Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x3E9f065cdf0A0C597c5BB5719fEAb059C23f359D
Balance 0 ETH
Nonce 191
Code Size 4105 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

4105 bytes
0x6080806040526004361015610012575f80fd5b5f905f3560e01c90816301ffc9a7146109ef575080630a1ca464146109c7578063168b258a1461094a57806334b5ee92146108dd5780634258b0b9146108b7578063739e39b314610891578063766248ed146107ae5780637714e03e146107775780638129fc1c146105ea57806384baa36c146105ad578063883edfb8146104e55780639572269e146104a2578063b1094ea8146103fb5763b3fb6579146100b8575f80fd5b3461027a5760a060031936011261027a576100d1610abc565b906044356bffffffffffffffffffffffff81169081810361027a5760643560843567ffffffffffffffff811161027a5761010f903690600401610ad2565b91804210156103d05761012f6001600160a01b0360025416918533610b52565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f52601c52603c5f2061016284610c4e565b936101706040519586610b1b565b8085526020850193368282011161027a57815f926020928737860101526101978482610f23565b60058195929510156103bc571593846103a9575b5083156102a6575b50505090501561027e576101ce6001600160a01b0391610cb9565b1690813b1561027a576001600160a01b03604051947f47e7ef2400000000000000000000000000000000000000000000000000000000865216600485015260243560248501525f8460448183865af193841561026f5760209461025a575b50604051927f037a3afe0751abef738eb74190bea476ded20cd037ed1fa291ef7157c6d69db7339180a38152f35b6102679193505f90610b1b565b5f915f61022c565b6040513d5f823e3d90fd5b5f80fd5b7fcea2b018000000000000000000000000000000000000000000000000000000005f5260045ffd5b5f94859450608461031791601f19601f60405195869360208501987f1626ba7e000000000000000000000000000000000000000000000000000000008a526024860152604060448601525180918160648701528686015e89858286010152011681010301601f198101835282610b1b565b51915afa3d156103a2573d61032b81610c4e565b906103396040519283610b1b565b81523d5f602083013e5b81610394575b81610359575b50805f80806101b3565b905060208180518101031261027a57602001517f1626ba7e00000000000000000000000000000000000000000000000000000000145f61034f565b905060208151101590610349565b6060610343565b6001600160a01b0316831493505f6101ab565b634e487b7160e01b5f52602160045260245ffd5b7fc56cc5e4000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b3461027a57602060031936011261027a576001600160a01b0361041c610abc565b610424610c6a565b16801561047a5773ffffffffffffffffffffffffffffffffffffffff19600254826001600160a01b0382167faef869fcd0ce5a9fabc7014492cd725438b8f9cefa91b3d890e117d09f15e2145f80a31617600255005b7f1a24bb4c000000000000000000000000000000000000000000000000000000005f5260045ffd5b3461027a575f60031936011261027a5760206040516001600160a01b037f000000000000000000000000a156ec23898de504b847ad247934231ef332ecd8168152f35b3461027a575f60031936011261027a576040518060206003549283815201809260035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b905f5b81811061058e5750505081610543910382610b1b565b604051918291602083019060208452518091526040830191905f5b81811061056c575050500390f35b82516001600160a01b031684528594506020938401939092019160010161055e565b82546001600160a01b031684526020909301926001928301920161052d565b3461027a57604060031936011261027a5760206105d96105cb610abc565b6105d3610b00565b90610ba0565b6001600160a01b0360405191168152f35b3461027a575f60031936011261027a575f5460ff8160081c16159081809261076a575b8015610753575b156106cf578160017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff008316175f556106a1575b5061064e57005b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff5f54165f557f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb3847402498602060405160018152a1005b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000016610101175f5581610647565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a65640000000000000000000000000000000000006064820152fd5b50303b1580156106145750600160ff821614610614565b50600160ff82161061060d565b3461027a57606060031936011261027a5760206107a6610795610abc565b61079d610b00565b60443591610b52565b604051908152f35b3461027a575f60031936011261027a57336001600160a01b0360015416036108655773ffffffffffffffffffffffffffffffffffffffff19600154166001555f5475ffffffffffffffffffffffffffffffffffffffff00003360101b167fffffffffffffffffffff0000000000000000000000000000000000000000ffff8216175f556001600160a01b03339160101c167fd12c6d0023f33ea4623f09573867525c39e01ea657ccb920b8e858591689a8fe5f80a3005b7f2cd7e245000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b3461027a575f60031936011261027a5760206001600160a01b0360015416604051908152f35b3461027a575f60031936011261027a5760206001600160a01b0360025416604051908152f35b3461027a57606060031936011261027a576108f6610abc565b506108ff610a8d565b5060443567ffffffffffffffff811161027a57610920903690600401610ad2565b50507f6a2c668e000000000000000000000000000000000000000000000000000000005f5260045ffd5b3461027a57602060031936011261027a576001600160a01b0361096b610abc565b610973610c6a565b168073ffffffffffffffffffffffffffffffffffffffff1960015416176001556001600160a01b035f5460101c167f89e07989a511e47b69130132740382fc032ac4832fa9748222fb51c4769fb7bd5f80a3005b3461027a575f60031936011261027a5760206001600160a01b035f5460101c16604051908152f35b3461027a57602060031936011261027a57600435907fffffffff00000000000000000000000000000000000000000000000000000000821680920361027a57817fa45485780000000000000000000000000000000000000000000000000000000060209314908115610a63575b5015158152f35b7f01ffc9a70000000000000000000000000000000000000000000000000000000091501483610a5c565b602435907fffffffff000000000000000000000000000000000000000000000000000000008216820361027a57565b600435906001600160a01b038216820361027a57565b9181601f8401121561027a5782359167ffffffffffffffff831161027a576020838186019501011161027a57565b602435906bffffffffffffffffffffffff8216820361027a57565b90601f601f19910116810190811067ffffffffffffffff821117610b3e57604052565b634e487b7160e01b5f52604160045260245ffd5b916bffffffffffffffffffffffff604051926001600160a01b03602085019516855216604083015260608201523060808201524660a082015260a08152610b9a60c082610b1b565b51902090565b610bae605592603792610c80565b604051907f3d602d80600a3d3981f3363d3d373d3d3d363d7300000000000000000000000082526bffffffffffffffffffffffff197f000000000000000000000000a156ec23898de504b847ad247934231ef332ecd860601b1660148301527f5af43d82803e903d91602b57fd5bf3ff0000000000000000000000000000000060288301523060601b6038830152604c820152818120606c820152012090565b67ffffffffffffffff8111610b3e57601f01601f191660200190565b6001600160a01b035f5460101c16330361086557565b604080516001600160a01b0392909216602083019081526bffffffffffffffffffffffff93909316828201528152610b9a606082610b1b565b905f91610cc68133610ba0565b803b610f1557506001600160a01b03610cdf8233610c80565b60376040517f3d602d80600a3d3981f3363d3d373d3d3d363d7300000000000000000000000081526bffffffffffffffffffffffff197f000000000000000000000000a156ec23898de504b847ad247934231ef332ecd860601b1660148201527f5af43d82803e903d91602b57fd5bf3000000000000000000000000000000000060288201525ff516908115610eb7578193823b1561027a576040517ff2a413740000000000000000000000000000000000000000000000000000000081523360048201526bffffffffffffffffffffffff831660248201525f8160448183885af1801561026f57610ea4575b506003549068010000000000000000821015610e90576001820180600355821015610e7c576060927f7ba7f5310bdc1f35de8fd56e0b1c97ff9f540b72f8c3b57d9402cf6cca700283949260036bffffffffffffffffffffffff93527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b018373ffffffffffffffffffffffffffffffffffffffff19825416179055604051928352336020840152166040820152a1565b80634e487b7160e01b602492526032600452fd5b80634e487b7160e01b602492526041600452fd5b610eb091505f90610b1b565b5f5f610dcc565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f455243313136373a2063726561746532206661696c65640000000000000000006044820152fd5b6001600160a01b0316925050565b9060418151145f14610f4f57610f4b91602082015190606060408401519301515f1a90610f58565b9091565b50505f90600290565b7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610fc8576020935f9360ff60809460405194855216868401526040830152606082015282805260015afa1561026f575f516001600160a01b03811615610fc057905f90565b505f90600190565b505050505f9060039056fea2646970667358221220ec5325cdb86f19639ec4e045be5e5f4b29c6286afdc6df944c09ec4fd11537a464736f6c634300081e0033

Verified Source Code Full Match

Compiler: v0.8.30+commit.73712a01 EVM: prague Optimization: Yes (2000 runs)
P2pResolvProxyFactory.sol 39 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../../../p2pYieldProxyFactory/P2pYieldProxyFactory.sol";
import "../p2pResolvProxy/P2pResolvProxy.sol";

/// @title Entry point for depositing into Resolv with P2P.org
contract P2pResolvProxyFactory is P2pYieldProxyFactory {

    /// @notice Constructor for P2pResolvProxyFactory
    /// @param _p2pSigner The P2pSigner address
    /// @param _p2pTreasury The P2pTreasury address
    /// @param _stUSR stUSR address
    /// @param _USR USR address
    /// @param _stRESOLV stRESOLV
    /// @param _RESOLV RESOLV
    /// @param _allowedCalldataChecker AllowedCalldataChecker
    constructor(
        address _p2pSigner,
        address _p2pTreasury,
        address _stUSR,
        address _USR,
        address _stRESOLV,
        address _RESOLV,
        address _allowedCalldataChecker
    ) P2pYieldProxyFactory(_p2pSigner) {
        i_referenceP2pYieldProxy = new P2pResolvProxy(
            address(this),
            _p2pTreasury,
            _allowedCalldataChecker,
            _stUSR,
            _USR,
            _stRESOLV,
            _RESOLV
        );
    }
}
P2pYieldProxyFactory.sol 263 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../@openzeppelin/contracts/proxy/Clones.sol";
import "../@openzeppelin/contracts/utils/Address.sol";
import "../@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import "../@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../access/P2pOperator2Step.sol";
import "../common/AllowedCalldataChecker.sol";
import "../p2pYieldProxy/P2pYieldProxy.sol";
import "./IP2pYieldProxyFactory.sol";

/// @dev Error when the P2pSigner address is zero
error P2pYieldProxyFactory__ZeroP2pSignerAddress();

/// @dev Error when the P2pSigner signature is invalid
error P2pYieldProxyFactory__InvalidP2pSignerSignature();

/// @dev Error when the P2pSigner signature is expired
error P2pYieldProxyFactory__P2pSignerSignatureExpired(
    uint256 _p2pSignerSigDeadline
);

/// @dev Error when no rules are defined
error P2pYieldProxyFactory__NoRulesDefined(
    address _target,
    bytes4 _selector
);

/// @dev Error when no calldata is allowed
error P2pYieldProxyFactory__NoCalldataAllowed(
    address _target,
    bytes4 _selector
);

/// @dev Error when the calldata is too short for the start with rule
error P2pYieldProxyFactory__CalldataTooShortForStartsWithRule(
    uint256 _calldataAfterSelectorLength,
    uint32 _ruleIndex,
    uint32 _bytesCount
);

/// @dev Error when the calldata starts with rule is violated
error P2pYieldProxyFactory__CalldataStartsWithRuleViolated(
    bytes _actual,
    bytes _expected
);

/// @dev Error when the calldata is too short for the ends with rule
error P2pYieldProxyFactory__CalldataTooShortForEndsWithRule(
    uint256 _calldataAfterSelectorLength,
    uint32 _bytesCount
);

/// @dev Error when the calldata ends with rule is violated
error P2pYieldProxyFactory__CalldataEndsWithRuleViolated(
    bytes _actual,
    bytes _expected
);

/// @title P2pYieldProxyFactory
/// @author P2P Validator <[email protected]>
/// @notice P2pYieldProxyFactory is a factory contract for creating P2pYieldProxy contracts
abstract contract P2pYieldProxyFactory is
    AllowedCalldataChecker,
    P2pOperator2Step,
    ERC165,
    IP2pYieldProxyFactory {

    using SignatureChecker for address;
    using ECDSA for bytes32;

    /// @notice Reference P2pYieldProxy contract
    P2pYieldProxy internal immutable i_referenceP2pYieldProxy;

    /// @notice P2pSigner address   
    address internal s_p2pSigner;

    /// @notice All proxies
    address[] internal s_allProxies;

    /// @notice Modifier to check if the P2pSigner signature should not expire
    modifier p2pSignerSignatureShouldNotExpire(uint256 _p2pSignerSigDeadline) {
        require (
            block.timestamp < _p2pSignerSigDeadline,
            P2pYieldProxyFactory__P2pSignerSignatureExpired(_p2pSignerSigDeadline)
        );
        _;
    }

    /// @notice Modifier to check if the P2pSigner signature should be valid
    modifier p2pSignerSignatureShouldBeValid(
        uint96 _clientBasisPoints,
        uint256 _p2pSignerSigDeadline,
        bytes calldata _p2pSignerSignature
    ) {
        require (
            s_p2pSigner.isValidSignatureNow(
            getHashForP2pSigner(
            msg.sender,
            _clientBasisPoints,
            _p2pSignerSigDeadline
                ).toEthSignedMessageHash(),
        _p2pSignerSignature
            ),
            P2pYieldProxyFactory__InvalidP2pSignerSignature()
        );
        _;
    }

    /// @notice Constructor for P2pYieldProxyFactory
    /// @param _p2pSigner The P2pSigner address
    constructor(
        address _p2pSigner
    ) P2pOperator(msg.sender) {
        _transferP2pSigner(_p2pSigner);
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function transferP2pSigner(
        address _newP2pSigner
    ) external onlyP2pOperator {
        _transferP2pSigner(_newP2pSigner);
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function deposit(
        address _asset,
        uint256 _amount,

        uint96 _clientBasisPoints,
        uint256 _p2pSignerSigDeadline,
        bytes calldata _p2pSignerSignature
    )
    external
    p2pSignerSignatureShouldNotExpire(_p2pSignerSigDeadline)
    p2pSignerSignatureShouldBeValid(_clientBasisPoints, _p2pSignerSigDeadline, _p2pSignerSignature)
    returns (address p2pYieldProxyAddress)
    {
        // create proxy if not created yet
        P2pYieldProxy p2pYieldProxy = _getOrCreateP2pYieldProxy(_clientBasisPoints);

        // deposit via proxy
        p2pYieldProxy.deposit(_asset, _amount);

        emit P2pYieldProxyFactory__Deposited(msg.sender, _clientBasisPoints);

        p2pYieldProxyAddress = address(p2pYieldProxy);
    }

    function _transferP2pSigner(
        address _newP2pSigner
    ) private {
        require (_newP2pSigner != address(0), P2pYieldProxyFactory__ZeroP2pSignerAddress());
        emit P2pYieldProxyFactory__P2pSignerTransferred(s_p2pSigner, _newP2pSigner);
        s_p2pSigner = _newP2pSigner;
    }

    /// @notice Creates a new P2pYieldProxy contract instance if not created yet
    function _getOrCreateP2pYieldProxy(uint96 _clientBasisPoints)
    private
    returns (P2pYieldProxy p2pYieldProxy)
    {
        address p2pYieldProxyAddress = predictP2pYieldProxyAddress(
            msg.sender,
            _clientBasisPoints
        );
        uint256 codeSize = p2pYieldProxyAddress.code.length;
        if (codeSize > 0) {
            return P2pYieldProxy(p2pYieldProxyAddress);
        }

        p2pYieldProxy = P2pYieldProxy(
                Clones.cloneDeterministic(
                address(i_referenceP2pYieldProxy),
                _getSalt(
                    msg.sender,
                    _clientBasisPoints
                )
            )
        );

        p2pYieldProxy.initialize(
            msg.sender,
            _clientBasisPoints
        );

        s_allProxies.push(address(p2pYieldProxy));

        emit P2pYieldProxyFactory__ProxyCreated(
            address(p2pYieldProxy),
            msg.sender,
            _clientBasisPoints
        );
    }

    /// @notice Calculates the salt required for deterministic clone creation
    /// depending on client address and client basis points
    /// @param _clientAddress address
    /// @param _clientBasisPoints basis points (10000 = 100%)
    /// @return bytes32 salt
    function _getSalt(
        address _clientAddress,
        uint96 _clientBasisPoints
    ) private pure returns (bytes32)
    {
        return keccak256(abi.encode(_clientAddress, _clientBasisPoints));
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function predictP2pYieldProxyAddress(
        address _client,
        uint96 _clientBasisPoints
    ) public view returns (address) {
        return Clones.predictDeterministicAddress(
            address(i_referenceP2pYieldProxy),
            _getSalt(_client, _clientBasisPoints)
        );
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function getReferenceP2pYieldProxy() external view returns (address) {
        return address(i_referenceP2pYieldProxy);
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function getHashForP2pSigner(
        address _client,
        uint96 _clientBasisPoints,
        uint256 _p2pSignerSigDeadline
    ) public view returns (bytes32) {
        return keccak256(abi.encode(
            _client,
            _clientBasisPoints,
            _p2pSignerSigDeadline,
            address(this),
            block.chainid
        ));
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function getP2pSigner() external view returns (address) {
        return s_p2pSigner;
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function getP2pOperator() public override(IP2pYieldProxyFactory, P2pOperator) view returns (address) {
        return super.getP2pOperator();
    }

    /// @inheritdoc IP2pYieldProxyFactory
    function getAllProxies() external view returns (address[] memory) {
        return s_allProxies;
    }

    /// @inheritdoc ERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IP2pYieldProxyFactory).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}
P2pResolvProxy.sol 383 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../../../@resolv/IResolvStaking.sol";
import "../../../@resolv/IStUSR.sol";
import "../../../@resolv/IStakedTokenDistributor.sol";
import "../../../p2pYieldProxy/P2pYieldProxy.sol";
import "./IP2pResolvProxy.sol";

error P2pResolvProxy__ZeroAddress_USR();
error P2pResolvProxy__AssetNotSupported(address _asset);
error P2pResolvProxy__UnauthorizedAccount(address _account);
error P2pResolvProxy__NotP2pOperator(address _caller);
error P2pResolvProxy__CallerNeitherClientNorP2pOperator(address _caller);
error P2pResolvProxy__ZeroAccruedRewards();
error P2pResolvProxy__UnsupportedAsset(address _asset);
error P2pResolvProxy__ZeroAddressStakedTokenDistributor();
error P2pResolvProxy__CannotSweepProtectedToken(address _token);
error P2pResolvProxy__RewardTokenLookupFailed(uint256 index);

contract P2pResolvProxy is P2pYieldProxy, IP2pResolvProxy {
    using SafeERC20 for IERC20;

    /// @dev USR address
    address internal immutable i_USR;

    /// @dev stUSR address
    address internal immutable i_stUSR;

    /// @dev RESOLV address
    address internal immutable i_RESOLV;

    /// @dev stRESOLV address
    address internal immutable i_stRESOLV;

    IStakedTokenDistributor private s_stakedTokenDistributor;

    // Tracks pending RESOLV rewards that arrived via StakedTokenDistributor claims.
    uint256 private s_pendingResolvRewardFromStakedTokenDistributor;

    /// @dev Throws if called by any account other than the P2pOperator.
    modifier onlyP2pOperator() {
        address p2pOperator = i_factory.getP2pOperator();
        require (msg.sender == p2pOperator, P2pResolvProxy__NotP2pOperator(msg.sender));
        _;
    }

    /// @dev Throws if called by any account other than client or P2pOperator.
    modifier onlyClientOrP2pOperator() {
        if (msg.sender != s_client) {
            address p2pOperator = i_factory.getP2pOperator();
            require (msg.sender == p2pOperator, P2pResolvProxy__CallerNeitherClientNorP2pOperator(msg.sender));
        }
        _;
    }

    /// @notice Constructor for P2pResolvProxy
    /// @param _factory Factory address
    /// @param _p2pTreasury P2pTreasury address
    /// @param _allowedCalldataChecker AllowedCalldataChecker
    /// @param _stUSR stUSR address
    /// @param _USR USR address
    /// @param _stRESOLV stRESOLV address
    /// @param _RESOLV RESOLV address
    constructor(
        address _factory,
        address _p2pTreasury,
        address _allowedCalldataChecker,
        address _stUSR,
        address _USR,
        address _stRESOLV,
        address _RESOLV
    ) P2pYieldProxy(_factory, _p2pTreasury, _allowedCalldataChecker) {
        require(_USR != address(0), P2pResolvProxy__ZeroAddress_USR());
        i_USR = _USR;

        i_stUSR = _stUSR;

        i_RESOLV = _RESOLV;

        i_stRESOLV = _stRESOLV;
    }

    /// @inheritdoc IP2pYieldProxy
    function deposit(address _asset, uint256 _amount) external override onlyFactory {
        if (_asset == i_USR) {
            _deposit(
                i_stUSR,
                abi.encodeWithSelector(IStUSR.deposit.selector, _amount),
                i_USR,
                _amount
            );
        } else if (_asset == i_RESOLV) {
            _depositResolv(_amount);
        } else {
            revert P2pResolvProxy__AssetNotSupported(_asset);
        }
    }

    /// @inheritdoc IP2pResolvProxy
    function withdrawUSR(uint256 _amount)
    external
    onlyClient {
        require (_amount > 0, P2pYieldProxy__ZeroAssetAmount());
        uint256 currentBalance = IERC20(i_stUSR).balanceOf(address(this));
        if (_amount >= currentBalance || currentBalance - _amount <= 1) {
            _withdraw(
                i_stUSR,
                i_USR,
                abi.encodeCall(IStUSR.withdrawAll, ())
            );
            return;
        }
        _withdraw(
            i_stUSR,
            i_USR,
            abi.encodeWithSelector(IStUSR.withdraw.selector, _amount)
        );
    }

    function withdrawUSRAccruedRewards()
    external
    onlyP2pOperator {
        int256 amount = calculateAccruedRewardsUSR();
        require (amount > 0, P2pResolvProxy__ZeroAccruedRewards());
        _withdraw(
            i_stUSR,
            i_USR,
            abi.encodeWithSelector(IStUSR.withdraw.selector, amount),
            true
        );
    }

    /// @inheritdoc IP2pResolvProxy
    function withdrawAllUSR()
    external
    onlyClient {
        _withdraw(
            i_stUSR,
            i_USR,
            abi.encodeCall(IStUSR.withdrawAll, ())
        );
    }

    /// @inheritdoc IP2pResolvProxy
    function initiateWithdrawalRESOLV(uint256 _amount)
    external
    onlyClient {
        return IResolvStaking(i_stRESOLV).initiateWithdrawal(_amount);
    }

    /// @inheritdoc IP2pResolvProxy
    function withdrawRESOLV()
    external
    onlyClientOrP2pOperator
    nonReentrant
    {
        IResolvStaking staking = IResolvStaking(i_stRESOLV);
        uint256 pendingReward = s_pendingResolvRewardFromStakedTokenDistributor;

        if (pendingReward == 0) {
            staking.withdraw(false, s_client);
            emit P2pResolvProxy__ResolvPrincipalWithdrawal(msg.sender);
            return;
        }

        IERC20 resolvToken = IERC20(i_RESOLV);
        uint256 balanceBefore = resolvToken.balanceOf(address(this));
        staking.withdraw(false, address(this));
        uint256 balanceAfter = resolvToken.balanceOf(address(this));
        uint256 delta = balanceAfter - balanceBefore;

        s_pendingResolvRewardFromStakedTokenDistributor = 0;
        uint256 expectedReward = pendingReward;
        uint256 principalPortion = delta > expectedReward ? delta - expectedReward : 0;
        uint256 rewardPortion = delta - principalPortion;

        uint256 p2pAmount = calculateP2pFeeAmount(rewardPortion);
        uint256 clientRewardAmount = rewardPortion - p2pAmount;

        if (p2pAmount > 0) {
            resolvToken.safeTransfer(i_p2pTreasury, p2pAmount);
        }

        uint256 clientAmountToSend = clientRewardAmount + principalPortion;
        if (clientAmountToSend > 0) {
            resolvToken.safeTransfer(s_client, clientAmountToSend);
        }

        emit P2pResolvProxy__DistributorRewardsReleased(
            expectedReward,
            delta,
            p2pAmount,
            clientRewardAmount,
            principalPortion
        );
    }

    /// @inheritdoc IP2pResolvProxy
    function claimStakedTokenDistributor(
        uint256 _index,
        uint256 _amount,
        bytes32[] calldata _merkleProof
    )
    external
    nonReentrant
    onlyClientOrP2pOperator
    {
        // claim _reward token from StakedTokenDistributor
        address stakedTokenDistributor = address(s_stakedTokenDistributor);
        require(
            stakedTokenDistributor != address(0),
            P2pResolvProxy__ZeroAddressStakedTokenDistributor()
        );

        IERC20 stResolv = IERC20(i_stRESOLV);
        uint256 sharesBefore = stResolv.balanceOf(address(this));
        IStakedTokenDistributor(stakedTokenDistributor).claim(_index, _amount, _merkleProof);
        uint256 claimedShares = stResolv.balanceOf(address(this)) - sharesBefore;
        require(claimedShares > 0, P2pYieldProxy__ZeroAssetAmount());

        s_pendingResolvRewardFromStakedTokenDistributor += claimedShares;
        emit P2pResolvProxy__Claimed(claimedShares);

        IResolvStaking(i_stRESOLV).initiateWithdrawal(claimedShares);
    }

    /// @inheritdoc IP2pResolvProxy
    function claimRewardTokens() external onlyClientOrP2pOperator nonReentrant {
        address[] memory rewardTokens = _getRewardTokens();
        uint256 tokenCount = rewardTokens.length;
        uint256[] memory balancesBefore = new uint256[](tokenCount);

        for (uint256 i; i < tokenCount; ++i) {
            balancesBefore[i] = IERC20(rewardTokens[i]).balanceOf(address(this));
        }

        IResolvStaking(i_stRESOLV).claim(address(this), address(this));

        for (uint256 i; i < tokenCount; ++i) {
            address tokenAddress = rewardTokens[i];
            IERC20 token = IERC20(tokenAddress);
            uint256 balanceAfter = token.balanceOf(address(this));
            uint256 delta = balanceAfter - balancesBefore[i];
            if (delta > 0) {
                uint256 p2pAmount = calculateP2pFeeAmount(delta);
                uint256 clientAmount = delta - p2pAmount;

                if (p2pAmount > 0) {
                    token.safeTransfer(i_p2pTreasury, p2pAmount);
                }

                if (clientAmount > 0) {
                    token.safeTransfer(s_client, clientAmount);
                }

                emit P2pResolvProxy__RewardTokensClaimed(
                    tokenAddress,
                    delta,
                    p2pAmount,
                    clientAmount
                );
            }
        }
    }

    /// @inheritdoc IP2pResolvProxy
    function sweepRewardToken(address _token) external onlyClientOrP2pOperator {
        // Prevent sweeping of protected assets that are handled by existing accounting
        if (_token == i_USR || _token == i_RESOLV || _token == i_stUSR || _token == i_stRESOLV) {
            revert P2pResolvProxy__CannotSweepProtectedToken(_token);
        }

        uint256 balance = IERC20(_token).balanceOf(address(this));
        if (balance > 0) {
            IERC20(_token).safeTransfer(s_client, balance);
            emit P2pResolvProxy__RewardTokenSwept(_token, balance);
        }
    }

    function setStakedTokenDistributor(address _stakedTokenDistributor) external override onlyP2pOperator {
        require(_stakedTokenDistributor != address(0), P2pResolvProxy__ZeroAddressStakedTokenDistributor());
        address previousStakedTokenDistributor = address(s_stakedTokenDistributor);
        s_stakedTokenDistributor = IStakedTokenDistributor(_stakedTokenDistributor);

        emit P2pResolvProxy__StakedTokenDistributorUpdated(
            previousStakedTokenDistributor,
            _stakedTokenDistributor
        );
    }

    function getStakedTokenDistributor() public view override returns(address) {
        return address(s_stakedTokenDistributor);
    }

    function getUserPrincipalUSR() public view returns(uint256) {
        return getUserPrincipal(i_USR);
    }

    function getUserPrincipalRESOLV() public view returns(uint256) {
        return IERC20(i_stRESOLV).balanceOf(address(this));
    }

    function calculateAccruedRewardsUSR() public view returns(int256) {
        uint256 currentAmount = IERC20(i_stUSR).balanceOf(address(this));
        uint256 userPrincipal = getUserPrincipal(i_USR);
        return int256(currentAmount) - int256(userPrincipal);
    }

    function calculateAccruedRewardsRESOLV(address _token) public view returns(int256) {
        return int256(
            IResolvStaking(i_stRESOLV).getUserClaimableAmounts(address(this), _token)
        );
    }

    function getLastFeeCollectionTimeUSR() public view returns(uint48) {
        return getLastFeeCollectionTime(i_USR);
    }

    function getLastFeeCollectionTimeRESOLV() public view returns(uint48) {
        return getLastFeeCollectionTime(i_RESOLV);
    }

    function _depositResolv(uint256 _amount) internal {
        require(_amount > 0, P2pYieldProxy__ZeroAssetAmount());

        IERC20 resolvToken = IERC20(i_RESOLV);
        uint256 balanceBefore = resolvToken.balanceOf(address(this));
        resolvToken.safeTransferFrom(s_client, address(this), _amount);
        uint256 actualAmount = resolvToken.balanceOf(address(this)) - balanceBefore;

        require(
            actualAmount == _amount,
            P2pYieldProxy__DifferentActuallyDepositedAmount(_amount, actualAmount)
        );

        resolvToken.safeIncreaseAllowance(i_stRESOLV, actualAmount);
        IResolvStaking(i_stRESOLV).deposit(actualAmount, address(this));
        emit P2pResolvProxy__ResolvDeposited(actualAmount);
    }

    function _getCurrentAssetAmount(address _yieldProtocolAddress, address _asset) internal view override returns (uint256) {
        if (_asset == i_USR) {
            return IERC20(_yieldProtocolAddress).balanceOf(address(this));
        }

        revert P2pResolvProxy__UnsupportedAsset(_asset);
    }

    function _getRewardTokens() internal view returns (address[] memory tokens) {
        IResolvStaking staking = IResolvStaking(i_stRESOLV);
        tokens = new address[](4); // start small; will expand as needed
        uint256 count;

        while (true) {
            try staking.rewardTokens(count) returns (address token) {
                if (count == tokens.length) {
                    address[] memory expanded = new address[](tokens.length * 2);
                    for (uint256 j; j < tokens.length; ++j) {
                        expanded[j] = tokens[j];
                    }
                    tokens = expanded;
                }
                tokens[count] = token;
                ++count;
            } catch {
                break;
            }
        }

        assembly {
            mstore(tokens, count)
        }
    }

    /// @inheritdoc ERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(P2pYieldProxy) returns (bool) {
        return interfaceId == type(IP2pResolvProxy).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}
Clones.sol 84 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/Clones.sol)

pragma solidity 0.8.30;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create(0, ptr, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create2(0, ptr, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000)
            mstore(add(ptr, 0x38), shl(0x60, deployer))
            mstore(add(ptr, 0x4c), salt)
            mstore(add(ptr, 0x6c), keccak256(ptr, 0x37))
            predicted := keccak256(add(ptr, 0x37), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(address implementation, bytes32 salt)
        internal
        view
        returns (address predicted)
    {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}
Address.sol 221 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity 0.8.30;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly ("memory-safe") {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}
SignatureChecker.sol 50 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity 0.8.30;

import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Gnosis Safe.
 *
 * _Available since v4.1._
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
        return
            (error == ECDSA.RecoverError.NoError && recovered == signer) ||
            isValidERC1271SignatureNow(signer, hash, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}
ERC165.sol 29 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity 0.8.30;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
P2pOperator2Step.sol 69 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

// Copy and rename of OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity 0.8.30;

import {P2pOperator} from "./P2pOperator.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (a P2pOperator) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {P2pOperator.sol} contract includes a two-step mechanism to transfer
 * P2pOperator, where the new P2pOperator must call {acceptP2pOperator} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of P2pOperator to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial P2pOperator is specified at deployment time in the constructor for `P2pOperator.sol`. This
 * can later be changed with {transferP2pOperator} and {acceptP2pOperator}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (P2pOperator.sol).
 */
abstract contract P2pOperator2Step is P2pOperator {
    address private s_pendingP2pOperator;

    event P2pOperator2Step__P2pOperatorTransferStarted(address indexed _previousP2pOperator, address indexed _newP2pOperator);

    /**
     * @dev Returns the address of the pending P2pOperator.
     */
    function getPendingP2pOperator() public view virtual returns (address) {
        return s_pendingP2pOperator;
    }

    /**
     * @dev Starts the P2pOperator transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current P2pOperator.
     *
     * Setting `_newP2pOperator` to the zero address is allowed; this can be used to cancel an initiated P2pOperator transfer.
     */
    function transferP2pOperator(address _newP2pOperator) public virtual override onlyP2pOperator {
        s_pendingP2pOperator = _newP2pOperator;
        emit P2pOperator2Step__P2pOperatorTransferStarted(getP2pOperator(), _newP2pOperator);
    }

    /**
     * @dev Transfers P2pOperator of the contract to a new account (`_newP2pOperator`) and deletes any pending P2pOperator.
     * Internal function without access restriction.
     */
    function _transferP2pOperator(address _newP2pOperator) internal virtual override {
        delete s_pendingP2pOperator;
        super._transferP2pOperator(_newP2pOperator);
    }

    /**
     * @dev The new P2pOperator accepts the P2pOperator transfer.
     */
    function acceptP2pOperator() public virtual {
        address sender = msg.sender;
        if (s_pendingP2pOperator != sender) {
            revert P2pOperator__UnauthorizedAccount(sender);
        }
        _transferP2pOperator(sender);
    }
}
AllowedCalldataChecker.sol 29 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../@openzeppelin/contracts-upgradable/proxy/utils/Initializable.sol";
import "./IAllowedCalldataChecker.sol";

/// @dev No extra calls are allowed for now. AllowedCalldataChecker can be upgraded in the future.
error AllowedCalldataChecker__NoAllowedCalldata();

/// @title AllowedCalldataChecker
/// @author P2P Validator <[email protected]>
/// @notice Upgradable contract for checking if a calldata is allowed
contract AllowedCalldataChecker is IAllowedCalldataChecker, Initializable {

    function initialize() public initializer {
        // do nothing in this implementation
    }

    /// @inheritdoc IAllowedCalldataChecker
    function checkCalldata(
        address,
        bytes4,
        bytes calldata
    ) public pure {
        revert AllowedCalldataChecker__NoAllowedCalldata();
    }
}
P2pYieldProxy.sol 404 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../@openzeppelin/contracts-upgradable/security/ReentrancyGuardUpgradeable.sol";
import "../@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../@openzeppelin/contracts/utils/Address.sol";
import "../@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "../@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import "../common/AllowedCalldataChecker.sol";
import "../p2pYieldProxyFactory/IP2pYieldProxyFactory.sol";
import "../structs/P2pStructs.sol";
import "./IP2pYieldProxy.sol";

error P2pYieldProxy__ZeroAddressAsset();
error P2pYieldProxy__ZeroAssetAmount();
error P2pYieldProxy__ZeroSharesAmount();
error P2pYieldProxy__InvalidClientBasisPoints(uint96 _clientBasisPoints);
error P2pYieldProxy__NotFactory(address _factory);
error P2pYieldProxy__DifferentActuallyDepositedAmount(
    uint256 _requestedAmount,
    uint256 _actualAmount
);
error P2pYieldProxy__NotFactoryCalled(
    address _msgSender,
    IP2pYieldProxyFactory _actualFactory
);
error P2pYieldProxy__NotClientCalled(
    address _msgSender,
    address _actualClient
);
error P2pYieldProxy__ZeroAddressFactory();
error P2pYieldProxy__ZeroAddressP2pTreasury();
error P2pYieldProxy__ZeroAllowedCalldataChecker();
error P2pYieldProxy__DataTooShort();

/// @title P2pYieldProxy
/// @notice P2pYieldProxy is a contract that allows a client to deposit and withdraw assets from a yield protocol.
abstract contract P2pYieldProxy is
    Initializable,
    ReentrancyGuardUpgradeable,
    ERC165,
    IP2pYieldProxy {

    using SafeERC20 for IERC20;
    using Address for address;

    /// @dev P2pYieldProxyFactory
    IP2pYieldProxyFactory internal immutable i_factory;

    /// @dev P2pTreasury
    address internal immutable i_p2pTreasury;

    IAllowedCalldataChecker internal immutable i_allowedCalldataChecker;

    /// @dev Client
    address internal s_client;

    /// @dev Client basis points
    uint96 internal s_clientBasisPoints;

    // asset => amount
    mapping(address => uint256) internal s_totalDeposited;

    // asset => amount
    mapping(address => Withdrawn) internal s_totalWithdrawn;

    /// @notice If caller is not factory, revert
    modifier onlyFactory() {
        if (msg.sender != address(i_factory)) {
            revert P2pYieldProxy__NotFactoryCalled(msg.sender, i_factory);
        }
        _;
    }

    /// @notice If caller is not client, revert
    modifier onlyClient() {
        if (msg.sender != s_client) {
            revert P2pYieldProxy__NotClientCalled(msg.sender, s_client);
        }
        _;
    }

    /// @dev Modifier for checking if a calldata is allowed
    /// @param _yieldProtocolAddress The address of the yield protocol
    /// @param _yieldProtocolCalldata The calldata (encoded signature + arguments) to be passed to the yield protocol
    modifier calldataShouldBeAllowed(
        address _yieldProtocolAddress,
        bytes calldata _yieldProtocolCalldata
    ) {
        // validate yieldProtocolCalldata for yieldProtocolAddress
        bytes4 selector = _getFunctionSelector(_yieldProtocolCalldata);
        i_allowedCalldataChecker.checkCalldata(
            _yieldProtocolAddress,
            selector,
            _yieldProtocolCalldata[4:]
        );
        _;
    }

    /// @notice Constructor for P2pYieldProxy
    /// @param _factory The factory address
    /// @param _p2pTreasury The P2pTreasury address
    /// @param _allowedCalldataChecker AllowedCalldataChecker
    constructor(
        address _factory,
        address _p2pTreasury,
        address _allowedCalldataChecker
    ) {
        require(_factory != address(0), P2pYieldProxy__ZeroAddressFactory());
        i_factory = IP2pYieldProxyFactory(_factory);

        require(_p2pTreasury != address(0), P2pYieldProxy__ZeroAddressP2pTreasury());
        i_p2pTreasury = _p2pTreasury;

        require (_allowedCalldataChecker != address(0), P2pYieldProxy__ZeroAllowedCalldataChecker());
        i_allowedCalldataChecker = IAllowedCalldataChecker(_allowedCalldataChecker);
    }

    /// @inheritdoc IP2pYieldProxy
    function initialize(
        address _client,
        uint96 _clientBasisPoints
    )
    external
    initializer
    onlyFactory
    {
        __ReentrancyGuard_init();

        require(
            _clientBasisPoints > 0 && _clientBasisPoints <= 10_000,
            P2pYieldProxy__InvalidClientBasisPoints(_clientBasisPoints)
        );

        s_client = _client;
        s_clientBasisPoints = _clientBasisPoints;

        emit P2pYieldProxy__Initialized();
    }

    /// @inheritdoc IP2pYieldProxy
    function deposit(address _asset, uint256 _amount) external virtual;

    /// @notice Deposit assets into yield protocol
    /// @param _yieldProtocolAddress yield protocol address
    /// @param _yieldProtocolDepositCalldata calldata for deposit function of yield protocol
    /// @param _asset asset to deposit
    /// @param _amount amount to deposit
    function _deposit(
        address _yieldProtocolAddress,
        bytes memory _yieldProtocolDepositCalldata,
        address _asset,
        uint256 _amount
    )
    internal
    onlyFactory
    {
        require (_asset != address(0), P2pYieldProxy__ZeroAddressAsset());
        require (_amount > 0, P2pYieldProxy__ZeroAssetAmount());

        address client = s_client;

        uint256 assetAmountBefore = IERC20(_asset).balanceOf(address(this));

        // transfer tokens into Proxy
        IERC20(_asset).safeTransferFrom(
            client,
            address(this),
            _amount
        );

        uint256 assetAmountAfter = IERC20(_asset).balanceOf(address(this));
        uint256 actualAmount = assetAmountAfter - assetAmountBefore;

        require (
            actualAmount == _amount,
            P2pYieldProxy__DifferentActuallyDepositedAmount(_amount, actualAmount)
        ); // no support for fee-on-transfer or rebasing tokens

        uint256 totalDepositedAfter = s_totalDeposited[_asset] + actualAmount;
        s_totalDeposited[_asset] = totalDepositedAfter;
        emit P2pYieldProxy__Deposited(
            _yieldProtocolAddress,
            _asset,
            actualAmount,
            totalDepositedAfter
        );

        IERC20(_asset).safeIncreaseAllowance(
            _yieldProtocolAddress,
            actualAmount
        );

        _yieldProtocolAddress.functionCall(_yieldProtocolDepositCalldata);
    }

    /// @notice Withdraw assets from yield protocol
    /// @param _yieldProtocolAddress yield protocol address
    /// @param _asset ERC-20 asset address
    /// @param _yieldProtocolWithdrawalCalldata calldata for withdraw function of yield protocol
    function _withdraw(
        address _yieldProtocolAddress,
        address _asset,
        bytes memory _yieldProtocolWithdrawalCalldata
    )
    internal
    {
        _withdraw(_yieldProtocolAddress, _asset, _yieldProtocolWithdrawalCalldata, false);
    }

    /// @notice Withdraw assets from yield protocol
    /// @param _yieldProtocolAddress yield protocol address
    /// @param _asset ERC-20 asset address
    /// @param _yieldProtocolWithdrawalCalldata calldata for withdraw function of yield protocol
    /// @param _rewardsOnly if true, prioritize treating the withdrawal as profit (used by operator reward flows)
    function _withdraw(
        address _yieldProtocolAddress,
        address _asset,
        bytes memory _yieldProtocolWithdrawalCalldata,
        bool _rewardsOnly
    )
    internal
    nonReentrant
    {
        int256 accruedRewardsBefore = calculateAccruedRewards(_yieldProtocolAddress, _asset);

        uint256 assetAmountBefore = IERC20(_asset).balanceOf(address(this));

        // withdraw assets from Protocol
        _yieldProtocolAddress.functionCall(_yieldProtocolWithdrawalCalldata);

        uint256 assetAmountAfter = IERC20(_asset).balanceOf(address(this));

        uint256 newAssetAmount = assetAmountAfter - assetAmountBefore;

        Withdrawn memory withdrawn = s_totalWithdrawn[_asset];
        bool isClient = msg.sender == s_client;
        uint256 remainingPrincipal = s_totalDeposited[_asset] > withdrawn.amount
            ? s_totalDeposited[_asset] - withdrawn.amount
            : 0;
        bool isClosingWithdrawal = isClient && withdrawn.amount + newAssetAmount >= s_totalDeposited[_asset];

        uint256 positiveAccruedRewards = accruedRewardsBefore > 0
            ? uint256(accruedRewardsBefore)
            : 0;

        uint256 profitFromAccrued = newAssetAmount > positiveAccruedRewards
            ? positiveAccruedRewards
            : newAssetAmount;

        uint256 remainingAfterAccrued = newAssetAmount - profitFromAccrued;

        uint256 principalPortion;
        uint256 profitPortion;

        if (_rewardsOnly) {
            profitPortion = profitFromAccrued;
            uint256 remainingAfterProfit = newAssetAmount - profitPortion;
            principalPortion = remainingAfterProfit > remainingPrincipal
                ? remainingPrincipal
                : remainingAfterProfit;
        } else {
            if (isClosingWithdrawal) {
                if (newAssetAmount > remainingPrincipal) {
                    principalPortion = remainingPrincipal;
                    profitPortion = newAssetAmount - remainingPrincipal;
                } else {
                    principalPortion = newAssetAmount;
                    profitPortion = 0;
                }
            } else {
                principalPortion = remainingAfterAccrued > remainingPrincipal
                    ? remainingPrincipal
                    : remainingAfterAccrued;

                uint256 extraProfit = remainingAfterAccrued - principalPortion;
                profitPortion = profitFromAccrued + extraProfit;
            }
        }

        uint256 totalWithdrawnBefore = uint256(withdrawn.amount);
        uint256 totalWithdrawnAfter = totalWithdrawnBefore + principalPortion;

        // update total withdrawn
        withdrawn.amount = uint208(totalWithdrawnAfter);
        withdrawn.lastFeeCollectionTime = uint48(block.timestamp);
        s_totalWithdrawn[_asset] = withdrawn;

        uint256 p2pAmount;
        if (profitPortion > 0) {
            // That extra 9999 ensures that any nonzero remainder will push the result up by 1 (ceiling division).
            p2pAmount = calculateP2pFeeAmount(profitPortion);
        }
        uint256 clientAmount = newAssetAmount - p2pAmount;

        if (p2pAmount > 0) {
            IERC20(_asset).safeTransfer(i_p2pTreasury, p2pAmount);
        }
        // clientAmount must be > 0 at this point
        IERC20(_asset).safeTransfer(s_client, clientAmount);

        emit P2pYieldProxy__Withdrawn(
            _yieldProtocolAddress,
            _yieldProtocolAddress,
            _asset,
            newAssetAmount,
            totalWithdrawnAfter,
            int256(profitPortion),
            p2pAmount,
            clientAmount
        );
    }

    /// @inheritdoc IP2pYieldProxy
    function callAnyFunction(
        address _yieldProtocolAddress,
        bytes calldata _yieldProtocolCalldata
    )
    external
    onlyClient
    nonReentrant
    calldataShouldBeAllowed(_yieldProtocolAddress, _yieldProtocolCalldata)
    {
        emit P2pYieldProxy__CalledAsAnyFunction(_yieldProtocolAddress);
        _yieldProtocolAddress.functionCall(_yieldProtocolCalldata);
    }

    /// @notice Returns function selector (first 4 bytes of data)
    /// @param _data calldata (encoded signature + arguments)
    /// @return functionSelector function selector
    function _getFunctionSelector(
        bytes calldata _data
    ) private pure returns (bytes4 functionSelector) {
        require (_data.length >= 4, P2pYieldProxy__DataTooShort());
        return bytes4(_data[:4]);
    }

    /// @inheritdoc IP2pYieldProxy
    function getFactory() external view returns (address) {
        return address(i_factory);
    }

    /// @inheritdoc IP2pYieldProxy
    function getP2pTreasury() external view returns (address) {
        return i_p2pTreasury;
    }

    /// @inheritdoc IP2pYieldProxy
    function getClient() external view returns (address) {
        return s_client;
    }

    /// @inheritdoc IP2pYieldProxy
    function getClientBasisPoints() external view returns (uint96) {
        return s_clientBasisPoints;
    }

    /// @inheritdoc IP2pYieldProxy
    function getTotalDeposited(address _asset) external view returns (uint256) {
        return s_totalDeposited[_asset];
    }

    /// @inheritdoc IP2pYieldProxy
    function getTotalWithdrawn(address _asset) external view returns (uint256) {
        return s_totalWithdrawn[_asset].amount;
    }

    function getUserPrincipal(address _asset) public view returns(uint256) {
        uint256 totalDeposited = s_totalDeposited[_asset];
        uint256 totalWithdrawn = s_totalWithdrawn[_asset].amount;
        if (totalDeposited > totalWithdrawn) {
            return totalDeposited - totalWithdrawn;
        }
        return 0;
    }

    function calculateAccruedRewards(address _yieldProtocolAddress, address _asset) public view virtual returns(int256) {
        uint256 currentAmount = _getCurrentAssetAmount(_yieldProtocolAddress, _asset);
        uint256 userPrincipal = getUserPrincipal(_asset);
        return int256(currentAmount) - int256(userPrincipal);
    }

    function _getCurrentAssetAmount(address _yieldProtocolAddress, address _asset) internal view virtual returns (uint256);

    function getLastFeeCollectionTime(address _asset) public view returns(uint48) {
        return s_totalWithdrawn[_asset].lastFeeCollectionTime;
    }

    /// @notice Calculates P2P treasury fee amount using ceiling division
    /// @param _amount amount
    /// @return p2pFeeAmount p2p fee amount
    function calculateP2pFeeAmount(uint256 _amount) internal view returns (uint256 p2pFeeAmount) {
        if (_amount == 0) return 0;
        p2pFeeAmount = (_amount * (10_000 - s_clientBasisPoints) + 9999) / 10_000;
    }

    /// @inheritdoc ERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IP2pYieldProxy).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}
IP2pYieldProxyFactory.sol 90 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "../common/IAllowedCalldataChecker.sol";

/// @dev External interface of P2pYieldProxyFactory
interface IP2pYieldProxyFactory is IAllowedCalldataChecker, IERC165 {

    /// @dev Emitted when the P2pSigner is transferred
    event P2pYieldProxyFactory__P2pSignerTransferred(
        address indexed _previousP2pSigner,
        address indexed _newP2pSigner
    );

    /// @dev Emitted when the deposit is made
    event P2pYieldProxyFactory__Deposited(
        address indexed _client,
        uint96 indexed _clientBasisPoints
    );

    /// @dev Emitted when the a new proxy is created
    event P2pYieldProxyFactory__ProxyCreated(
        address _proxy,
        address _client,
        uint96 _clientBasisPoints
    );

    /// @notice Deposits a client supplied asset into the underlying yield protocol via a proxy.
    /// @param _asset Address of the ERC-20 asset to deposit on behalf of the client.
    /// @param _amount Amount of `_asset` to move from the client to the proxy and forward to the yield protocol.
    /// @param _clientBasisPoints Fee share expressed in basis points (out of 10_000) that the client keeps.
    /// @param _p2pSignerSigDeadline Expiration timestamp for the signer approval accompanying this deposit.
    /// @param _p2pSignerSignature Off-chain signature authorising the deposit parameters from the designated signer.
    /// @return p2pYieldProxyAddress Deterministic proxy address used for the client after the deposit is processed.
    function deposit(
        address _asset,
        uint256 _amount,

        uint96 _clientBasisPoints,
        uint256 _p2pSignerSigDeadline,
        bytes calldata _p2pSignerSignature
    )
    external
    returns (address p2pYieldProxyAddress);

    /// @notice Predicts the deterministic proxy address that will serve a specific client and fee configuration.
    /// @param _client Address of the client that will control the proxy.
    /// @param _clientBasisPoints Fee share (in basis points) that the client keeps from accrued rewards.
    /// @return proxyAddress Deterministic address where the proxy will be deployed or already lives.
    function predictP2pYieldProxyAddress(
        address _client,
        uint96 _clientBasisPoints
    ) external view returns (address proxyAddress);

    /// @notice Updates the recognised P2P signer that authorises new deposits.
    /// @param _newP2pSigner Address of the replacement signer allowed to approve deposits.
    function transferP2pSigner(
        address _newP2pSigner
    ) external;

    /// @notice Returns the implementation contract used as the template for future proxies.
    /// @return referenceProxy Address of the proxy implementation clone target.
    function getReferenceP2pYieldProxy() external view returns (address referenceProxy);

    /// @notice Computes the EIP-191 hash that must be signed by the authorised P2P signer for a deposit.
    /// @param _client Address of the client that will control the proxy.
    /// @param _clientBasisPoints Fee share (in basis points) that the client keeps from accrued rewards.
    /// @param _p2pSignerSigDeadline Expiration timestamp of the off-chain approval.
    /// @return signerHash Message hash that should be signed by the configured P2P signer.
    function getHashForP2pSigner(
        address _client,
        uint96 _clientBasisPoints,
        uint256 _p2pSignerSigDeadline
    ) external view returns (bytes32 signerHash);

    /// @notice Returns the address authorised to co-sign new deposits.
    /// @return signer Address of the currently configured P2P signer.
    function getP2pSigner() external view returns (address signer);

    /// @notice Returns the operator allowed to manage privileged actions on the factory.
    /// @return operator Address of the current P2P operator.
    function getP2pOperator() external view returns (address operator);

    /// @notice Returns every proxy address created by this factory.
    /// @return proxies Array containing the addresses of all instantiated proxies.
    function getAllProxies() external view returns (address[] memory proxies);
}
IResolvStaking.sol 45 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

interface IResolvStaking {

    function deposit(
        uint256 _amount,
        address _receiver
    ) external;

    function withdraw(
        bool _claimRewards,
        address _receiver
    ) external;

    function initiateWithdrawal(uint256 _amount) external;

    function claim(address _user, address _receiver) external;

    function updateCheckpoint(address _user) external;

    function depositReward(
        address _token,
        uint256 _amount,
        uint256 _duration
    ) external;

    function setRewardsReceiver(address _receiver) external;

    function setCheckpointDelegatee(address _delegatee) external;

    function setClaimEnabled(bool _enabled) external;

    function setWithdrawalCooldown(uint256 _cooldown) external;

    function getUserAccumulatedRewardPerToken(address _user, address _token) external view returns (uint256 amount);

    function getUserClaimableAmounts(address _user, address _token) external view returns (uint256 amount);

    function getUserEffectiveBalance(address _user) external view returns (uint256 balance);

    function claimEnabled() external view returns (bool isEnabled);

    function rewardTokens(uint256 _index) external view returns (address token);
}
IStUSR.sol 20 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

interface IStUSR {

    event Deposit(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);
    event Withdraw(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);

    error InvalidDepositAmount(uint256 _usrAmount);

    function deposit(uint256 _usrAmount) external;

    function withdraw(uint256 _usrAmount) external;

    function withdrawAll() external;

    function previewDeposit(uint256 _usrAmount) external view returns (uint256 shares);

    function previewWithdraw(uint256 _usrAmount) external view returns (uint256 shares);
}
IStakedTokenDistributor.sol 23 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

// Allows anyone to claim a token if they exist in a merkle root.
interface IStakedTokenDistributor {
    event Claimed(uint256 index, address account, uint256 amount);
    event AddedToBlacklist(address account);
    event RemovedFromBlacklist(address account);
    event Withdrawn(address reciever);

    error AlreadyClaimed();
    error InvalidProof();
    error Blacklisted();
    error EndTimeInPast();
    error ClaimWindowFinished();
    error NoWithdrawDuringClaim();
    error ZeroAddress();

    // Claim the given amount of the token to the contract caller. Reverts if the inputs are invalid.
    function claim(uint256 index, uint256 amount, bytes32[] calldata merkleProof) external;
    // Returns true if the index has been marked claimed.
    function isClaimed(uint256 index) external view returns (bool);
}
IP2pResolvProxy.sol 95 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

/// @title Interface for the P2P Resolv proxy adapter
/// @notice Exposes Resolv specific helper flows to withdraw and claim on behalf of a client.
interface IP2pResolvProxy {
    /// @notice Withdraws a specific amount of USR on behalf of the client.
    /// @param _amount Amount of USR (in wei) requested by the client.
    function withdrawUSR(uint256 _amount) external;

    /// @notice Withdraws the entire USR balance held by the proxy for the client.
    function withdrawAllUSR() external;

    /// @notice Initiates a delayed withdrawal request for RESOLV from the staking contract.
    /// @param _amount Amount of staked RESOLV shares to mark for withdrawal.
    function initiateWithdrawalRESOLV(uint256 _amount) external;

    /// @notice Completes a pending RESOLV withdrawal, distributing proceeds per the fee split.
    function withdrawRESOLV() external;

    /// @notice Claims rewards from the Resolv StakedTokenDistributor on behalf of the client/operator.
    /// @param _index Index of the Merkle proof entry.
    /// @param _amount Amount of rewards being claimed.
    /// @param _merkleProof Merkle proof validating the claim eligibility.
    function claimStakedTokenDistributor(
        uint256 _index,
        uint256 _amount,
        bytes32[] calldata _merkleProof
    )
    external;

    /// @notice Claims accrued reward tokens directly from ResolvStaking and splits them per the fee schedule.
    function claimRewardTokens() external;

    function setStakedTokenDistributor(address _stakedTokenDistributor) external;

    function getStakedTokenDistributor() external view returns (address);

    /// @notice Emitted when rewards are claimed from the distributor.
    /// @param _amount Amount of rewards paid out for the claim.
    event P2pResolvProxy__Claimed(uint256 _amount);

    /// @notice Emitted when RESOLV is deposited into ResolvStaking via the proxy.
    /// @param amount Amount of RESOLV deposited on behalf of the client.
    event P2pResolvProxy__ResolvDeposited(uint256 amount);

    /// @notice Emitted when a RESOLV withdrawal without rewards is forwarded directly to the client.
    /// @param caller Address that triggered the withdrawal completion.
    event P2pResolvProxy__ResolvPrincipalWithdrawal(address indexed caller);

    /// @notice Emitted when staking reward tokens are claimed and split.
    /// @param token Reward token address.
    /// @param amount Total reward amount claimed for `token`.
    /// @param p2pAmount Portion forwarded to the P2P treasury.
    /// @param clientAmount Portion forwarded to the client.
    event P2pResolvProxy__RewardTokensClaimed(
        address indexed token,
        uint256 amount,
        uint256 p2pAmount,
        uint256 clientAmount
    );

    /// @notice Emitted when a claimed airdrop withdrawal is processed and distributed.
    /// @param expectedRewardAmount The tracked pending reward amount from the distributor.
    /// @param actualRewardAmount Actual RESOLV amount received in the withdrawal.
    /// @param p2pAmount Portion of the reward sent to the treasury.
    /// @param clientAmount Portion of the reward sent to the client.
    /// @param principalForwarded The principal portion released to the client.
    event P2pResolvProxy__DistributorRewardsReleased(
        uint256 expectedRewardAmount,
        uint256 actualRewardAmount,
        uint256 p2pAmount,
        uint256 clientAmount,
        uint256 principalForwarded
    );

    /// @notice Sweeps accumulated reward tokens from the proxy to the client.
    /// @param _token Address of the ERC-20 token to sweep.
    function sweepRewardToken(address _token) external;

    /// @notice Emitted when the staked token distributor address is updated.
    /// @param previousStakedTokenDistributor The previous distributor address.
    /// @param newStakedTokenDistributor The new distributor address.
    event P2pResolvProxy__StakedTokenDistributorUpdated(
        address indexed previousStakedTokenDistributor,
        address indexed newStakedTokenDistributor
    );

    /// @notice Emitted when reward tokens are swept to the client.
    /// @param token The token address that was swept.
    /// @param amount The amount swept to the client.
    event P2pResolvProxy__RewardTokenSwept(address indexed token, uint256 amount);
}
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity 0.8.30;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
IERC1271.sol 19 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity 0.8.30;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity 0.8.30;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
P2pOperator.sol 89 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

// Copy and rename of OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity 0.8.30;

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an P2pOperator) that can be granted exclusive access to
 * specific functions.
 *
 * The initial P2pOperator is set to the address provided by the deployer. This can
 * later be changed with {transferP2pOperator}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyP2pOperator`, which can be applied to your functions to restrict their use to
 * the P2pOperator.
 */
abstract contract P2pOperator {
    address private s_p2pOperator;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error P2pOperator__UnauthorizedAccount(address _account);

    /**
     * @dev The P2pOperator is not a valid P2pOperator account. (eg. `address(0)`)
     */
    error P2pOperator__InvalidP2pOperator(address _p2pOperator);

    event P2pOperator__P2pOperatorTransferred(address indexed _previousP2pOperator, address indexed _newP2pOperator);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial P2pOperator.
     */
    constructor(address _initialP2pOperator) {
        if (_initialP2pOperator == address(0)) {
            revert P2pOperator__InvalidP2pOperator(address(0));
        }
        _transferP2pOperator(_initialP2pOperator);
    }

    /**
     * @dev Throws if called by any account other than the P2pOperator.
     */
    modifier onlyP2pOperator() {
        _checkP2pOperator();
        _;
    }

    /**
     * @dev Returns the address of the current P2pOperator.
     */
    function getP2pOperator() public view virtual returns (address) {
        return s_p2pOperator;
    }

    /**
     * @dev Throws if the sender is not the P2pOperator.
     */
    function _checkP2pOperator() internal view virtual {
        if (s_p2pOperator != msg.sender) {
            revert P2pOperator__UnauthorizedAccount(msg.sender);
        }
    }

    /**
     * @dev Transfers P2pOperator of the contract to a new account (`_newP2pOperator`).
     * Can only be called by the current P2pOperator.
     */
    function transferP2pOperator(address _newP2pOperator) public virtual onlyP2pOperator {
        if (_newP2pOperator == address(0)) {
            revert P2pOperator__InvalidP2pOperator(address(0));
        }
        _transferP2pOperator(_newP2pOperator);
    }

    /**
     * @dev Transfers P2pOperator of the contract to a new account (`_newP2pOperator`).
     * Internal function without access restriction.
     */
    function _transferP2pOperator(address _newP2pOperator) internal virtual {
        address oldP2pOperator = s_p2pOperator;
        s_p2pOperator = _newP2pOperator;
        emit P2pOperator__P2pOperatorTransferred(oldP2pOperator, _newP2pOperator);
    }
}
Initializable.sol 166 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity 0.8.30;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}
IAllowedCalldataChecker.sol 20 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

/// @title IAllowedCalldataChecker
/// @author P2P Validator <[email protected]>
/// @notice Interface for checking if a calldata is allowed
interface IAllowedCalldataChecker {

    /// @notice Checks if the calldata is allowed
    /// @param _target The address of the yield protocol
    /// @param _selector The selector of the function
    /// @param _calldataAfterSelector The calldata after the selector
    function checkCalldata(
        address _target,
        bytes4 _selector,
        bytes calldata _calldataAfterSelector
    ) external view;
}
ReentrancyGuardUpgradeable.sol 89 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity 0.8.30;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}
SafeERC20.sol 116 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity 0.8.30;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
ERC165Checker.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)

pragma solidity 0.8.30;

import "./IERC165.sol";

/**
 * @dev Library used to query support of an interface declared via {IERC165}.
 *
 * Note that these functions return the actual result of the query: they do not
 * `revert` if an interface is not supported. It is up to the caller to decide
 * what to do in these cases.
 */
library ERC165Checker {
    // As per the EIP-165 spec, no interface should ever match 0xffffffff
    bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;

    /**
     * @dev Returns true if `account` supports the {IERC165} interface,
     */
    function supportsERC165(address account) internal view returns (bool) {
        // Any contract that implements ERC165 must explicitly indicate support of
        // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
        return
            _supportsERC165Interface(account, type(IERC165).interfaceId) &&
            !_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
    }

    /**
     * @dev Returns true if `account` supports the interface defined by
     * `interfaceId`. Support for {IERC165} itself is queried automatically.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
        // query support of both ERC165 as per the spec and support of _interfaceId
        return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
    }

    /**
     * @dev Returns a boolean array where each value corresponds to the
     * interfaces passed in and whether they're supported or not. This allows
     * you to batch check interfaces for a contract where your expectation
     * is that some interfaces may not be supported.
     *
     * See {IERC165-supportsInterface}.
     *
     * _Available since v3.4._
     */
    function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
        internal
        view
        returns (bool[] memory)
    {
        // an array of booleans corresponding to interfaceIds and whether they're supported or not
        bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);

        // query support of ERC165 itself
        if (supportsERC165(account)) {
            // query support of each interface in interfaceIds
            for (uint256 i = 0; i < interfaceIds.length; i++) {
                interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
            }
        }

        return interfaceIdsSupported;
    }

    /**
     * @dev Returns true if `account` supports all the interfaces defined in
     * `interfaceIds`. Support for {IERC165} itself is queried automatically.
     *
     * Batch-querying can lead to gas savings by skipping repeated checks for
     * {IERC165} support.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
        // query support of ERC165 itself
        if (!supportsERC165(account)) {
            return false;
        }

        // query support of each interface in _interfaceIds
        for (uint256 i = 0; i < interfaceIds.length; i++) {
            if (!_supportsERC165Interface(account, interfaceIds[i])) {
                return false;
            }
        }

        // all interfaces supported
        return true;
    }

    /**
     * @notice Query if a contract implements an interface, does not check ERC165 support
     * @param account The address of the contract to query for support of an interface
     * @param interfaceId The interface identifier, as specified in ERC-165
     * @return true if the contract at account indicates support of the interface with
     * identifier interfaceId, false otherwise
     * @dev Assumes that account contains a contract that supports ERC165, otherwise
     * the behavior of this method is undefined. This precondition can be checked
     * with {supportsERC165}.
     * Interface identification is specified in ERC-165.
     */
    function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
        // prepare call
        bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);

        // perform static call
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0x00)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }
}
P2pStructs.sol 12 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

/// @dev 256 bit struct
/// @member Amount
/// @member lastFeeCollectionTime Last Fee Collection Time
struct Withdrawn {
    uint208 amount;
    uint48 lastFeeCollectionTime;
}
IP2pYieldProxy.sol 87 lines
// SPDX-FileCopyrightText: 2025 P2P Validator <[email protected]>
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "../@openzeppelin/contracts/utils/introspection/IERC165.sol";

/// @dev External interface of P2pYieldProxy declared to support ERC165 detection.
interface IP2pYieldProxy is IERC165 {

    /// @notice Emitted when the P2pYieldProxy is initialized
    event P2pYieldProxy__Initialized();

    /// @notice Emitted when a deposit is made
    event P2pYieldProxy__Deposited(
        address indexed _yieldProtocolAddress,
        address indexed _asset,
        uint256 _amount,
        uint256 _totalDepositedAfter
    );

    /// @notice Emitted when a withdrawal is made
    event P2pYieldProxy__Withdrawn(
        address indexed _yieldProtocolAddress,
        address indexed _vault,
        address indexed _asset,
        uint256 _assets,
        uint256 _totalWithdrawnAfter,
        int256 _accruedRewards,
        uint256 _p2pAmount,
        uint256 _clientAmount
    );

    /// @notice Emitted when an arbitrary allowed function is called
    event P2pYieldProxy__CalledAsAnyFunction(
        address indexed _yieldProtocolAddress
    );

    /// @notice Initializes the P2pYieldProxy
    /// @param _client The client address
    /// @param _clientBasisPoints The client basis points
    function initialize(
        address _client,
        uint96 _clientBasisPoints
    )
    external;

    /// @notice Deposits the given asset amount into the underlying yield protocol.
    /// @param _asset Address of the ERC-20 asset the client wants to supply.
    /// @param _amount Amount of `_asset` in wei requested for deposit.
    function deposit(address _asset, uint256 _amount) external;

    /// @notice Calls an arbitrary allowed function
    /// @param _yieldProtocolAddress The address of the yield protocol
    /// @param _yieldProtocolCalldata The calldata to call the yield protocol
    function callAnyFunction(
        address _yieldProtocolAddress,
        bytes calldata _yieldProtocolCalldata
    )
    external;

    /// @notice Gets the factory address
    /// @return The factory address
    function getFactory() external view returns (address);

    /// @notice Gets the P2pTreasury address
    /// @return The P2pTreasury address
    function getP2pTreasury() external view returns (address);

    /// @notice Gets the client address
    /// @return The client address
    function getClient() external view returns (address);

    /// @notice Gets the client basis points
    /// @return The client basis points
    function getClientBasisPoints() external view returns (uint96);

    /// @notice Gets the total deposited for an asset
    /// @param _asset The asset address
    /// @return The total deposited
    function getTotalDeposited(address _asset) external view returns (uint256);

    /// @notice Gets the total withdrawn for an asset
    /// @param _asset The asset address
    /// @return The total withdrawn
    function getTotalWithdrawn(address _asset) external view returns (uint256);
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity 0.8.30;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
AddressUpgradeable.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity 0.8.30;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
IERC20.sol 82 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity 0.8.30;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}
draft-IERC20Permit.sol 60 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity 0.8.30;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity 0.8.30;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity 0.8.30;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Read Contract

checkCalldata 0x34b5ee92
getAllProxies 0x883edfb8 → address[]
getHashForP2pSigner 0x7714e03e → bytes32
getP2pOperator 0x0a1ca464 → address
getP2pSigner 0x4258b0b9 → address
getPendingP2pOperator 0x739e39b3 → address
getReferenceP2pYieldProxy 0x9572269e → address
predictP2pYieldProxyAddress 0x84baa36c → address
supportsInterface 0x01ffc9a7 → bool

Write Contract 5 functions

These functions modify contract state and require a wallet transaction to execute.

acceptP2pOperator 0x766248ed
No parameters
deposit 0xb3fb6579
address _asset
uint256 _amount
uint96 _clientBasisPoints
uint256 _p2pSignerSigDeadline
bytes _p2pSignerSignature
returns: address
initialize 0x8129fc1c
No parameters
transferP2pOperator 0x168b258a
address _newP2pOperator
transferP2pSigner 0xb1094ea8
address _newP2pSigner

Recent Transactions

No transactions found for this address