Address Contract Verified
Address
0x1D8A9c30E4e25033498347c1A054717bd0c4D356
Balance
0 ETH
Nonce
1
Code Size
4294 bytes
Creator
0x000755Fb...ff62 at tx 0x00435bd0...63d8f0
Indexed Transactions
0
Contract Bytecode
4294 bytes
0x608060405234801561001057600080fd5b50600436106100575760003560e01c8063776c23fb1461005c5780637ffdf53e1461007a578063b231c4b514610098578063be040fb0146100b6578063fc0c546a146100c0575b600080fd5b6100646100de565b6040516100719190610b1f565b60405180910390f35b610082610102565b60405161008f9190610b53565b60405180910390f35b6100a0610126565b6040516100ad9190610b1f565b60405180910390f35b6100be61014a565b005b6100c8610605565b6040516100d59190610b1f565b60405180910390f35b7f000000000000000000000000752b4c6e92d96467fe9b9a2522ef07228e00f87c81565b7f0000000000000000000000000000000000000000000000000ccc30c8b54b73a081565b7f000000000000000000000000e55843a90672f7d8218285e51ee8ff8e233f35d581565b60007f000000000000000000000000752b4c6e92d96467fe9b9a2522ef07228e00f87c73ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b81526004016101a59190610b1f565b602060405180830381865afa1580156101c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101e69190610b9f565b9050600081111561023f5761023e3330837f000000000000000000000000752b4c6e92d96467fe9b9a2522ef07228e00f87c73ffffffffffffffffffffffffffffffffffffffff16610629909392919063ffffffff16565b5b60007f000000000000000000000000e55843a90672f7d8218285e51ee8ff8e233f35d573ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b815260040161029a9190610b1f565b6020604051808303816000875af11580156102b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102dd9190610b9f565b9050600081111561045d577f000000000000000000000000e55843a90672f7d8218285e51ee8ff8e233f35d573ffffffffffffffffffffffffffffffffffffffff166384e9bd7e336040518263ffffffff1660e01b81526004016103419190610b1f565b600060405180830381600087803b15801561035b57600080fd5b505af115801561036f573d6000803e3d6000fd5b505050506103c03330837f000000000000000000000000e55843a90672f7d8218285e51ee8ff8e233f35d573ffffffffffffffffffffffffffffffffffffffff16610629909392919063ffffffff16565b7f000000000000000000000000e55843a90672f7d8218285e51ee8ff8e233f35d573ffffffffffffffffffffffffffffffffffffffff166338d074368260006040518363ffffffff1660e01b815260040161041c929190610be7565b600060405180830381600087803b15801561043657600080fd5b505af115801561044a573d6000803e3d6000fd5b50505050808261045a9190610c3f565b91505b60008203610497576040517f9890af6000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f000000000000000000000000752b4c6e92d96467fe9b9a2522ef07228e00f87c73ffffffffffffffffffffffffffffffffffffffff16639dc29fac30846040518363ffffffff1660e01b81526004016104f2929190610c73565b600060405180830381600087803b15801561050c57600080fd5b505af1158015610520573d6000803e3d6000fd5b5050505060006105637f0000000000000000000000000000000000000000000000000ccc30c8b54b73a0670de0b6b3a7640000856106b29092919063ffffffff16565b90506105b033827f00000000000000000000000031429d1856ad1377a8a0079410b297e1a9e214c273ffffffffffffffffffffffffffffffffffffffff166107c39092919063ffffffff16565b3373ffffffffffffffffffffffffffffffffffffffff167f7d7fc5687ecb839fab786317f099c3dafad27d6fc1772d4840ec0bda93855b8b84836040516105f8929190610c9c565b60405180910390a2505050565b7f00000000000000000000000031429d1856ad1377a8a0079410b297e1a9e214c281565b6106ac846323b872dd60e01b85858560405160240161064a93929190610cc5565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610849565b50505050565b60008060008019858709858702925082811083820303915050600081036106ed578382816106e3576106e2610cfc565b5b04925050506107bc565b80841161072f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161072690610d88565b60405180910390fd5b60008486880990508281118203915080830392506000600186190186169050808604955080840493506001818260000304019050808302841793506000600287600302189050808702600203810290508087026002038102905080870260020381029050808702600203810290508087026002038102905080870260020381029050808502955050505050505b9392505050565b6108448363a9059cbb60e01b84846040516024016107e2929190610c73565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610849565b505050565b60006108ab826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff166109119092919063ffffffff16565b90506000815114806108cd5750808060200190518101906108cc9190610dd4565b5b61090c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161090390610e73565b60405180910390fd5b505050565b60606109208484600085610929565b90509392505050565b60608247101561096e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161096590610f05565b60405180910390fd5b6000808673ffffffffffffffffffffffffffffffffffffffff1685876040516109979190610f96565b60006040518083038185875af1925050503d80600081146109d4576040519150601f19603f3d011682016040523d82523d6000602084013e6109d9565b606091505b50915091506109ea878383876109f6565b92505050949350505050565b60608315610a58576000835103610a5057610a1085610a6b565b610a4f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a4690610ff9565b60405180910390fd5b5b829050610a63565b610a628383610a8e565b5b949350505050565b6000808273ffffffffffffffffffffffffffffffffffffffff163b119050919050565b600082511115610aa15781518083602001fd5b806040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ad5919061106e565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610b0982610ade565b9050919050565b610b1981610afe565b82525050565b6000602082019050610b346000830184610b10565b92915050565b6000819050919050565b610b4d81610b3a565b82525050565b6000602082019050610b686000830184610b44565b92915050565b600080fd5b610b7c81610b3a565b8114610b8757600080fd5b50565b600081519050610b9981610b73565b92915050565b600060208284031215610bb557610bb4610b6e565b5b6000610bc384828501610b8a565b91505092915050565b60008115159050919050565b610be181610bcc565b82525050565b6000604082019050610bfc6000830185610b44565b610c096020830184610bd8565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000610c4a82610b3a565b9150610c5583610b3a565b9250828201905080821115610c6d57610c6c610c10565b5b92915050565b6000604082019050610c886000830185610b10565b610c956020830184610b44565b9392505050565b6000604082019050610cb16000830185610b44565b610cbe6020830184610b44565b9392505050565b6000606082019050610cda6000830186610b10565b610ce76020830185610b10565b610cf46040830184610b44565b949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082825260208201905092915050565b7f4d6174683a206d756c446976206f766572666c6f770000000000000000000000600082015250565b6000610d72601583610d2b565b9150610d7d82610d3c565b602082019050919050565b60006020820190508181036000830152610da181610d65565b9050919050565b610db181610bcc565b8114610dbc57600080fd5b50565b600081519050610dce81610da8565b92915050565b600060208284031215610dea57610de9610b6e565b5b6000610df884828501610dbf565b91505092915050565b7f5361666545524332303a204552433230206f7065726174696f6e20646964206e60008201527f6f74207375636365656400000000000000000000000000000000000000000000602082015250565b6000610e5d602a83610d2b565b9150610e6882610e01565b604082019050919050565b60006020820190508181036000830152610e8c81610e50565b9050919050565b7f416464726573733a20696e73756666696369656e742062616c616e636520666f60008201527f722063616c6c0000000000000000000000000000000000000000000000000000602082015250565b6000610eef602683610d2b565b9150610efa82610e93565b604082019050919050565b60006020820190508181036000830152610f1e81610ee2565b9050919050565b600081519050919050565b600081905092915050565b60005b83811015610f59578082015181840152602081019050610f3e565b60008484015250505050565b6000610f7082610f25565b610f7a8185610f30565b9350610f8a818560208601610f3b565b80840191505092915050565b6000610fa28284610f65565b915081905092915050565b7f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000600082015250565b6000610fe3601d83610d2b565b9150610fee82610fad565b602082019050919050565b6000602082019050818103600083015261101281610fd6565b9050919050565b600081519050919050565b6000601f19601f8301169050919050565b600061104082611019565b61104a8185610d2b565b935061105a818560208601610f3b565b61106381611024565b840191505092915050565b600060208201905081810360008301526110888184611035565b90509291505056fea264697066735822122082c062fccb6c588e49461cd44cb8e17b6153dd6e7aaae9ef17ed5484d174a15c64736f6c63430008130033
Verified Source Code Full Match
Compiler: v0.8.19+commit.7dd6d404
EVM: paris
Optimization: No
Redeem.sol 80 lines
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.19;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ISdToken} from "src/common/interfaces/ISdToken.sol";
import {ILiquidityGauge} from "src/common/interfaces/ILiquidityGauge.sol";
contract Redeem {
using Math for uint256;
using SafeERC20 for IERC20;
/// @notice The token to receive.
address public immutable token;
/// @notice The sdToken to redeem.
address public immutable sdToken;
/// @notice The sdToken staking contract.
address public immutable sdTokenGauge;
/// @notice The conversion contract.
uint256 public immutable conversionRate;
error NothingToRedeem();
event RedeemedAmount(address indexed user, uint256 amount, uint256 redeemAmount);
constructor(address _token, address _sdToken, address _sdTokenGauge, uint256 _conversionRate) {
token = _token;
sdToken = _sdToken;
sdTokenGauge = _sdTokenGauge;
conversionRate = _conversionRate;
}
/// @notice Redeems all sdTokens and gauge shares from msg.sender.
/// Claims gauge rewards to msg.sender if they exist.
/// Burns the redeemed sdTokens and sends the underlying tokens to msg.sender.
function redeem() external {
// 1. Transfer sdTokens from user to this contract
uint256 redeemAmount = IERC20(sdToken).balanceOf(msg.sender);
if (redeemAmount > 0) {
IERC20(sdToken).safeTransferFrom(msg.sender, address(this), redeemAmount);
}
// 2. Unstake from gauge: claim rewards + withdraw
uint256 sdTokenGaugeBalance = ILiquidityGauge(sdTokenGauge).balanceOf(msg.sender);
if (sdTokenGaugeBalance > 0) {
// Claim rewards to msg.sender
ILiquidityGauge(sdTokenGauge).claim_rewards(msg.sender);
// Transfer gauge shares from user to this contract
IERC20(sdTokenGauge).safeTransferFrom(msg.sender, address(this), sdTokenGaugeBalance);
// Withdraw staked tokens from gauge to this contract
ILiquidityGauge(sdTokenGauge).withdraw(sdTokenGaugeBalance, false);
// Add the gauge balance to the redeem amount
redeemAmount += sdTokenGaugeBalance;
}
// 3. Check if there is anything to redeem
if (redeemAmount == 0) revert NothingToRedeem();
// 4. Burn sdTokens
ISdToken(sdToken).burn(address(this), redeemAmount);
// 5. Convert the redeem amount to the underlying token
uint256 adjustedRedeemAmount = redeemAmount.mulDiv(conversionRate, 1e18);
// 6. Transfer underlying to user
IERC20(token).safeTransfer(msg.sender, adjustedRedeemAmount);
emit RedeemedAmount(msg.sender, redeemAmount, adjustedRedeemAmount);
}
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
SafeERC20.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
ISdToken.sol 22 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
interface ISdToken {
function balanceOf(address account) external view returns (uint256);
function burn(uint256 amount) external;
function burn(address _to, uint256 _amount) external;
function mint(address _to, uint256 _amount) external;
function operator() external view returns (address);
function burner() external view returns (address);
function setOperator(address _operator) external;
function setBurnerOperator(address _burner) external;
function approve(address _spender, uint256 _amount) external;
}
ILiquidityGauge.sol 96 lines
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.7;
interface ILiquidityGauge {
struct Reward {
address token;
address distributor;
// solhint-disable-next-line
uint256 period_finish;
uint256 rate;
// solhint-disable-next-line
uint256 last_update;
uint256 integral;
}
// solhint-disable-next-line
function deposit_reward_token(address _rewardToken, uint256 _amount) external;
// solhint-disable-next-line
function claim_rewards_for(address _user, address _recipient) external;
// solhint-disable-next-line
function working_balances(address _address) external view returns (uint256);
// solhint-disable-next-line
function deposit(uint256 _value, address _addr) external;
// solhint-disable-next-line
function reward_tokens(uint256 _i) external view returns (address);
// solhint-disable-next-line
function reward_data(address _tokenReward) external view returns (Reward memory);
function balanceOf(address) external returns (uint256);
// solhint-disable-next-line
function claimable_reward(address _user, address _reward_token) external view returns (uint256);
// solhint-disable-next-line
function claimable_tokens(address _user) external returns (uint256);
// solhint-disable-next-line
function user_checkpoint(address _user) external returns (bool);
// solhint-disable-next-line
function commit_transfer_ownership(address) external;
// solhint-disable-next-line
function claim_rewards() external;
// solhint-disable-next-line
function claim_rewards(address) external;
// solhint-disable-next-line
function claim_rewards(address, address) external;
// solhint-disable-next-line
function add_reward(address, address) external;
// solhint-disable-next-line
function set_claimer(address) external;
function admin() external view returns (address);
function future_admin() external view returns (address);
// solhint-disable-next-line
function set_reward_distributor(address _rewardToken, address _newDistrib) external;
function initialize(
// solhint-disable-next-line
address staking_token,
address admin,
address sdt,
// solhint-disable-next-line
address voting_escrow,
// solhint-disable-next-line
address veBoost_proxy,
address distributor
) external;
function totalSupply() external returns (uint256);
function withdraw(uint256 _value, bool _claimReward) external;
function withdraw(uint256 _value, address _user, bool _claimReward) external;
// solhint-disable-next-line
function accept_transfer_ownership() external;
// solhint-disable-next-line
function claimed_reward(address _addr, address _token) external view returns (uint256);
// solhint-disable-next-line
function set_rewards_receiver(address _receiver) external;
}
IERC20Permit.sol 60 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
Address.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
Read Contract
conversionRate 0x7ffdf53e → uint256
sdToken 0x776c23fb → address
sdTokenGauge 0xb231c4b5 → address
token 0xfc0c546a → address
Write Contract 1 functions
These functions modify contract state and require a wallet transaction to execute.
redeem 0xbe040fb0
No parameters
Recent Transactions
No transactions found for this address