Cryo Explorer Ethereum Mainnet

Address Contract Partially Verified

Address 0x0dd14b5d39b4C35d0E778A5e40C6A27D6f55C9fF
Balance 0 ETH
Nonce 1
Code Size 3931 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

3931 bytes
0x608060405234801561001057600080fd5b50600436106101005760003560e01c80637a0ebc8811610097578063b132d08f11610066578063b132d08f1461026d578063d505accf14610280578063dd62ed3e14610293578063fbfa77cf146102be57600080fd5b80637a0ebc88146101e65780637ecebe001461023257806395d89b4114610252578063a9059cbb1461025a57600080fd5b8063313ce567116100d3578063313ce567146101705780633644e515146101a957806340471768146101b157806370a08231146101c657600080fd5b806306fdde0314610105578063095ea7b31461012357806318160ddd1461014657806323b872dd1461015d575b600080fd5b61010d6102e5565b60405161011a9190610bd8565b60405180910390f35b610136610131366004610c74565b610373565b604051901515815260200161011a565b61014f60025481565b60405190815260200161011a565b61013661016b366004610c9e565b6103ec565b6101977f000000000000000000000000000000000000000000000000000000000000001281565b60405160ff909116815260200161011a565b61014f610530565b6101c46101bf366004610c74565b61058b565b005b61014f6101d4366004610cda565b60036020526000908152604090205481565b61020d7f000000000000000000000000bb443d6740322293fcee4414d03978c7e4bf5d5581565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161011a565b61014f610240366004610cda565b60056020526000908152604090205481565b61010d610608565b610136610268366004610c74565b610615565b6101c461027b366004610c74565b61069a565b6101c461028e366004610cfc565b610713565b61014f6102a1366004610d6f565b600460209081526000928352604080842090915290825290205481565b61020d7f000000000000000000000000f9a98a9452485ed55cd3ce5260c2b71c9807b11a81565b600080546102f290610da2565b80601f016020809104026020016040519081016040528092919081815260200182805461031e90610da2565b801561036b5780601f106103405761010080835404028352916020019161036b565b820191906000526020600020905b81548152906001019060200180831161034e57829003601f168201915b505050505081565b33600081815260046020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716808552925280832085905551919290917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906103db9086815260200190565b60405180910390a350600192915050565b73ffffffffffffffffffffffffffffffffffffffff831660009081526004602090815260408083203384529091528120547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146104805761044e8382610e24565b73ffffffffffffffffffffffffffffffffffffffff861660009081526004602090815260408083203384529091529020555b73ffffffffffffffffffffffffffffffffffffffff8516600090815260036020526040812080548592906104b5908490610e24565b909155505073ffffffffffffffffffffffffffffffffffffffff808516600081815260036020526040908190208054870190555190918716907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061051d9087815260200190565b60405180910390a3506001949350505050565b60007f0000000000000000000000000000000000000000000000000000000000000001461461056657610561610a37565b905090565b507fd90235487736078c4a7c204abe832c199b16cf02812a55e6e8d5f164ad945bde90565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000bb443d6740322293fcee4414d03978c7e4bf5d5516146105fa576040517fb8965d0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6106048282610ad1565b5050565b600180546102f290610da2565b33600090815260036020526040812080548391908390610636908490610e24565b909155505073ffffffffffffffffffffffffffffffffffffffff8316600081815260036020526040908190208054850190555133907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906103db9086815260200190565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000bb443d6740322293fcee4414d03978c7e4bf5d551614610709576040517fb8965d0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6106048282610b4a565b42841015610782576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f5045524d49545f444541444c494e455f4558504952454400000000000000000060448201526064015b60405180910390fd5b6000600161078e610530565b73ffffffffffffffffffffffffffffffffffffffff8a811660008181526005602090815260409182902080546001810190915582517f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98184015280840194909452938d166060840152608083018c905260a083019390935260c08083018b90528151808403909101815260e0830190915280519201919091207f190100000000000000000000000000000000000000000000000000000000000061010083015261010282019290925261012281019190915261014201604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181528282528051602091820120600084529083018083525260ff871690820152606081018590526080810184905260a0016020604051602081039080840390855afa1580156108e0573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff81161580159061095b57508773ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16145b6109c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f494e56414c49445f5349474e45520000000000000000000000000000000000006044820152606401610779565b73ffffffffffffffffffffffffffffffffffffffff90811660009081526004602090815260408083208a8516808552908352928190208990555188815291928a16917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a350505050505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6000604051610a699190610e3b565b6040805191829003822060208301939093528101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260c00160405160208183030381529060405280519060200120905090565b8060026000828254610ae39190610f0d565b909155505073ffffffffffffffffffffffffffffffffffffffff82166000818152600360209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91015b60405180910390a35050565b73ffffffffffffffffffffffffffffffffffffffff821660009081526003602052604081208054839290610b7f908490610e24565b909155505060028054829003905560405181815260009073ffffffffffffffffffffffffffffffffffffffff8416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602001610b3e565b600060208083528351808285015260005b81811015610c0557858101830151858201604001528201610be9565b81811115610c17576000604083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016929092016040019392505050565b803573ffffffffffffffffffffffffffffffffffffffff81168114610c6f57600080fd5b919050565b60008060408385031215610c8757600080fd5b610c9083610c4b565b946020939093013593505050565b600080600060608486031215610cb357600080fd5b610cbc84610c4b565b9250610cca60208501610c4b565b9150604084013590509250925092565b600060208284031215610cec57600080fd5b610cf582610c4b565b9392505050565b600080600080600080600060e0888a031215610d1757600080fd5b610d2088610c4b565b9650610d2e60208901610c4b565b95506040880135945060608801359350608088013560ff81168114610d5257600080fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215610d8257600080fd5b610d8b83610c4b565b9150610d9960208401610c4b565b90509250929050565b600181811c90821680610db657607f821691505b602082108103610def577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600082821015610e3657610e36610df5565b500390565b600080835481600182811c915080831680610e5757607f831692505b60208084108203610e8f577f4e487b710000000000000000000000000000000000000000000000000000000086526022600452602486fd5b818015610ea35760018114610ed257610eff565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00861689528489019650610eff565b60008a81526020902060005b86811015610ef75781548b820152908501908301610ede565b505084890196505b509498975050505050505050565b60008219821115610f2057610f20610df5565b50019056fea2646970667358221220a11195b24f792f2cb954969f59cfbfbceed801b77214aa564d22d213e974851964736f6c634300080d0033

Verified Source Code Partial Match

Compiler: v0.8.13+commit.abaa5c0e EVM: london Optimization: Yes (1000000 runs)
NegativeYieldToken.sol 2743 lines
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.13;

// Source: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol + Claimable.sol
// Simplified by BoringCrypto

contract BoringOwnableData {
    address public owner;
    address public pendingOwner;
}

contract BoringOwnable is BoringOwnableData {
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /// @notice `owner` defaults to msg.sender on construction.
    constructor() {
        owner = msg.sender;
        emit OwnershipTransferred(address(0), msg.sender);
    }

    /// @notice Transfers ownership to `newOwner`. Either directly or claimable by the new pending owner.
    /// Can only be invoked by the current `owner`.
    /// @param newOwner Address of the new owner.
    /// @param direct True if `newOwner` should be set immediately. False if `newOwner` needs to use `claimOwnership`.
    /// @param renounce Allows the `newOwner` to be `address(0)` if `direct` and `renounce` is True. Has no effect otherwise.
    function transferOwnership(
        address newOwner,
        bool direct,
        bool renounce
    ) public onlyOwner {
        if (direct) {
            // Checks
            require(newOwner != address(0) || renounce, "Ownable: zero address");

            // Effects
            emit OwnershipTransferred(owner, newOwner);
            owner = newOwner;
            pendingOwner = address(0);
        } else {
            // Effects
            pendingOwner = newOwner;
        }
    }

    /// @notice Needs to be called by `pendingOwner` to claim ownership.
    function claimOwnership() public {
        address _pendingOwner = pendingOwner;

        // Checks
        require(msg.sender == _pendingOwner, "Ownable: caller != pending owner");

        // Effects
        emit OwnershipTransferred(owner, _pendingOwner);
        owner = _pendingOwner;
        pendingOwner = address(0);
    }

    /// @notice Only allows the `owner` to execute the function.
    modifier onlyOwner() {
        require(msg.sender == owner, "Ownable: caller is not the owner");
        _;
    }
}

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    event Debug(bool one, bool two, uint256 retsize);

    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
            mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            // Start off with z at 1.
            z := 1

            // Used below to help find a nearby power of 2.
            let y := x

            // Find the lowest power of 2 that is at least sqrt(x).
            if iszero(lt(y, 0x100000000000000000000000000000000)) {
                y := shr(128, y) // Like dividing by 2 ** 128.
                z := shl(64, z) // Like multiplying by 2 ** 64.
            }
            if iszero(lt(y, 0x10000000000000000)) {
                y := shr(64, y) // Like dividing by 2 ** 64.
                z := shl(32, z) // Like multiplying by 2 ** 32.
            }
            if iszero(lt(y, 0x100000000)) {
                y := shr(32, y) // Like dividing by 2 ** 32.
                z := shl(16, z) // Like multiplying by 2 ** 16.
            }
            if iszero(lt(y, 0x10000)) {
                y := shr(16, y) // Like dividing by 2 ** 16.
                z := shl(8, z) // Like multiplying by 2 ** 8.
            }
            if iszero(lt(y, 0x100)) {
                y := shr(8, y) // Like dividing by 2 ** 8.
                z := shl(4, z) // Like multiplying by 2 ** 4.
            }
            if iszero(lt(y, 0x10)) {
                y := shr(4, y) // Like dividing by 2 ** 4.
                z := shl(2, z) // Like multiplying by 2 ** 2.
            }
            if iszero(lt(y, 0x8)) {
                // Equivalent to 2 ** z.
                z := shl(1, z)
            }

            // Shifting right by 1 is like dividing by 2.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // Compute a rounded down version of z.
            let zRoundDown := div(x, z)

            // If zRoundDown is smaller, use it.
            if lt(zRoundDown, z) {
                z := zRoundDown
            }
        }
    }
}

/// @notice Minimal ERC4626 tokenized Vault implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/mixins/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed caller,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /*//////////////////////////////////////////////////////////////
                               IMMUTABLES
    //////////////////////////////////////////////////////////////*/

    ERC20 public immutable asset;

    constructor(
        ERC20 _asset,
        string memory _name,
        string memory _symbol
    ) ERC20(_name, _symbol, _asset.decimals()) {
        asset = _asset;
    }

    /*//////////////////////////////////////////////////////////////
                        DEPOSIT/WITHDRAWAL LOGIC
    //////////////////////////////////////////////////////////////*/

    function deposit(uint256 assets, address receiver) public virtual returns (uint256 shares) {
        // Check for rounding error since we round down in previewDeposit.
        require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function mint(uint256 shares, address receiver) public virtual returns (uint256 assets) {
        assets = previewMint(shares); // No need to check for rounding error, previewMint rounds up.

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) public virtual returns (uint256 shares) {
        shares = previewWithdraw(assets); // No need to check for rounding error, previewWithdraw rounds up.

        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) public virtual returns (uint256 assets) {
        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        // Check for rounding error since we round down in previewRedeem.
        require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    /*//////////////////////////////////////////////////////////////
                            ACCOUNTING LOGIC
    //////////////////////////////////////////////////////////////*/

    function totalAssets() public view virtual returns (uint256);

    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());
    }

    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivDown(totalAssets(), supply);
    }

    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return convertToShares(assets);
    }

    function previewMint(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivUp(totalAssets(), supply);
    }

    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivUp(supply, totalAssets());
    }

    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return convertToAssets(shares);
    }

    /*//////////////////////////////////////////////////////////////
                     DEPOSIT/WITHDRAWAL LIMIT LOGIC
    //////////////////////////////////////////////////////////////*/

    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return convertToAssets(balanceOf[owner]);
    }

    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf[owner];
    }

    /*//////////////////////////////////////////////////////////////
                          INTERNAL HOOKS LOGIC
    //////////////////////////////////////////////////////////////*/

    function beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}

    function afterDeposit(uint256 assets, uint256 shares) internal virtual {}
}

/// @notice Gas optimized reentrancy protection for smart contracts.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/ReentrancyGuard.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
    uint256 private locked = 1;

    modifier nonReentrant() virtual {
        require(locked == 1, "REENTRANCY");

        locked = 2;

        _;

        locked = 1;
    }
}

/// @notice Library for converting between addresses and bytes32 values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
library Bytes32AddressLib {
    function fromLast20Bytes(bytes32 bytesValue) internal pure returns (address) {
        return address(uint160(uint256(bytesValue)));
    }

    function fillLast12Bytes(address addressValue) internal pure returns (bytes32) {
        return bytes32(bytes20(addressValue));
    }
}

/// @title BaseERC20
/// @author zefram.eth
/// @notice The base ERC20 contract used by NegativeYieldToken and PerpetualYieldToken
/// @dev Uses the same number of decimals as the vault's underlying token
contract BaseERC20 is ERC20 {
    /// -----------------------------------------------------------------------
    /// Errors
    /// -----------------------------------------------------------------------

    error Error_NotGate();

    /// -----------------------------------------------------------------------
    /// Immutable parameters
    /// -----------------------------------------------------------------------

    Gate public immutable gate;
    address public immutable vault;

    /// -----------------------------------------------------------------------
    /// Constructor
    /// -----------------------------------------------------------------------

    constructor(
        string memory name_,
        string memory symbol_,
        Gate gate_,
        address vault_
    ) ERC20(name_, symbol_, gate_.getUnderlyingOfVault(vault_).decimals()) {
        gate = gate_;
        vault = vault_;
    }

    /// -----------------------------------------------------------------------
    /// Gate-callable functions
    /// -----------------------------------------------------------------------

    function gateMint(address to, uint256 amount) external virtual {
        if (msg.sender != address(gate)) {
            revert Error_NotGate();
        }

        _mint(to, amount);
    }

    function gateBurn(address from, uint256 amount) external virtual {
        if (msg.sender != address(gate)) {
            revert Error_NotGate();
        }

        _burn(from, amount);
    }
}

/// @title PerpetualYieldToken
/// @author zefram.eth
/// @notice The ERC20 contract representing perpetual yield tokens
contract PerpetualYieldToken is BaseERC20 {
    /// -----------------------------------------------------------------------
    /// Constructor
    /// -----------------------------------------------------------------------

    constructor(Gate gate_, address vault_)
        BaseERC20(
            gate_.perpetualYieldTokenName(vault_),
            gate_.perpetualYieldTokenSymbol(vault_),
            gate_,
            vault_
        )
    {}

    /// -----------------------------------------------------------------------
    /// ERC20 overrides
    /// -----------------------------------------------------------------------

    function transfer(address to, uint256 amount)
        public
        virtual
        override
        returns (bool)
    {
        // load balances to save gas
        uint256 fromBalance = balanceOf[msg.sender];
        uint256 toBalance = balanceOf[to];

        // call transfer hook
        gate.beforePerpetualYieldTokenTransfer(
            msg.sender,
            to,
            amount,
            fromBalance,
            toBalance
        );

        // do transfer
        // skip during self transfers since toBalance is cached
        // which leads to free minting, a critical issue
        if (msg.sender != to) {
            balanceOf[msg.sender] = fromBalance - amount;

            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] = toBalance + amount;
            }
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        // load balances to save gas
        uint256 fromBalance = balanceOf[from];
        uint256 toBalance = balanceOf[to];

        // call transfer hook
        gate.beforePerpetualYieldTokenTransfer(
            from,
            to,
            amount,
            fromBalance,
            toBalance
        );

        // update allowance
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max)
            allowance[from][msg.sender] = allowed - amount;

        // do transfer
        // skip during self transfers since toBalance is cached
        // which leads to free minting, a critical issue
        if (from != to) {
            balanceOf[from] = fromBalance - amount;

            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] = toBalance + amount;
            }
        }

        emit Transfer(from, to, amount);

        return true;
    }
}

contract Factory is BoringOwnable {
    /// -----------------------------------------------------------------------
    /// Library usage
    /// -----------------------------------------------------------------------

    using Bytes32AddressLib for address;
    using Bytes32AddressLib for bytes32;

    /// -----------------------------------------------------------------------
    /// Errors
    /// -----------------------------------------------------------------------

    error Error_ProtocolFeeRecipientIsZero();

    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    event SetProtocolFee(ProtocolFeeInfo protocolFeeInfo_);
    event DeployYieldTokenPair(
        Gate indexed gate,
        address indexed vault,
        NegativeYieldToken nyt,
        PerpetualYieldToken pyt
    );

    /// -----------------------------------------------------------------------
    /// Storage variables
    /// -----------------------------------------------------------------------

    struct ProtocolFeeInfo {
        uint8 fee; // each increment represents 0.1%, so max is 25.5%
        address recipient;
    }
    /// @notice The protocol fee and the fee recipient address.
    ProtocolFeeInfo public protocolFeeInfo;

    /// -----------------------------------------------------------------------
    /// Constructor
    /// -----------------------------------------------------------------------

    constructor(ProtocolFeeInfo memory protocolFeeInfo_) {
        if (
            protocolFeeInfo_.fee != 0 &&
            protocolFeeInfo_.recipient == address(0)
        ) {
            revert Error_ProtocolFeeRecipientIsZero();
        }
        protocolFeeInfo = protocolFeeInfo_;
        emit SetProtocolFee(protocolFeeInfo_);
    }

    /// -----------------------------------------------------------------------
    /// User actions
    /// -----------------------------------------------------------------------

    /// @notice Deploys the NegativeYieldToken and PerpetualYieldToken associated with a vault.
    /// @dev Will revert if they have already been deployed.
    /// @param gate The gate that will use the NYT and PYT
    /// @param vault The vault to deploy NYT and PYT for
    /// @return nyt The deployed NegativeYieldToken
    /// @return pyt The deployed PerpetualYieldToken
    function deployYieldTokenPair(Gate gate, address vault)
        public
        virtual
        returns (NegativeYieldToken nyt, PerpetualYieldToken pyt)
    {
        // Use the CREATE2 opcode to deploy new NegativeYieldToken and PerpetualYieldToken contracts.
        // This will revert if the contracts have already been deployed,
        // as the salt & bytecode hash would be the same and we can't deploy with it twice.
        nyt = new NegativeYieldToken{salt: bytes32(0)}(gate, vault);
        pyt = new PerpetualYieldToken{salt: bytes32(0)}(gate, vault);

        emit DeployYieldTokenPair(gate, vault, nyt, pyt);
    }

    /// -----------------------------------------------------------------------
    /// Getters
    /// -----------------------------------------------------------------------

    /// @notice Returns the NegativeYieldToken associated with a gate & vault pair.
    /// @dev Returns non-zero value even if the contract hasn't been deployed yet.
    /// @param gate The gate to query
    /// @param vault The vault to query
    /// @return The NegativeYieldToken address
    function getNegativeYieldToken(Gate gate, address vault)
        public
        view
        virtual
        returns (NegativeYieldToken)
    {
        return
            NegativeYieldToken(_computeYieldTokenAddress(gate, vault, false));
    }

    /// @notice Returns the PerpetualYieldToken associated with a gate & vault pair.
    /// @dev Returns non-zero value even if the contract hasn't been deployed yet.
    /// @param gate The gate to query
    /// @param vault The vault to query
    /// @return The PerpetualYieldToken address
    function getPerpetualYieldToken(Gate gate, address vault)
        public
        view
        virtual
        returns (PerpetualYieldToken)
    {
        return
            PerpetualYieldToken(_computeYieldTokenAddress(gate, vault, true));
    }

    /// -----------------------------------------------------------------------
    /// Owner functions
    /// -----------------------------------------------------------------------

    /// @notice Updates the protocol fee and/or the protocol fee recipient.
    /// Only callable by the owner.
    /// @param protocolFeeInfo_ The new protocol fee info
    function ownerSetProtocolFee(ProtocolFeeInfo calldata protocolFeeInfo_)
        external
        virtual
        onlyOwner
    {
        if (
            protocolFeeInfo_.fee != 0 &&
            protocolFeeInfo_.recipient == address(0)
        ) {
            revert Error_ProtocolFeeRecipientIsZero();
        }
        protocolFeeInfo = protocolFeeInfo_;

        emit SetProtocolFee(protocolFeeInfo_);
    }

    /// -----------------------------------------------------------------------
    /// Internal utilities
    /// -----------------------------------------------------------------------

    /// @dev Computes the address of PYTs and NYTs using CREATE2.
    function _computeYieldTokenAddress(
        Gate gate,
        address vault,
        bool isPerpetualYieldToken
    ) internal view virtual returns (address) {
        return
            keccak256(
                abi.encodePacked(
                    // Prefix:
                    bytes1(0xFF),
                    // Creator:
                    address(this),
                    // Salt:
                    bytes32(0),
                    // Bytecode hash:
                    keccak256(
                        abi.encodePacked(
                            // Deployment bytecode:
                            isPerpetualYieldToken
                                ? type(PerpetualYieldToken).creationCode
                                : type(NegativeYieldToken).creationCode,
                            // Constructor arguments:
                            abi.encode(gate, vault)
                        )
                    )
                )
            ).fromLast20Bytes(); // Convert the CREATE2 hash into an address.
    }
}

abstract contract IxPYT is ERC4626 {
    function sweep(address receiver) external virtual returns (uint256 shares);
}

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

/// @title Multicall
/// @notice Enables calling multiple methods in a single call to the contract
abstract contract Multicall {
    function multicall(bytes[] calldata data)
        external
        payable
        returns (bytes[] memory results)
    {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(
                data[i]
            );

            if (!success) {
                // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                if (result.length < 68) revert();
                assembly {
                    result := add(result, 0x04)
                }
                revert(abi.decode(result, (string)));
            }

            results[i] = result;
        }
    }
}

/// @title Self Permit
/// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
/// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function
/// that requires an approval in a single transaction.
abstract contract SelfPermit {
    function selfPermit(
        ERC20 token,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public payable {
        token.permit(msg.sender, address(this), value, deadline, v, r, s);
    }

    function selfPermitIfNecessary(
        ERC20 token,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable {
        if (token.allowance(msg.sender, address(this)) < value)
            selfPermit(token, value, deadline, v, r, s);
    }
}

/// @title Gate
/// @author zefram.eth
/// @notice Gate is the main contract users interact with to mint/burn NegativeYieldToken
/// and PerpetualYieldToken, as well as claim the yield earned by PYTs.
/// @dev Gate is an abstract contract that should be inherited from in order to support
/// a specific vault protocol (e.g. YearnGate supports YearnVault). Each Gate handles
/// all vaults & associated NYTs/PYTs of a specific vault protocol.
///
/// Vaults are yield-generating contracts used by Gate. Gate makes several assumptions about
/// a vault:
/// 1) A vault has a sin...

// [truncated — 106157 bytes total]

Read Contract

DOMAIN_SEPARATOR 0x3644e515 → bytes32
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
decimals 0x313ce567 → uint8
gate 0x7a0ebc88 → address
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256
vault 0xfbfa77cf → address

Write Contract 6 functions

These functions modify contract state and require a wallet transaction to execute.

approve 0x095ea7b3
address spender
uint256 amount
returns: bool
gateBurn 0xb132d08f
address from
uint256 amount
gateMint 0x40471768
address to
uint256 amount
permit 0xd505accf
address owner
address spender
uint256 value
uint256 deadline
uint8 v
bytes32 r
bytes32 s
transfer 0xa9059cbb
address to
uint256 amount
returns: bool
transferFrom 0x23b872dd
address from
address to
uint256 amount
returns: bool

Recent Transactions

No transactions found for this address