Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x14fBA2A6c5A4d9CeB73956AC0A4a18CA8F341fb3
Balance 0 ETH
Nonce 1
Code Size 3908 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

3908 bytes
0x608060405234801561001057600080fd5b50600436106100f55760003560e01c80637cb6475911610097578063ad5c464811610066578063ad5c464814610239578063e30c397814610260578063f0cfbd3914610273578063f2fde38b1461028657600080fd5b80637cb64759146101df5780638da5cb5b146101f257806392fede0014610205578063a22c4ad01461020d57600080fd5b80632eb4a7ab116100d35780632eb4a7ab14610186578063363179721461019d57806345e166bd146101b057806379ba5097146101d757600080fd5b806309b9881a146100fa57806318ba60111461010f5780632483e71514610147575b600080fd5b61010d610108366004610c99565b610299565b005b61013261011d366004610d08565b60036020526000908152604090205460ff1681565b60405190151581526020015b60405180910390f35b61016e7f0000000000000000000000006830c61df103946b63c786e63222c59677f3207881565b6040516001600160a01b03909116815260200161013e565b61018f60025481565b60405190815260200161013e565b61010d6101ab366004610d23565b61066c565b61016e7f00000000000000000000000087cc45fff5c0933bb6af6bae7fc013b7ec7df2ee81565b61010d6107d6565b61010d6101ed366004610d6f565b61085a565b60005461016e906001600160a01b031681565b61010d610889565b61013261021b366004610d08565b6001600160a01b031660009081526003602052604090205460ff1690565b61016e7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281565b60015461016e906001600160a01b031681565b61010d610281366004610d88565b6108fd565b61010d610294366004610d08565b61095f565b3360008181526003602052604090205460ff16156102ca57604051636507689f60e01b815260040160405180910390fd5b604080516001600160a01b038316602082015290810186905260009060600160408051601f198184030181528282528051602091820120908301520160405160208183030381529060405280519060200120905061035f8585808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152505060025491508490506109d5565b61037c576040516309bde33960e01b815260040160405180910390fd5b610385826109ed565b6040516370a0823160e01b81523060048201526000907f00000000000000000000000087cc45fff5c0933bb6af6bae7fc013b7ec7df2ee6001600160a01b0316906370a0823190602401602060405180830381865afa1580156103ec573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104109190610db2565b60408051600180825281830190925291925060009190816020015b604080518082019091526000808252602082015281526020019060019003908161042b57905050905060405180604001604052807f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316815260200189815250816000815181106104a5576104a5610dcb565b60209081029190910101526001600160a01b037f0000000000000000000000006830c61df103946b63c786e63222c59677f32078166316805c8182600060646104ef8a605a610df7565b6104f99190610e0e565b6040518463ffffffff1660e01b815260040161051793929190610e30565b600060405180830381600087803b15801561053157600080fd5b505af1158015610545573d6000803e3d6000fd5b50506040516370a0823160e01b8152306004820152600092507f00000000000000000000000087cc45fff5c0933bb6af6bae7fc013b7ec7df2ee6001600160a01b031691506370a0823190602401602060405180830381865afa1580156105b0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105d49190610db2565b905060006105e28483610e91565b90506000811161062c5760405162461bcd60e51b815260206004820152601060248201526f139bc8151494d6481c9958d95a5d995960821b60448201526064015b60405180910390fd5b6106606001600160a01b037f00000000000000000000000087cc45fff5c0933bb6af6bae7fc013b7ec7df2ee168783610a11565b50505050505050505050565b3360008181526003602052604090205460ff161561069d57604051636507689f60e01b815260040160405180910390fd5b604080516001600160a01b038316602082015290810185905260009060600160408051601f19818403018152828252805160209182012090830152016040516020818303038152906040528051906020012090506107328484808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152505060025491508490506109d5565b61074f576040516309bde33960e01b815260040160405180910390fd5b610758826109ed565b61078c6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2168387610a11565b816001600160a01b03167f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a9424364866040516107c791815260200190565b60405180910390a25050505050565b6001546001600160a01b03163314610800576040516282b42960e81b815260040160405180910390fd5b60008054600180546001600160a01b038082166001600160a01b031980861682178755909216909255604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6000546001600160a01b03163314610884576040516282b42960e81b815260040160405180910390fd5b600255565b6000546001600160a01b031633146108b3576040516282b42960e81b815260040160405180910390fd5b6001546040516001600160a01b03909116907f6ecd4842251bedd053b09547c0fabaab9ec98506ebf24469e8dd5560412ed37f90600090a2600180546001600160a01b0319169055565b6000546001600160a01b03163314610927576040516282b42960e81b815260040160405180910390fd5b61095b6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2168383610a11565b5050565b6000546001600160a01b03163314610989576040516282b42960e81b815260040160405180910390fd5b600180546001600160a01b0319166001600160a01b03831690811790915560405133907f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270090600090a350565b6000826109e28584610a68565b1490505b9392505050565b6001600160a01b03166000908152600360205260409020805460ff19166001179055565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610a63908490610ab7565b505050565b600081815b8451811015610aad57610a9982868381518110610a8c57610a8c610dcb565b6020026020010151610b1a565b915080610aa581610ea4565b915050610a6d565b5090505b92915050565b6000610acc6001600160a01b03841683610b46565b90508051600014158015610af1575080806020019051810190610aef9190610ebd565b155b15610a6357604051635274afe760e01b81526001600160a01b0384166004820152602401610623565b6000818310610b365760008281526020849052604090206109e6565b5060009182526020526040902090565b60606109e68383600084600080856001600160a01b03168486604051610b6c9190610edf565b60006040518083038185875af1925050503d8060008114610ba9576040519150601f19603f3d011682016040523d82523d6000602084013e610bae565b606091505b5091509150610bbe868383610bc8565b9695505050505050565b606082610bdd57610bd882610c24565b6109e6565b8151158015610bf457506001600160a01b0384163b155b15610c1d57604051639996b31560e01b81526001600160a01b0385166004820152602401610623565b50806109e6565b805115610c345780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b60008083601f840112610c5f57600080fd5b50813567ffffffffffffffff811115610c7757600080fd5b6020830191508360208260051b8501011115610c9257600080fd5b9250929050565b60008060008060608587031215610caf57600080fd5b84359350602085013567ffffffffffffffff811115610ccd57600080fd5b610cd987828801610c4d565b9598909750949560400135949350505050565b80356001600160a01b0381168114610d0357600080fd5b919050565b600060208284031215610d1a57600080fd5b6109e682610cec565b600080600060408486031215610d3857600080fd5b83359250602084013567ffffffffffffffff811115610d5657600080fd5b610d6286828701610c4d565b9497909650939450505050565b600060208284031215610d8157600080fd5b5035919050565b60008060408385031215610d9b57600080fd5b610da483610cec565b946020939093013593505050565b600060208284031215610dc457600080fd5b5051919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610ab157610ab1610de1565b600082610e2b57634e487b7160e01b600052601260045260246000fd5b500490565b606080825284519082018190526000906020906080840190828801845b82811015610e7d57815180516001600160a01b031685528501518585015260409093019290840190600101610e4d565b505050941515908301525060400152919050565b81810381811115610ab157610ab1610de1565b600060018201610eb657610eb6610de1565b5060010190565b600060208284031215610ecf57600080fd5b815180151581146109e657600080fd5b6000825160005b81811015610f005760208186018101518583015201610ee6565b50600092019182525091905056fea2646970667358221220e5dba011f05ab66ab129e96f032ea6647677aab1109de9e843633078418709bc64736f6c63430008140033

Verified Source Code Full Match

Compiler: v0.8.20+commit.a1b79de6 EVM: paris Optimization: Yes (200 runs)
Ownable.sol 72 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

///@title Ownable contract
/// @notice Simple 2step owner authorization combining solmate and OZ implementation
abstract contract Ownable {
    /*//////////////////////////////////////////////////////////////
                             STORAGE
    //////////////////////////////////////////////////////////////*/

    ///@notice Address of the owner
    address public owner;

    ///@notice Address of the pending owner
    address public pendingOwner;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event OwnershipTransferred(address indexed user, address indexed newOner);
    event OwnershipTransferStarted(address indexed user, address indexed newOwner);
    event OwnershipTransferCanceled(address indexed pendingOwner);

    /*//////////////////////////////////////////////////////////////
                                 ERROR
    //////////////////////////////////////////////////////////////*/

    error Unauthorized();

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(address _owner) {
        owner = _owner;

        emit OwnershipTransferred(address(0), _owner);
    }

    /*//////////////////////////////////////////////////////////////
                             OWNERSHIP LOGIC
    //////////////////////////////////////////////////////////////*/

    ///@notice Transfer ownership to a new address
    ///@param newOwner address of the new owner
    ///@dev newOwner have to acceptOwnership
    function transferOwnership(address newOwner) external onlyOwner {
        pendingOwner = newOwner;
        emit OwnershipTransferStarted(msg.sender, pendingOwner);
    }

    ///@notice NewOwner accept the ownership, it transfer the ownership to newOwner
    function acceptOwnership() external {
        if (msg.sender != pendingOwner) revert Unauthorized();
        address oldOwner = owner;
        owner = pendingOwner;
        delete pendingOwner;
        emit OwnershipTransferred(oldOwner, owner);
    }

    ///@notice Cancel the ownership transfer
    function cancelTransferOwnership() external onlyOwner {
        emit OwnershipTransferCanceled(pendingOwner);
        delete pendingOwner;
    }

    modifier onlyOwner() {
        if (msg.sender != owner) revert Unauthorized();
        _;
    }
}
IRelayerV2.sol 11 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

struct UserRequest {
    address asset;
    uint256 amount;
}

interface IRelayerV2 {
    function deposit(UserRequest[] memory _userRequest, bool _keepGovRights, uint256 _minTRSYExpected) external;
}
WithdrawETH.sol 116 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

import "./Ownable.sol";
import {SafeERC20} from "openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin-contracts/token/ERC20/IERC20.sol";
import {MerkleProof} from "openzeppelin-contracts/utils/cryptography/MerkleProof.sol";
import {IRelayerV2, UserRequest} from "./IRelayerV2.sol";

contract WithdrawETH is Ownable {
    using SafeERC20 for IERC20;

    event Withdraw(address indexed user, uint256 amount);

    error AlreadyWithdrawn();
    error InvalidProof();

    /*//////////////////////////////////////////////////////////////
                             STORAGE
    //////////////////////////////////////////////////////////////*/

    ///@notice Mapping of merkle roots for a given asset
    bytes32 public merkleRoot;

    ///@notice Mapping of asset to claimed bitmap
    mapping(address => bool) public withdrawnMap;

    ///@notice WETH Address
    address public immutable WETH;

    ///@notice TRSY Address
    address public immutable TRSY;

    IRelayerV2 public immutable RELAYER;

    constructor(address _WETH, address _TRSY, address _RELAYER) Ownable(msg.sender) {
        WETH = _WETH;
        TRSY = _TRSY;
        RELAYER = IRelayerV2(_RELAYER);
        IERC20(WETH).forceApprove(address(RELAYER), type(uint256).max);
    }

    /*//////////////////////////////////////////////////////////////
                             ADMIN FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    ///@notice Set the merkle root for a given asset
    ///@param _merkleRoot bytes32 of the merkle root
    function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner {
        merkleRoot = _merkleRoot;
    }

    ///@notice Recover asset from the contract in case of emergency
    function recoverAsset(address to, uint256 amount) external onlyOwner {
        IERC20(WETH).safeTransfer(to, amount);
    }

    /*//////////////////////////////////////////////////////////////
                            EXTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    ///@notice Claim the reward for a given asset
    ///@param amount amount of the reward
    ///@param merkleProof bytes32[] of the merkle proof
    function withdraw(uint256 amount, bytes32[] calldata merkleProof) external {
        address user = msg.sender;
        if (isWithdrawn(user)) revert AlreadyWithdrawn();

        // Verify the merkle proof.
        bytes32 node = keccak256(bytes.concat(keccak256(abi.encode(user, amount))));
        if (!MerkleProof.verify(merkleProof, merkleRoot, node)) revert InvalidProof();

        // Mark it claimed and send the token.
        _setWithdrawn(user);
        IERC20(WETH).safeTransfer(user, amount);

        emit Withdraw(user, amount);
    }

    function withdrawAndDepositToLiquidVault(uint256 amount, bytes32[] calldata merkleProof, uint256 minTrsyToReceived)
        external
    {
        address user = msg.sender;
        if (isWithdrawn(user)) revert AlreadyWithdrawn();

        // Verify the merkle proof.
        bytes32 node = keccak256(bytes.concat(keccak256(abi.encode(user, amount))));
        if (!MerkleProof.verify(merkleProof, merkleRoot, node)) revert InvalidProof();

        // Mark it claimed and send the token.
        _setWithdrawn(user);

        uint256 trsyBefore = IERC20(TRSY).balanceOf(address(this));
        UserRequest[] memory requests = new UserRequest[](1);
        requests[0] = UserRequest({asset: WETH, amount: amount});
        RELAYER.deposit(requests, false, 90 * minTrsyToReceived / 100);
        uint256 trsyAfter = IERC20(TRSY).balanceOf(address(this));
        uint256 receivedAmount = trsyAfter - trsyBefore;
        require(receivedAmount > 0, "No TRSY received");
        IERC20(TRSY).safeTransfer(user, receivedAmount);
    }

    ///@notice Return if user at index claimed the reward for a given asset
    function isWithdrawn(address user) public view returns (bool) {
        return withdrawnMap[user];
    }

    /*//////////////////////////////////////////////////////////////
                            INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    ///@notice Set user at index claimed the reward for a given asset
    function _setWithdrawn(address user) internal {
        withdrawnMap[user] = true;
    }
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
MerkleProof.sol 232 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Read Contract

RELAYER 0x2483e715 → address
TRSY 0x45e166bd → address
WETH 0xad5c4648 → address
isWithdrawn 0xa22c4ad0 → bool
merkleRoot 0x2eb4a7ab → bytes32
owner 0x8da5cb5b → address
pendingOwner 0xe30c3978 → address
withdrawnMap 0x18ba6011 → bool

Write Contract 7 functions

These functions modify contract state and require a wallet transaction to execute.

acceptOwnership 0x79ba5097
No parameters
cancelTransferOwnership 0x92fede00
No parameters
recoverAsset 0xf0cfbd39
address to
uint256 amount
setMerkleRoot 0x7cb64759
bytes32 _merkleRoot
transferOwnership 0xf2fde38b
address newOwner
withdraw 0x36317972
uint256 amount
bytes32[] merkleProof
withdrawAndDepositToLiquidVault 0x09b9881a
uint256 amount
bytes32[] merkleProof
uint256 minTrsyToReceived

Recent Transactions

No transactions found for this address