER_ROLE`.
     * @param newDivisor The new divisor, should be strictly smaller than the current one and greater or equal to
     * `MIN_DIVISOR`.
     * @return rebased_ Whether a rebase happened.
     * @return oldDivisor_ The previous value of the divisor.
     * @return callbackResult_ The result of the callback, if a rebase happened and a callback handler is defined.
     */
    function rebase(uint256 newDivisor)
        external
        returns (bool rebased_, uint256 oldDivisor_, bytes memory callbackResult_);

    /**
     * @notice Sets the rebase handler address.
     * @dev Emits a `RebaseHandlerUpdated` event.
     * If set to the zero address, no handler will be called after a rebase.
     * Caller must have the `DEFAULT_ADMIN_ROLE`.
     * @param newHandler The new handler address.
     */
    function setRebaseHandler(IRebaseCallback newHandler) external;

    /* -------------------------------------------------------------------------- */
    /*                             Dev view functions                             */
    /* -------------------------------------------------------------------------- */

    /**
     * @notice Gets the current value of the divisor that converts between tokens and shares.
     * @return divisor_ The current divisor.
     */
    function divisor() external view returns (uint256 divisor_);

    /**
     * @notice Gets the rebase handler address, which is called whenever a rebase happens.
     * @return rebaseHandler_ The rebase handler address.
     */
    function rebaseHandler() external view returns (IRebaseCallback rebaseHandler_);

    /**
     * @notice Gets the minter role signature.
     * @return minter_role_ The role signature.
     */
    function MINTER_ROLE() external pure returns (bytes32 minter_role_);

    /**
     * @notice Gets the rebaser role signature.
     * @return rebaser_role_ The role signature.
     */
    function REBASER_ROLE() external pure returns (bytes32 rebaser_role_);

    /**
     * @notice Gets the maximum value of the divisor, which is also the initial value.
     * @return maxDivisor_ The maximum divisor.
     */
    function MAX_DIVISOR() external pure returns (uint256 maxDivisor_);

    /**
     * @notice Gets the minimum acceptable value of the divisor.
     * @dev The minimum divisor that can be set. This corresponds to a growth of 1B times. Technically, 1e5 would still
     * work without precision errors.
     * @return minDivisor_ The minimum divisor.
     */
    function MIN_DIVISOR() external pure returns (uint256 minDivisor_);
}
IWusdn.sol 120 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

import { IUsdn } from "./IUsdn.sol";
import { IWusdnErrors } from "./IWusdnErrors.sol";
import { IWusdnEvents } from "./IWusdnEvents.sol";

/**
 * @title Wusdn Interface
 * @notice Interface for the Wrapped Ultimate Synthetic Delta Neutral (WUSDN) token.
 */
interface IWusdn is IERC20Metadata, IERC20Permit, IWusdnEvents, IWusdnErrors {
    /**
     * @notice Returns the address of the USDN token.
     * @return The address of the USDN token.
     */
    function USDN() external view returns (IUsdn);

    /**
     * @notice Returns the ratio used to convert USDN shares to WUSDN amounts.
     * @dev This ratio is initialized in the constructor based on the maximum divisor of the USDN token.
     * @return The conversion ratio between USDN shares and WUSDN amounts.
     */
    function SHARES_RATIO() external view returns (uint256);

    /**
     * @notice Wraps a given amount of USDN into WUSDN.
     * @dev This function may use slightly less than `usdnAmount` due to rounding errors.
     * For a more precise operation, use {wrapShares}.
     * @param usdnAmount The amount of USDN to wrap.
     * @return wrappedAmount_ The amount of WUSDN received.
     */
    function wrap(uint256 usdnAmount) external returns (uint256 wrappedAmount_);

    /**
     * @notice Wraps a given amount of USDN into WUSDN and sends it to a specified address.
     * @dev This function may use slightly less than `usdnAmount` due to rounding errors.
     * For a more precise operation, use {wrapShares}.
     * @param usdnAmount The amount of USDN to wrap.
     * @param to The address to receive the WUSDN.
     * @return wrappedAmount_ The amount of WUSDN received.
     */
    function wrap(uint256 usdnAmount, address to) external returns (uint256 wrappedAmount_);

    /**
     * @notice Wraps a given amount of USDN shares into WUSDN and sends it to a specified address.
     * @param usdnShares The amount of USDN shares to wrap.
     * @param to The address to receive the WUSDN.
     * @return wrappedAmount_ The amount of WUSDN received.
     */
    function wrapShares(uint256 usdnShares, address to) external returns (uint256 wrappedAmount_);

    /**
     * @notice Unwraps a given amount of WUSDN into USDN.
     * @param wusdnAmount The amount of WUSDN to unwrap.
     * @return usdnAmount_ The amount of USDN received.
     */
    function unwrap(uint256 wusdnAmount) external returns (uint256 usdnAmount_);

    /**
     * @notice Unwraps a given amount of WUSDN into USDN and sends it to a specified address.
     * @param wusdnAmount The amount of WUSDN to unwrap.
     * @param to The address to receive the USDN.
     * @return usdnAmount_ The amount of USDN received.
     */
    function unwrap(uint256 wusdnAmount, address to) external returns (uint256 usdnAmount_);

    /**
     * @notice Computes the amount of WUSDN that would be received for a given amount of USDN.
     * @dev The actual amount received may differ slightly due to rounding errors.
     * For a precise value, use {previewWrapShares}.
     * @param usdnAmount The amount of USDN to wrap.
     * @return wrappedAmount_ The estimated amount of WUSDN that would be received.
     */
    function previewWrap(uint256 usdnAmount) external view returns (uint256 wrappedAmount_);

    /**
     * @notice Computes the amount of WUSDN that would be received for a given amount of USDN shares.
     * @param usdnShares The amount of USDN shares to wrap.
     * @return wrappedAmount_ The amount of WUSDN that would be received.
     */
    function previewWrapShares(uint256 usdnShares) external view returns (uint256 wrappedAmount_);

    /**
     * @notice Returns the exchange rate between WUSDN and USDN.
     * @return usdnAmount_ The amount of USDN that corresponds to 1 WUSDN.
     */
    function redemptionRate() external view returns (uint256 usdnAmount_);

    /**
     * @notice Computes the amount of USDN that would be received for a given amount of WUSDN.
     * @dev The actual amount received may differ slightly due to rounding errors.
     * For a precise value, use {previewUnwrapShares}.
     * @param wusdnAmount The amount of WUSDN to unwrap.
     * @return usdnAmount_ The estimated amount of USDN that would be received.
     */
    function previewUnwrap(uint256 wusdnAmount) external view returns (uint256 usdnAmount_);

    /**
     * @notice Computes the amount of USDN shares that would be received for a given amount of WUSDN.
     * @param wusdnAmount The amount of WUSDN to unwrap.
     * @return usdnSharesAmount_ The amount of USDN shares that would be received.
     */
    function previewUnwrapShares(uint256 wusdnAmount) external view returns (uint256 usdnSharesAmount_);

    /**
     * @notice Returns the total amount of USDN held by the contract.
     * @return The total amount of USDN held by the contract.
     */
    function totalUsdnBalance() external view returns (uint256);

    /**
     * @notice Returns the total amount of USDN shares held by the contract.
     * @return The total amount of USDN shares held by the contract.
     */
    function totalUsdnShares() external view returns (uint256);
}
ISpectra4626Wrapper.sol 79 lines
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;

import { IERC4626 } from "@openzeppelin-contracts-5/interfaces/IERC4626.sol";

/// @dev Interface of Spectra4626Wrapper.
interface ISpectra4626Wrapper is IERC4626 {
    /// @dev Emitted when vault shares are deposited in the wrapper.
    event Wrap(address indexed caller, address indexed receiver, uint256 vaultShares, uint256 shares);

    /// @dev Emitted when vault shares are withdrawn from the wrapper.
    event Unwrap(
        address indexed caller, address indexed receiver, address indexed owner, uint256 shares, uint256 vaultShares
    );

    /// @dev Emitted when rewards proxy is updated.
    event RewardsProxyUpdated(address oldRewardsProxy, address newRewardsProxy);

    error ERC5143SlippageProtectionFailed();
    error NoRewardsProxy();
    error ClaimRewardsFailed();

    /// @dev Returns the address of the wrapped vault share.
    function vaultShare() external view returns (address);

    /// @dev Returns the vault share balance of the wrapper.
    function totalVaultShares() external view returns (uint256);

    /// @dev Returns the rewards proxy of the wrapper.
    function rewardsProxy() external view returns (address);

    /// @dev Allows to preview the amount of minted wrapper shares for a given amount of deposited vault shares.
    /// @param vaultShares The amount of vault shares to deposit.
    /// @return The amount of minted vault shares.
    function previewWrap(uint256 vaultShares) external view returns (uint256);

    /// @dev Allows to preview the amount of withdrawn vault shares for a given amount of redeemed wrapper shares.
    /// @param shares The amount of wrapper shares to redeem.
    /// @return The amount of withdrawn vault shares.
    function previewUnwrap(uint256 shares) external view returns (uint256);

    /// @dev Allows the owner to deposit vault shares into the wrapper.
    /// @param vaultShares The amount of vault shares to deposit.
    /// @param receiver The address to receive the wrapper shares.
    /// @return The amount of minted wrapper shares.
    function wrap(uint256 vaultShares, address receiver) external returns (uint256);

    /// @dev Allows the owner to deposit vault shares into the wrapper, with support for slippage protection.
    /// @param vaultShares The amount of vault shares to deposit.
    /// @param receiver The address to receive the wrapper shares.
    /// @param minShares The minimum allowed wrapper shares from this deposit.
    /// @return The amount of minted wrapper shares.
    function wrap(uint256 vaultShares, address receiver, uint256 minShares) external returns (uint256);

    /// @dev Allows the owner to withdraw vault shares from the wrapper.
    /// @param shares The amount of wrapper shares to redeem.
    /// @param receiver The address to receive the vault shares.
    /// @param owner The address of the owner of the wrapper shares.
    /// @return The amount of withdrawn vault shares.
    function unwrap(uint256 shares, address receiver, address owner) external returns (uint256);

    /// @dev Allows the owner to withdraw vault shares from the wrapper, with support for slippage protection.
    /// @param shares The amount of wrapper shares to redeem.
    /// @param receiver The address to receive the vault shares.
    /// @param owner The address of the owner of the wrapper shares.
    /// @param minVaultShares The minimum vault shares that should be returned.
    /// @return The amount of withdrawn vault shares.
    function unwrap(uint256 shares, address receiver, address owner, uint256 minVaultShares)
        external
        returns (uint256);

    /// @dev Setter for the rewards proxy.
    /// @param newRewardsProxy The address of the new rewards proxy.
    function setRewardsProxy(address newRewardsProxy) external;

    /// @dev Claims rewards for the wrapped vault.
    /// @param data The optional data used for claiming rewards.
    function claimRewards(bytes calldata data) external;
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
Panic.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
IRebaseCallback.sol 12 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

interface IRebaseCallback {
    /**
     * @notice Called by the USDN token after a rebase has happened.
     * @param oldDivisor The value of the divisor before the rebase.
     * @param newDivisor The value of the divisor after the rebase (necessarily smaller than `oldDivisor`).
     * @return result_ Arbitrary data that will be forwarded to the caller of `rebase`.
     */
    function rebaseCallback(uint256 oldDivisor, uint256 newDivisor) external returns (bytes memory result_);
}
IUsdnErrors.sol 25 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/**
 * @title Errors for the USDN token contract
 * @notice Defines all custom errors emitted by the USDN token contract.
 */
interface IUsdnErrors {
    /**
     * @dev The amount of tokens exceeds the maximum allowed limit.
     * @param value The invalid token value.
     */
    error UsdnMaxTokensExceeded(uint256 value);

    /**
     * @dev The sender's share balance is insufficient.
     * @param sender The sender's address.
     * @param balance The current share balance of the sender.
     * @param needed The required amount of shares for the transfer.
     */
    error UsdnInsufficientSharesBalance(address sender, uint256 balance, uint256 needed);

    /// @dev The divisor value in storage is invalid (< 1).
    error UsdnInvalidDivisor();
}
IUsdnEvents.sol 24 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import { IRebaseCallback } from "./IRebaseCallback.sol";

/**
 * @title Events for the USDN token contract
 * @notice Defines all custom events emitted by the USDN token contract.
 */
interface IUsdnEvents {
    /**
     * @notice The divisor was updated, emitted during a rebase.
     * @param oldDivisor The divisor value before the rebase.
     * @param newDivisor The new divisor value.
     */
    event Rebase(uint256 oldDivisor, uint256 newDivisor);

    /**
     * @notice The rebase handler address was updated.
     * @dev The rebase handler is a contract that is called when a rebase occurs.
     * @param newHandler The address of the new rebase handler contract.
     */
    event RebaseHandlerUpdated(IRebaseCallback newHandler);
}
IWusdnErrors.sol 20 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/**
 * @title Errors For The WUSDN Token Contract
 * @notice Defines all custom errors emitted by the WUSDN token contract.
 */
interface IWusdnErrors {
    /**
     * @dev The user has insufficient USDN balance to wrap the given `usdnAmount`.
     * @param usdnAmount The amount of USDN the user attempted to wrap.
     */
    error WusdnInsufficientBalance(uint256 usdnAmount);

    /**
     * @dev The user is attempting to wrap an amount of USDN shares that is lower than the minimum:
     * {IWusdn.SHARES_RATIO}, required by the WUSDN token. This results in a wrapped amount of zero WUSDN.
     */
    error WusdnWrapZeroAmount();
}
IWusdnEvents.sol 26 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/**
 * @title Events for the WUSDN Token Contract
 * @notice Defines all custom events emitted by the WUSDN token contract.
 */
interface IWusdnEvents {
    /**
     * @notice The user wrapped USDN to mint WUSDN tokens.
     * @param from The address of the user who wrapped the USDN.
     * @param to The address of the recipient who received the WUSDN tokens.
     * @param usdnAmount The amount of USDN tokens wrapped.
     * @param wusdnAmount The amount of WUSDN tokens minted.
     */
    event Wrap(address indexed from, address indexed to, uint256 usdnAmount, uint256 wusdnAmount);

    /**
     * @notice The user unwrapped WUSDN tokens to redeem USDN.
     * @param from The address of the user who unwrapped the WUSDN tokens.
     * @param to The address of the recipient who received the USDN tokens.
     * @param wusdnAmount The amount of WUSDN tokens unwrapped.
     * @param usdnAmount The amount of USDN tokens redeemed.
     */
    event Unwrap(address indexed from, address indexed to, uint256 wusdnAmount, uint256 usdnAmount);
}
IERC4626.sol 230 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

Read Contract

WUSDN 0xc765f605 → address
allowance 0xdd62ed3e → uint256
asset 0x38d52e0f → address
balanceOf 0x70a08231 → uint256
convertToAssets 0x07a2d13a → uint256
convertToShares 0xc6e6f592 → uint256
decimals 0x313ce567 → uint8
maxDeposit 0x402d267d → uint256
maxMint 0xc63d75b6 → uint256
maxRedeem 0xd905777e → uint256
maxWithdraw 0xce96cb77 → uint256
mint 0x94bf804d → uint256
name 0x06fdde03 → string
previewDeposit 0xef8b30f7 → uint256
previewMint 0xb3d7f6b9 → uint256
previewRedeem 0x4cdad506 → uint256
previewUnwrap 0xaa9b074e → uint256
previewWithdraw 0x0a28a477 → uint256
previewWrap 0x404b9d81 → uint256
rewardsProxy 0x2a994166 → address
symbol 0x95d89b41 → string
totalAssets 0x01e1d114 → uint256
totalSupply 0x18160ddd → uint256
totalVaultShares 0x728a1611 → uint256
vaultShare 0x732e86fe → address
withdraw 0xb460af94 → uint256

Write Contract 11 functions

These functions modify contract state and require a wallet transaction to execute.

approve 0x095ea7b3
address spender
uint256 value
returns: bool
claimRewards 0xe190febc
bytes
deposit 0x6e553f65
uint256 assets
address receiver
returns: uint256
redeem 0xba087652
uint256 shares
address receiver
address owner
returns: uint256
setRewardsProxy 0x20b9353b
address
transfer 0xa9059cbb
address to
uint256 value
returns: bool
transferFrom 0x23b872dd
address from
address to
uint256 value
returns: bool
unwrap 0x621b1b7c
uint256 shares
address receiver
address owner
uint256 minVaultShares
returns: uint256
unwrap 0xfb183a02
uint256 shares
address receiver
address owner
returns: uint256
wrap 0x13bac820
uint256 vaultShares
address receiver
returns: uint256
wrap 0xd01ab8ee
uint256 vaultShares
address receiver
uint256 minShares
returns: uint256

Recent Transactions

No transactions found for this address