Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x421edd728B64072b3109dAe8d802F4F68cE7c500
Balance 0 ETH
Nonce 1
Code Size 5491 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

5491 bytes
0x61010080604052600436101561001457600080fd5b600060a05260a0513560e01c90816301ffc9a7146110fa57508063248a9ca3146110c85780632f2ff15d1461108657806332938ad714610fbd57806336568abe14610f7657806361d027b314610f30578063727958d914610a765780637ccede7c14610a575780637da0a87714610a1157806391d14854146109c15780639df88d4c14610985578063a217fddf14610967578063a9a7cfc8146101f8578063d547741f146101af578063df89059214610169578063e3bdd3cc146101235763f5b541a6146100e157600080fd5b3461011d5760a05136600319011261011d5760206040517f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9298152f35b60a05180fd5b3461011d5760a05136600319011261011d576040517f0000000000000000000000002aeba687471987e2edcb321f98e26e26394fb5a26001600160a01b03168152602090f35b3461011d5760a05136600319011261011d576040517f000000000000000000000000336ff048c664a081d527979ac4197d6c3c8bfb146001600160a01b03168152602090f35b3461011d57604036600319011261011d576101f16004356101ce61114d565b908060a0515260a0516020526101ec6001604060a0512001546113e4565b611488565b5060a05180f35b3461011d5760a036600319011261011d576004356001600160401b03811161011d576102289036906004016111a9565b906001600160401b036024351161011d5736602360243501121561011d576001600160401b03602435600401351161011d5736602480356004013560071b813501011161011d576044356001600160401b03811161011d5761028e9036906004016111a9565b916064356001600160401b03811161011d576102ae9036906004016111a9565b90926084356001600160401b03811161011d576102cf9036906004016111a9565b9190966102da611388565b60243560040135811480159061095d575b8015610953575b8015610949575b6109375794919660a09693965160e0525b8560e051106103195760a05180f35b60e05160051b8501359360de198636030185121561011d576024356004013560e051101561091f5761034e60e0518285611331565b949061035d60e0518b84611331565b968c60e051101561091f57601e198636030160e05160051b870135121561011d576001600160401b0360e05160051b8701358701351161011d5760e051600590811b8701358701803590911b360360209091011361011d576103bd611388565b6103c8898b01611205565b60018060a01b036103e3602460e05160071b81350101611205565b166001600160a01b039190911681141590816108eb575b506108d9576104169261040e913691611299565b963691611299565b9861042c604460e05160071b6024350101611205565b604051602081019160018060a01b03168252608460e05160071b60243501013560408201526040815261045e8161125d565b5190209a6001546080526040519b6104888d602060e05160051b89013589013560051b0190611278565b8c60c05260e05160051b8601358601358d5260208d0160c05236602060e05160051b88013588013560051b60e05160051b890135890101011161011d57602060e05160051b8701358701015b60e051600590811b8801358801803590911b0160200181106108c257509560a051965b8d5188101561054157600588901b8e0160200151908181101561052c5760a051526020526001604060a051205b9701966104f7565b9060a051526020526001604060a05120610524565b9197939a959c5095509990969299608051036108b057606460e05160071b6024350101356106dd575b50507f000000000000000000000000735023ec9a51eb41c9e298fa74bed454d581a4716001600160a01b03163b1561011d5760405163df905caf60e01b815260206004820152906001600160a01b036105c4888301611168565b1660248301526001600160a01b036105e0888301602001611168565b1660448301526040818801013560648301526060818801013560848301526080818801013565ffffffffffff811680910361011d5760a4830152818061066a610654610647610635868d0160a08101906112df565b60e060c4870152610104860191611310565b948b0160c08101906112df565b8386036023190160e485015260a0519591611310565b038160a05160018060a01b037f000000000000000000000000735023ec9a51eb41c9e298fa74bed454d581a471165af180156106d0576106ba575b50600160e0510160e05294919695929561030a565b6106c39061124a565b60a05161011d57886106a5565b6040513d60a051823e3d90fd5b60e05160243560079190911b0160848101356064909101351161089e5761070f604460e05160071b6024350101611205565b91610724602460e05160071b81350101611205565b6040519361073185611219565b6001600160a01b03908116855290811660208501527f0000000000000000000000009099cffd388df26f5ff8060df2534d638df5730e8116604085015260e05160243560079190911b01606401356060850152608084019190915260a08301919091527f000000000000000000000000336ff048c664a081d527979ac4197d6c3c8bfb14163b1561011d57604080516309c5399f60e11b815260206004820181905283516001600160a01b039081166024840152908401518116604483015291830151909116606482015260608201516084820152608082015160c060a4830152909190829081906108479060a09061082e9060e48501906114fd565b9401518285036023190160c484015260a05194906114fd565b038160a05160018060a01b037f000000000000000000000000336ff048c664a081d527979ac4197d6c3c8bfb14165af180156106d057610888575b8061056a565b6108919061124a565b60a05161011d5789610882565b6040516344010aff60e01b8152600490fd5b60405163582f497d60e11b8152600490fd5b806020913560c051528160c0510160c052016104d4565b604051630eeb58e160e21b8152600490fd5b7f0000000000000000000000002aeba687471987e2edcb321f98e26e26394fb5a26001600160a01b0316141590508e6103fa565b634e487b7160e01b60a051526032600452602460a051fd5b6040516307e11acb60e51b8152600490fd5b50828114156102f9565b50838114156102f2565b50868114156102eb565b3461011d5760a05136600319011261011d57602060405160a0518152f35b3461011d5760a05136600319011261011d5760206040517f4686484b15e172a401b231a2ed3b8588c6c98d0cb8e2680650da6b7ba087f00a8152f35b3461011d57604036600319011261011d576109da61114d565b60043560a0515260a051602052604060a051209060018060a01b0316600052602052602060ff604060002054166040519015158152f35b3461011d5760a05136600319011261011d576040517f000000000000000000000000735023ec9a51eb41c9e298fa74bed454d581a4716001600160a01b03168152602090f35b3461011d5760a05136600319011261011d576020600154604051908152f35b3461011d576003196101003682011261011d576001600160401b0390816004351161011d5760e0906004353603011261011d57608036602319011261011d5760a43581811161011d57610acd90369060040161117c565b919060c43582811161011d57610ae790369060040161117c565b909160e43584811161011d57610b019036906004016111a9565b939095610b0c611388565b610b1a600435600401611205565b6001600160a01b03610b2a6111d9565b166001600160a01b03919091168114159081610efc575b506108d957610b5d92610b55913691611299565b923691611299565b93610b666111ef565b604051602081019160018060a01b03168252608435604082015260408152610b8d8161125d565b51902090600154948411610ee4578360051b60405194610bb06020830187611278565b85526020850190368184011161011d5782915b8184018310610ed457505050509360a051945b8351861015610c2057600586901b8401602001519081811015610c0b5760a051526020526001604060a051205b950194610bd6565b9060a051526020526001604060a05120610c03565b84036108b0576064359182610d6d575b50507f000000000000000000000000735023ec9a51eb41c9e298fa74bed454d581a4716001600160a01b03169050803b1561011d576040519063df905caf60e01b82526020600483015260018060a01b03610c8f600435600401611168565b16602483015260018060a01b03610caa602460043501611168565b1660448301526044600435013560648301526064600435013560848301526084600435013565ffffffffffff811680910361011d5760a483015281610d0e610cfc60a4600435016004356004016112df565b60e060c4850152610104840191611310565b918180610d3e610d2860c4600435016004356004016112df565b8388036023190160e485015260a0519791611310565b039160a051905af180156106d057610d57575b60a05180f35b610d609061124a565b60a05161011d5780610d51565b608435831161089e57610d7e6111ef565b92610d876111d9565b60405194610d9486611219565b6001600160a01b03908116865290811660208601527f0000000000000000000000009099cffd388df26f5ff8060df2534d638df5730e811660408601526060850191909152608084019190915260a08301919091527f000000000000000000000000336ff048c664a081d527979ac4197d6c3c8bfb14163b1561011d57604080516309c5399f60e11b815260206004820181905283516001600160a01b039081166024840152908401518116604483015291830151909116606482015260608201516084820152608082015160c060a483015290919082908190610e839060a09061082e9060e48501906114fd565b038160a05160018060a01b037f000000000000000000000000336ff048c664a081d527979ac4197d6c3c8bfb14165af180156106d057610ec5575b8080610c30565b610ece9061124a565b80610ebe565b8235815260209283019201610bc3565b634e487b7160e01b60a051526041600452602460a051fd5b7f0000000000000000000000002aeba687471987e2edcb321f98e26e26394fb5a26001600160a01b03161415905088610b41565b3461011d5760a05136600319011261011d576040517f0000000000000000000000009099cffd388df26f5ff8060df2534d638df5730e6001600160a01b03168152602090f35b3461011d57604036600319011261011d57610f8f61114d565b336001600160a01b03821603610fab576101f190600435611488565b60405163334bd91960e11b8152600490fd5b3461011d57602036600319011261011d576004357f4686484b15e172a401b231a2ed3b8588c6c98d0cb8e2680650da6b7ba087f00a8060a0515260a051602052604060a051203360a0515260205260ff604060a0512054161561106857508015611056576020817fc053a6694cee9f8a3ad9381e8eb662d01413fcb24a9497289d34a260b7b2f95792600155604051908152a160a05180f35b604051633b1a1c7360e01b8152600490fd5b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b3461011d57604036600319011261011d576101f16004356110a561114d565b908060a0515260a0516020526110c36001604060a0512001546113e4565b61140a565b3461011d57602036600319011261011d5760043560a0515260a05160205260206001604060a051200154604051908152f35b3461011d57602036600319011261011d576004359063ffffffff60e01b821680920361011d57602091637965db0b60e01b811490811561113c575b5015158152f35b6301ffc9a760e01b14905083611135565b602435906001600160a01b038216820361116357565b600080fd5b35906001600160a01b038216820361116357565b9181601f84011215611163578235916001600160401b038311611163576020838186019501011161116357565b9181601f84011215611163578235916001600160401b038311611163576020808501948460051b01011161116357565b6024356001600160a01b03811681036111635790565b6044356001600160a01b03811681036111635790565b356001600160a01b03811681036111635790565b60c081019081106001600160401b0382111761123457604052565b634e487b7160e01b600052604160045260246000fd5b6001600160401b03811161123457604052565b606081019081106001600160401b0382111761123457604052565b90601f801991011681019081106001600160401b0382111761123457604052565b9291926001600160401b03821161123457604051916112c2601f8201601f191660200184611278565b829481845281830111611163578281602093846000960137010152565b9035601e19823603018112156111635701602081359101916001600160401b03821161116357813603831361116357565b908060209392818452848401376000828201840152601f01601f1916010190565b91908110156113725760051b81013590601e19813603018212156111635701908135916001600160401b038311611163576020018236038113611163579190565b634e487b7160e01b600052603260045260246000fd5b3360009081527fee57cd81e84075558e8fcc182a1f4393f91fc97f963a136e66b7f949a62f319f60205260409020547f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9299060ff16156110685750565b80600052600060205260406000203360005260205260ff60406000205416156110685750565b9060009180835282602052604083209160018060a01b03169182845260205260ff6040842054161560001461148357808352826020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b9060009180835282602052604083209160018060a01b03169182845260205260ff6040842054166000146114835780835282602052604083208284526020526040832060ff1981541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4600190565b919082519283825260005b848110611529575050826000602080949584010152601f8019910116010190565b60208183018101518483018201520161150856fea26469706673582212208a20f6140662353120b2ffe2bde1eda47850f51506f66d858b4cb76170eb874d64736f6c63430008180033

Verified Source Code Full Match

Compiler: v0.8.24+commit.e11b9ed9 EVM: paris Optimization: Yes (200 runs)
AccessControl.sol 209 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
IAccessControl.sol 98 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
ERC2771Context.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (metatx/ERC2771Context.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Context variant with ERC2771 support.
 *
 * WARNING: Avoid using this pattern in contracts that rely in a specific calldata length as they'll
 * be affected by any forwarder whose `msg.data` is suffixed with the `from` address according to the ERC2771
 * specification adding the address size in bytes (20) to the calldata size. An example of an unexpected
 * behavior could be an unintended fallback (or another function) invocation while trying to invoke the `receive`
 * function only accessible if `msg.data.length == 0`.
 *
 * WARNING: The usage of `delegatecall` in this contract is dangerous and may result in context corruption.
 * Any forwarded request to this contract triggering a `delegatecall` to itself will result in an invalid {_msgSender}
 * recovery.
 */
abstract contract ERC2771Context is Context {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable _trustedForwarder;

    /**
     * @dev Initializes the contract with a trusted forwarder, which will be able to
     * invoke functions on this contract on behalf of other accounts.
     *
     * NOTE: The trusted forwarder can be replaced by overriding {trustedForwarder}.
     */
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor(address trustedForwarder_) {
        _trustedForwarder = trustedForwarder_;
    }

    /**
     * @dev Returns the address of the trusted forwarder.
     */
    function trustedForwarder() public view virtual returns (address) {
        return _trustedForwarder;
    }

    /**
     * @dev Indicates whether any particular address is the trusted forwarder.
     */
    function isTrustedForwarder(address forwarder) public view virtual returns (bool) {
        return forwarder == trustedForwarder();
    }

    /**
     * @dev Override for `msg.sender`. Defaults to the original `msg.sender` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgSender() internal view virtual override returns (address) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return address(bytes20(msg.data[calldataLength - contextSuffixLength:]));
        } else {
            return super._msgSender();
        }
    }

    /**
     * @dev Override for `msg.data`. Defaults to the original `msg.data` whenever
     * a call is not performed by the trusted forwarder or the calldata length is less than
     * 20 bytes (an address length).
     */
    function _msgData() internal view virtual override returns (bytes calldata) {
        uint256 calldataLength = msg.data.length;
        uint256 contextSuffixLength = _contextSuffixLength();
        if (isTrustedForwarder(msg.sender) && calldataLength >= contextSuffixLength) {
            return msg.data[:calldataLength - contextSuffixLength];
        } else {
            return super._msgData();
        }
    }

    /**
     * @dev ERC-2771 specifies the context as being a single address (20 bytes).
     */
    function _contextSuffixLength() internal view virtual override returns (uint256) {
        return 20;
    }
}
ERC2771Forwarder.sol 370 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (metatx/ERC2771Forwarder.sol)

pragma solidity ^0.8.20;

import {ERC2771Context} from "./ERC2771Context.sol";
import {ECDSA} from "../utils/cryptography/ECDSA.sol";
import {EIP712} from "../utils/cryptography/EIP712.sol";
import {Nonces} from "../utils/Nonces.sol";
import {Address} from "../utils/Address.sol";

/**
 * @dev A forwarder compatible with ERC2771 contracts. See {ERC2771Context}.
 *
 * This forwarder operates on forward requests that include:
 *
 * * `from`: An address to operate on behalf of. It is required to be equal to the request signer.
 * * `to`: The address that should be called.
 * * `value`: The amount of native token to attach with the requested call.
 * * `gas`: The amount of gas limit that will be forwarded with the requested call.
 * * `nonce`: A unique transaction ordering identifier to avoid replayability and request invalidation.
 * * `deadline`: A timestamp after which the request is not executable anymore.
 * * `data`: Encoded `msg.data` to send with the requested call.
 *
 * Relayers are able to submit batches if they are processing a high volume of requests. With high
 * throughput, relayers may run into limitations of the chain such as limits on the number of
 * transactions in the mempool. In these cases the recommendation is to distribute the load among
 * multiple accounts.
 *
 * NOTE: Batching requests includes an optional refund for unused `msg.value` that is achieved by
 * performing a call with empty calldata. While this is within the bounds of ERC-2771 compliance,
 * if the refund receiver happens to consider the forwarder a trusted forwarder, it MUST properly
 * handle `msg.data.length == 0`. `ERC2771Context` in OpenZeppelin Contracts versions prior to 4.9.3
 * do not handle this properly.
 *
 * ==== Security Considerations
 *
 * If a relayer submits a forward request, it should be willing to pay up to 100% of the gas amount
 * specified in the request. This contract does not implement any kind of retribution for this gas,
 * and it is assumed that there is an out of band incentive for relayers to pay for execution on
 * behalf of signers. Often, the relayer is operated by a project that will consider it a user
 * acquisition cost.
 *
 * By offering to pay for gas, relayers are at risk of having that gas used by an attacker toward
 * some other purpose that is not aligned with the expected out of band incentives. If you operate a
 * relayer, consider whitelisting target contracts and function selectors. When relaying ERC-721 or
 * ERC-1155 transfers specifically, consider rejecting the use of the `data` field, since it can be
 * used to execute arbitrary code.
 */
contract ERC2771Forwarder is EIP712, Nonces {
    using ECDSA for bytes32;

    struct ForwardRequestData {
        address from;
        address to;
        uint256 value;
        uint256 gas;
        uint48 deadline;
        bytes data;
        bytes signature;
    }

    bytes32 internal constant _FORWARD_REQUEST_TYPEHASH =
        keccak256(
            "ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,uint48 deadline,bytes data)"
        );

    /**
     * @dev Emitted when a `ForwardRequest` is executed.
     *
     * NOTE: An unsuccessful forward request could be due to an invalid signature, an expired deadline,
     * or simply a revert in the requested call. The contract guarantees that the relayer is not able to force
     * the requested call to run out of gas.
     */
    event ExecutedForwardRequest(address indexed signer, uint256 nonce, bool success);

    /**
     * @dev The request `from` doesn't match with the recovered `signer`.
     */
    error ERC2771ForwarderInvalidSigner(address signer, address from);

    /**
     * @dev The `requestedValue` doesn't match with the available `msgValue`.
     */
    error ERC2771ForwarderMismatchedValue(uint256 requestedValue, uint256 msgValue);

    /**
     * @dev The request `deadline` has expired.
     */
    error ERC2771ForwarderExpiredRequest(uint48 deadline);

    /**
     * @dev The request target doesn't trust the `forwarder`.
     */
    error ERC2771UntrustfulTarget(address target, address forwarder);

    /**
     * @dev See {EIP712-constructor}.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev Returns `true` if a request is valid for a provided `signature` at the current block timestamp.
     *
     * A transaction is considered valid when the target trusts this forwarder, the request hasn't expired
     * (deadline is not met), and the signer matches the `from` parameter of the signed request.
     *
     * NOTE: A request may return false here but it won't cause {executeBatch} to revert if a refund
     * receiver is provided.
     */
    function verify(ForwardRequestData calldata request) public view virtual returns (bool) {
        (bool isTrustedForwarder, bool active, bool signerMatch, ) = _validate(request);
        return isTrustedForwarder && active && signerMatch;
    }

    /**
     * @dev Executes a `request` on behalf of `signature`'s signer using the ERC-2771 protocol. The gas
     * provided to the requested call may not be exactly the amount requested, but the call will not run
     * out of gas. Will revert if the request is invalid or the call reverts, in this case the nonce is not consumed.
     *
     * Requirements:
     *
     * - The request value should be equal to the provided `msg.value`.
     * - The request should be valid according to {verify}.
     */
    function execute(ForwardRequestData calldata request) public payable virtual {
        // We make sure that msg.value and request.value match exactly.
        // If the request is invalid or the call reverts, this whole function
        // will revert, ensuring value isn't stuck.
        if (msg.value != request.value) {
            revert ERC2771ForwarderMismatchedValue(request.value, msg.value);
        }

        if (!_execute(request, true)) {
            revert Address.FailedInnerCall();
        }
    }

    /**
     * @dev Batch version of {execute} with optional refunding and atomic execution.
     *
     * In case a batch contains at least one invalid request (see {verify}), the
     * request will be skipped and the `refundReceiver` parameter will receive back the
     * unused requested value at the end of the execution. This is done to prevent reverting
     * the entire batch when a request is invalid or has already been submitted.
     *
     * If the `refundReceiver` is the `address(0)`, this function will revert when at least
     * one of the requests was not valid instead of skipping it. This could be useful if
     * a batch is required to get executed atomically (at least at the top-level). For example,
     * refunding (and thus atomicity) can be opt-out if the relayer is using a service that avoids
     * including reverted transactions.
     *
     * Requirements:
     *
     * - The sum of the requests' values should be equal to the provided `msg.value`.
     * - All of the requests should be valid (see {verify}) when `refundReceiver` is the zero address.
     *
     * NOTE: Setting a zero `refundReceiver` guarantees an all-or-nothing requests execution only for
     * the first-level forwarded calls. In case a forwarded request calls to a contract with another
     * subcall, the second-level call may revert without the top-level call reverting.
     */
    function executeBatch(
        ForwardRequestData[] calldata requests,
        address payable refundReceiver
    ) public payable virtual {
        bool atomic = refundReceiver == address(0);

        uint256 requestsValue;
        uint256 refundValue;

        for (uint256 i; i < requests.length; ++i) {
            requestsValue += requests[i].value;
            bool success = _execute(requests[i], atomic);
            if (!success) {
                refundValue += requests[i].value;
            }
        }

        // The batch should revert if there's a mismatched msg.value provided
        // to avoid request value tampering
        if (requestsValue != msg.value) {
            revert ERC2771ForwarderMismatchedValue(requestsValue, msg.value);
        }

        // Some requests with value were invalid (possibly due to frontrunning).
        // To avoid leaving ETH in the contract this value is refunded.
        if (refundValue != 0) {
            // We know refundReceiver != address(0) && requestsValue == msg.value
            // meaning we can ensure refundValue is not taken from the original contract's balance
            // and refundReceiver is a known account.
            Address.sendValue(refundReceiver, refundValue);
        }
    }

    /**
     * @dev Validates if the provided request can be executed at current block timestamp with
     * the given `request.signature` on behalf of `request.signer`.
     */
    function _validate(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool isTrustedForwarder, bool active, bool signerMatch, address signer) {
        (bool isValid, address recovered) = _recoverForwardRequestSigner(request);

        return (
            _isTrustedByTarget(request.to),
            request.deadline >= block.timestamp,
            isValid && recovered == request.from,
            recovered
        );
    }

    /**
     * @dev Returns a tuple with the recovered the signer of an EIP712 forward request message hash
     * and a boolean indicating if the signature is valid.
     *
     * NOTE: The signature is considered valid if {ECDSA-tryRecover} indicates no recover error for it.
     */
    function _recoverForwardRequestSigner(
        ForwardRequestData calldata request
    ) internal view virtual returns (bool, address) {
        (address recovered, ECDSA.RecoverError err, ) = _hashTypedDataV4(
            keccak256(
                abi.encode(
                    _FORWARD_REQUEST_TYPEHASH,
                    request.from,
                    request.to,
                    request.value,
                    request.gas,
                    nonces(request.from),
                    request.deadline,
                    keccak256(request.data)
                )
            )
        ).tryRecover(request.signature);

        return (err == ECDSA.RecoverError.NoError, recovered);
    }

    /**
     * @dev Validates and executes a signed request returning the request call `success` value.
     *
     * Internal function without msg.value validation.
     *
     * Requirements:
     *
     * - The caller must have provided enough gas to forward with the call.
     * - The request must be valid (see {verify}) if the `requireValidRequest` is true.
     *
     * Emits an {ExecutedForwardRequest} event.
     *
     * IMPORTANT: Using this function doesn't check that all the `msg.value` was sent, potentially
     * leaving value stuck in the contract.
     */
    function _execute(
        ForwardRequestData calldata request,
        bool requireValidRequest
    ) internal virtual returns (bool success) {
        (bool isTrustedForwarder, bool active, bool signerMatch, address signer) = _validate(request);

        // Need to explicitly specify if a revert is required since non-reverting is default for
        // batches and reversion is opt-in since it could be useful in some scenarios
        if (requireValidRequest) {
            if (!isTrustedForwarder) {
                revert ERC2771UntrustfulTarget(request.to, address(this));
            }

            if (!active) {
                revert ERC2771ForwarderExpiredRequest(request.deadline);
            }

            if (!signerMatch) {
                revert ERC2771ForwarderInvalidSigner(signer, request.from);
            }
        }

        // Ignore an invalid request because requireValidRequest = false
        if (isTrustedForwarder && signerMatch && active) {
            // Nonce should be used before the call to prevent reusing by reentrancy
            uint256 currentNonce = _useNonce(signer);

            uint256 reqGas = request.gas;
            address to = request.to;
            uint256 value = request.value;
            bytes memory data = abi.encodePacked(request.data, request.from);

            uint256 gasLeft;

            assembly {
                success := call(reqGas, to, value, add(data, 0x20), mload(data), 0, 0)
                gasLeft := gas()
            }

            _checkForwardedGas(gasLeft, request);

            emit ExecutedForwardRequest(signer, currentNonce, success);
        }
    }

    /**
     * @dev Returns whether the target trusts this forwarder.
     *
     * This function performs a static call to the target contract calling the
     * {ERC2771Context-isTrustedForwarder} function.
     */
    function _isTrustedByTarget(address target) private view returns (bool) {
        bytes memory encodedParams = abi.encodeCall(ERC2771Context.isTrustedForwarder, (address(this)));

        bool success;
        uint256 returnSize;
        uint256 returnValue;
        /// @solidity memory-safe-assembly
        assembly {
            // Perform the staticcal and save the result in the scratch space.
            // | Location  | Content  | Content (Hex)                                                      |
            // |-----------|----------|--------------------------------------------------------------------|
            // |           |          |                                                           result ↓ |
            // | 0x00:0x1F | selector | 0x0000000000000000000000000000000000000000000000000000000000000001 |
            success := staticcall(gas(), target, add(encodedParams, 0x20), mload(encodedParams), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }

    /**
     * @dev Checks if the requested gas was correctly forwarded to the callee.
     *
     * As a consequence of https://eips.ethereum.org/EIPS/eip-150[EIP-150]:
     * - At most `gasleft() - floor(gasleft() / 64)` is forwarded to the callee.
     * - At least `floor(gasleft() / 64)` is kept in the caller.
     *
     * It reverts consuming all the available gas if the forwarded gas is not the requested gas.
     *
     * IMPORTANT: The `gasLeft` parameter should be measured exactly at the end of the forwarded call.
     * Any gas consumed in between will make room for bypassing this check.
     */
    function _checkForwardedGas(uint256 gasLeft, ForwardRequestData calldata request) private pure {
        // To avoid insufficient gas griefing attacks, as referenced in https://ronan.eth.limo/blog/ethereum-gas-dangers/
        //
        // A malicious relayer can attempt to shrink the gas forwarded so that the underlying call reverts out-of-gas
        // but the forwarding itself still succeeds. In order to make sure that the subcall received sufficient gas,
        // we will inspect gasleft() after the forwarding.
        //
        // Let X be the gas available before the subcall, such that the subcall gets at most X * 63 / 64.
        // We can't know X after CALL dynamic costs, but we want it to be such that X * 63 / 64 >= req.gas.
        // Let Y be the gas used in the subcall. gasleft() measured immediately after the subcall will be gasleft() = X - Y.
        // If the subcall ran out of gas, then Y = X * 63 / 64 and gasleft() = X - Y = X / 64.
        // Under this assumption req.gas / 63 > gasleft() is true is true if and only if
        // req.gas / 63 > X / 64, or equivalently req.gas > X * 63 / 64.
        // This means that if the subcall runs out of gas we are able to detect that insufficient gas was passed.
        //
        // We will now also see that req.gas / 63 > gasleft() implies that req.gas >= X * 63 / 64.
        // The contract guarantees Y <= req.gas, thus gasleft() = X - Y >= X - req.gas.
        // -    req.gas / 63 > gasleft()
        // -    req.gas / 63 >= X - req.gas
        // -    req.gas >= X * 63 / 64
        // In other words if req.gas < X * 63 / 64 then req.gas / 63 <= gasleft(), thus if the relayer behaves honestly
        // the forwarding does not revert.
        if (gasLeft < request.gas / 63) {
            // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since
            // neither revert or assert consume all gas since Solidity 0.8.20
            // https://docs.soliditylang.org/en/v0.8.20/control-structures.html#panic-via-assert-and-error-via-require
            /// @solidity memory-safe-assembly
            assembly {
                invalid()
            }
        }
    }
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}
MerkleProof.sol 232 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
ERC165.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
Nonces.sol 46 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}
ShortStrings.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}
StorageSlot.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Authorizable.sol 51 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.24;

import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";

import {ZeroAddressError} from "../../interfaces/ZeroAddressError.sol";

abstract contract Authorizable is AccessControl, ZeroAddressError {
    /// @notice This role whitelists addresses which can relay calls
    /// @dev keccak256("OPERATOR_ROLE")
    bytes32 public constant OPERATOR_ROLE = 0x97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929;

    /// @notice This role whitelists addresses which manage token limits
    /// @dev keccak256("TOKEN_LIMIT_MANAGER_ROLE")
    bytes32 public constant TOKEN_LIMIT_MANAGER_ROLE =
        0x4686484b15e172a401b231a2ed3b8588c6c98d0cb8e2680650da6b7ba087f00a;

    /**
     * @dev Constructor
     * @param multisigWallet The multisig wallet address
     * @param operators The operator addresses
     */
    constructor(address multisigWallet, address[] memory operators, address[] memory tokenLimitManagers) {
        _setupRoles(multisigWallet, operators, tokenLimitManagers);
    }

    /**
     * @dev Grants the default admin role and operator role to the given addresses
     * @param multisigWallet The multisig wallet address
     * @param operators The operator addresses
     */
    function _setupRoles(
        address multisigWallet,
        address[] memory operators,
        address[] memory tokenLimitManagers
    ) internal {
        _grantRole(DEFAULT_ADMIN_ROLE, multisigWallet);

        uint256 length = operators.length;
        for (uint256 i = 0; i < length; ++i) {
            if (operators[i] == address(0)) revert ZeroAddress();
            _grantRole(OPERATOR_ROLE, operators[i]);
        }

        length = tokenLimitManagers.length;
        for (uint256 i = 0; i < length; ++i) {
            if (tokenLimitManagers[i] == address(0)) revert ZeroAddress();
            _grantRole(TOKEN_LIMIT_MANAGER_ROLE, tokenLimitManagers[i]);
        }
    }
}
ITeaFiRelayer.sol 92 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

import {ERC2771Forwarder} from "@openzeppelin/contracts/metatx/ERC2771Forwarder.sol";

interface ITeaFiRelayer {
    /**
     * @dev Payment data struct
     * @param payer The address who pays the gas expenses
     * @param token The payment token address
     * @param amount The payment amount in wei calculated by the sdk and should be less than the limit
     * @param tokenLimit The token limit for one call
     */
    struct PaymentData {
        address payer;
        address token;
        uint256 amount;
        uint256 tokenLimit;
    }

    /// @dev Error thrown when the payment amount exceeds the limit
    error PaymentAmountExceedsLimit();
    /// @dev Error thrown when the limit is zero
    error ZeroLimit();
    /// @notice Error thrown when the arrays have different lengths
    error ArraysLengthMismatch();
    /// @notice Error thrown when the signer and supplier are mismatched
    error SignerAndSupplierMismatch();
    /// @notice Error thrown when the merkle root is zero
    error MerkleRootCannotBeZero();
    /// @notice Error thrown when the merkle proof is invalid
    error InvalidMerkleProof();

    /**
     * @dev Emitted when the token limit for the given token is changed
     * @param paymentTokenLimitRoot The merkle root of the payment: token -> limit
     */ 
    event TokenLimitChanged(bytes32 paymentTokenLimitRoot);

    /**
     * @dev Returns the trusted forwarder contract
     */
    function trustedForwarder() external view returns (ERC2771Forwarder);

    /**
     * @notice Returns the gasless transaction supplier address
     * @dev The only address which can pay for other users' tx gas
     */
    function gaslessTxSupplier() external view returns (address);

    /**
     * @dev Changes the token limit for the given tokens with a merkle root
     * @param _paymentTokenLimitRoot The merkle root of the payment: token -> limit
     */
    function changeTokenLimit(bytes32 _paymentTokenLimitRoot) external;

    /**
     * @notice Relays a batch of calls to the trusted forwarder
     * @dev For gas payment this function requires both allowances:
     * @dev The token allowance to Permit2 contract and the allowance inside the Permit2, see [permit2](https://blog.uniswap.org/permit2-integration-guide)
     * @param requests Array of forwarder request data
     * @param paymentDatas Array of payment data
     * @param tokenSignatures Array of token permit signatures
     * @param permitSingleSignatures Array of permit single signatures
     * @param merkleProofs Array of merkle proofs for the check of the payment token limit
     */
    function relayCallBatch(
        ERC2771Forwarder.ForwardRequestData[] calldata requests,
        PaymentData[] calldata paymentDatas,
        bytes[] calldata tokenSignatures,
        bytes[] calldata permitSingleSignatures,
        bytes32[][] calldata merkleProofs
    ) external;

    /**
     * @notice Relays a call to the trusted forwarder
     * @dev For gas payment this function requires both allowances:
     * @dev The token allowance to Permit2 contract and the allowance inside the Permit2, see [permit2](https://blog.uniswap.org/permit2-integration-guide)
     * @param request Request data for the forwarder, see {ERC2771Forwarder.ForwardRequestData}
     * @param paymentData Payment data, see {PaymentData}
     * @param tokenSignature Token permit signature (packed v, r, s)
     * @param permitSingleSignature Permit signature (packed v, r, s)
     * @param merkleProof Merkle proof for the check of the payment token limit
     */
    function relayCall(
        ERC2771Forwarder.ForwardRequestData calldata request,
        PaymentData calldata paymentData,
        bytes calldata tokenSignature,
        bytes calldata permitSingleSignature,
        bytes32[] calldata merkleProof
    ) external;
}
TeaFiRelayer.sol 163 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.24;

import {ERC2771Forwarder} from "@openzeppelin/contracts/metatx/ERC2771Forwarder.sol";
import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

import {ITeaFiRelayer} from "./interfaces/ITeaFiRelayer.sol";
import {IPermitManager} from "../permit/interfaces/IPermitManager.sol";

import {Authorizable} from "./components/Authorizable.sol";

/**
 * @title TeaFiRelayer
 * @author Syndika dev team
 * @notice A contract that handles the gas payment and executes calls in trusted forwarder
 */
contract TeaFiRelayer is Authorizable, ITeaFiRelayer {
    /// @inheritdoc ITeaFiRelayer
    ERC2771Forwarder public immutable override trustedForwarder;

    /// @inheritdoc ITeaFiRelayer
    address public immutable override gaslessTxSupplier;

    /// @notice The treasury address that receives the payment
    address public immutable treasury;

    /// @notice The permit manager address that handles the permit transfer
    IPermitManager public immutable permitManager;

    /// @notice The merkle root of the payment: token -> limit
    bytes32 public paymentTokenLimitRoot;

    modifier checkSupplierAndSigner(address signer, address supplier) {
        if (signer != supplier && supplier != gaslessTxSupplier) revert SignerAndSupplierMismatch();
        _;
    }

    /**
     * @dev Constructor
     * @param multisigWallet The multisig wallet address
     * @param operators The operator addresses
     * @param tokenLimitManagers The token limit managers addresses
     * @param trustedForwarder_ The trusted forwarder address
     * @param treasury_ The treasury address
     * @param permitManager_ The permit manager address
     * @param gaslessTxSupplier_ The gasless transaction supplier address
     * @param paymentTokenLimitRoot_ The merkle root of the payment: token -> limit
     */
    constructor(
        address multisigWallet,
        address[] memory operators,
        address[] memory tokenLimitManagers,
        address trustedForwarder_,
        address treasury_,
        address permitManager_,
        address gaslessTxSupplier_,
        bytes32 paymentTokenLimitRoot_
    ) Authorizable(multisigWallet, operators, tokenLimitManagers) {
        if (
            trustedForwarder_ == address(0) ||
            gaslessTxSupplier_ == address(0) ||
            treasury_ == address(0) ||
            permitManager_ == address(0)
        ) {
            revert ZeroAddress();
        }

        paymentTokenLimitRoot = paymentTokenLimitRoot_;

        trustedForwarder = ERC2771Forwarder(trustedForwarder_);
        permitManager = IPermitManager(permitManager_);
        gaslessTxSupplier = gaslessTxSupplier_;
        treasury = treasury_;
    }

    /// @inheritdoc ITeaFiRelayer
    function changeTokenLimit(bytes32 paymentTokenLimitRoot_) external override onlyRole(TOKEN_LIMIT_MANAGER_ROLE) {
        if (paymentTokenLimitRoot_ == bytes32(0)) revert MerkleRootCannotBeZero();

        paymentTokenLimitRoot = paymentTokenLimitRoot_;
        emit TokenLimitChanged(paymentTokenLimitRoot_);
    }

    function relayCallBatch(
        ERC2771Forwarder.ForwardRequestData[] calldata requests,
        PaymentData[] calldata paymentDatas,
        bytes[] calldata tokenSignatures,
        bytes[] calldata permitSingleSignatures,
        bytes32[][] calldata merkleProofs
    ) external override onlyRole(OPERATOR_ROLE) {
        uint256 length = requests.length;
        if (
            length != paymentDatas.length ||
            length != tokenSignatures.length ||
            length != permitSingleSignatures.length ||
            length != merkleProofs.length
        ) {
            revert ArraysLengthMismatch();
        }

        for (uint256 i = 0; i < length; ++i) {
            relayCall(requests[i], paymentDatas[i], tokenSignatures[i], permitSingleSignatures[i], merkleProofs[i]);
        }
    }

    /// @inheritdoc ITeaFiRelayer
    function relayCall(
        ERC2771Forwarder.ForwardRequestData calldata request,
        PaymentData calldata paymentData,
        bytes calldata tokenSignature,
        bytes calldata permitSingleSignature,
        bytes32[] calldata merkleProof
    ) public override onlyRole(OPERATOR_ROLE) checkSupplierAndSigner(request.from, paymentData.payer) {
        // receive payment
        _receivePayment(paymentData, tokenSignature, permitSingleSignature, merkleProof);

        // execute the call
        trustedForwarder.execute(request);
    }

    /**
     * @dev _receivePayment execute the permit transfer to receive payment from the user
     * @param paymentData Payment data, see {PaymentData}
     * @param tokenSignature The token signature (EIP-2612 or DAI)
     * @param permitSingleSignature The permit single signature (Permit2)
     */
    function _receivePayment(
        PaymentData calldata paymentData,
        bytes memory tokenSignature,
        bytes memory permitSingleSignature,
        bytes32[] calldata merkleProof
    ) private {
        if (!_verifyPayment(paymentData.token, paymentData.tokenLimit, merkleProof)) {
            revert InvalidMerkleProof();
        }

        if (paymentData.amount > 0) {
            if (paymentData.amount > paymentData.tokenLimit) revert PaymentAmountExceedsLimit();

            IPermitManager.PermitTransferParams memory params = IPermitManager.PermitTransferParams({
                token: paymentData.token,
                owner: paymentData.payer,
                recipient: treasury,
                amount: paymentData.amount,
                tokenData: tokenSignature,
                permit2Data: permitSingleSignature
            });

            permitManager.executePermitTransfer(params);
        }
    }

    /**
     * @dev _verifyPayment verify the payment is valid
     * @param token The token address
     * @param limit The limit of the payment
     * @param merkleProof The merkle proof
     */
    function _verifyPayment(address token, uint256 limit, bytes32[] calldata merkleProof) private view returns (bool) {
        bytes32 leaf = keccak256(abi.encode(token, limit));
        return MerkleProof.verify(merkleProof, paymentTokenLimitRoot, leaf);
    }
}
ZeroAddressError.sol 7 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

interface ZeroAddressError {
    /// @notice Error thrown when the address is zero
    error ZeroAddress();
}
IPermitManager.sol 53 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.24;

import {ZeroAddressError} from "../../interfaces/ZeroAddressError.sol";

interface IPermitManager is ZeroAddressError {
    /**
     * @notice Parameters structure for permit transfers
     * @dev Contains all necessary data for executing transfers with permits
     * @param token The token address to be transferred
     * @param owner The address that owns the tokens
     * @param recipient The address that will receive the tokens
     * @param amount The amount of tokens to transfer
     * @param tokenData The data for EIP-2612 permit if used
     * @param permit2Data The data for Permit2 if used
     */
    struct PermitTransferParams {
        address token;
        address owner;
        address recipient;
        uint256 amount;
        bytes tokenData;
        bytes permit2Data;
    }

    /**
     * @notice Executes multiple permit transfers in one transaction
     * @dev Restricted to addresses with SPENDER_ROLE
     * @param params Array of parameters for each transfer
     */
    function executePermitTransferBatch(PermitTransferParams[] calldata params) external;

    /**
     * @notice Executes a single permit transfer
     * @dev Restricted to addresses with SPENDER_ROLE
     * @param params The parameters for the transfer
     */
    function executePermitTransfer(PermitTransferParams calldata params) external;

    /**
     * @notice Adds multiple addresses to the list of authorized spenders
     * @dev Restricted to addresses with DEFAULT_ADMIN_ROLE
     * @param spenders Array of addresses to add as authorized spenders
     */
    function addSpenders(address[] calldata spenders) external;

    /**
     * @notice Removes multiple addresses from the list of authorized spenders
     * @dev Restricted to addresses with DEFAULT_ADMIN_ROLE
     * @param spenders Array of addresses to remove from authorized spenders
     */
    function removeSpenders(address[] calldata spenders) external;
}

Read Contract

DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
OPERATOR_ROLE 0xf5b541a6 → bytes32
TOKEN_LIMIT_MANAGER_ROLE 0x9df88d4c → bytes32
gaslessTxSupplier 0xe3bdd3cc → address
getRoleAdmin 0x248a9ca3 → bytes32
hasRole 0x91d14854 → bool
paymentTokenLimitRoot 0x7ccede7c → bytes32
permitManager 0xdf890592 → address
supportsInterface 0x01ffc9a7 → bool
treasury 0x61d027b3 → address
trustedForwarder 0x7da0a877 → address

Write Contract 6 functions

These functions modify contract state and require a wallet transaction to execute.

changeTokenLimit 0x32938ad7
bytes32 paymentTokenLimitRoot_
grantRole 0x2f2ff15d
bytes32 role
address account
relayCall 0xbaa7d15b
tuple request
tuple paymentData
bytes tokenSignature
bytes permitSingleSignature
bytes32[] merkleProof
relayCallBatch 0x03f837a6
tuple[] requests
tuple[] paymentDatas
bytes[] tokenSignatures
bytes[] permitSingleSignatures
bytes32[][] merkleProofs
renounceRole 0x36568abe
bytes32 role
address callerConfirmation
revokeRole 0xd547741f
bytes32 role
address account

Recent Transactions

No transactions found for this address