Address Contract Verified
Address
0x4d8De863EB8c58a0d41B0ceB2ffee65929e4025b
Balance
0 ETH
Nonce
1
Code Size
5190 bytes
Creator
0x6303a415...061B at tx 0x2ad3215d...44e956
Indexed Transactions
0
Contract Bytecode
5190 bytes
0x608060405234801561001057600080fd5b506004361061018e5760003560e01c80638da5cb5b116100de578063dabaae1111610097578063eef1b51511610071578063eef1b515146102f2578063eef9d8c814610305578063f2fde38b14610318578063f370884f1461032b57600080fd5b8063dabaae11146102c6578063e12f3a61146102ce578063e30c3978146102e157600080fd5b80638da5cb5b146102755780639130297b146102865780639661cb0d1461028f578063b59a1db214610298578063c55c2112146102ab578063c783a5b2146102be57600080fd5b8063715018a61161014b57806379ba50971161012557806379ba5097146102155780637a43ff721461021d57806382bfefc81461024157806384a1931f1461026c57600080fd5b8063715018a6146101f1578063756688c0146101f957806378fc4ccf1461020257600080fd5b80631514617e146101935780632db94d19146101af5780634e71d92d146101b85780634fdb9d97146101c25780635312ea8e146101d5578063691d47d2146101e8575b600080fd5b61019c60095481565b6040519081526020015b60405180910390f35b61019c60065481565b6101c0610367565b005b6101c06101d03660046111d0565b610530565b6101c06101e33660046111fa565b6106af565b61019c60035481565b6101c06107de565b61019c60085481565b6101c06102103660046111fa565b6107f2565b6101c061086b565b60025461023190600160a01b900460ff1681565b60405190151581526020016101a6565b600254610254906001600160a01b031681565b6040516001600160a01b0390911681526020016101a6565b61019c60055481565b6000546001600160a01b0316610254565b61019c60045481565b61019c60075481565b6101c06102a6366004611221565b6108e5565b6101c06102b9366004611245565b610945565b61019c610a22565b61019c610ab1565b61019c6102dc366004611267565b610ac8565b6001546001600160a01b0316610254565b6101c0610300366004611282565b610c23565b6101c06103133660046111fa565b610e03565b6101c0610326366004611267565b610e31565b610352610339366004611267565b600a602052600090815260409020805460019091015482565b604080519283526020830191909152016101a6565b600254600160a01b900460ff16156103ba5760405162461bcd60e51b815260206004820152601160248201527010531313d0d0551253d397d4105554d151607a1b60448201526064015b60405180910390fd5b336000908152600a60205260409020546104075760405162461bcd60e51b815260206004820152600e60248201526d1393d517d49151d254d51154915160921b60448201526064016103b1565b60035442101561044d5760405162461bcd60e51b815260206004820152601160248201527010d310525357d393d517d4d51054951151607a1b60448201526064016103b1565b600061045833610ac8565b90506000811161049d5760405162461bcd60e51b815260206004820152601060248201526f4e4f5448494e475f544f5f434c41494d60801b60448201526064016103b1565b336000908152600a60205260408120600181018054919284926104c19084906112cb565b9250508190555081600760008282546104da91906112cb565b90915550506002546104f6906001600160a01b03163384610ea2565b60405182815233907f1747857504b94e5be51b1fe4b467e5d2daa63a0d21577089a13fa99f9414dcc8906020015b60405180910390a25050565b610538610ef9565b6001600160a01b0382166105805760405162461bcd60e51b815260206004820152600f60248201526e494e56414c49445f4144445245535360881b60448201526064016103b1565b600081116105c15760405162461bcd60e51b815260206004820152600e60248201526d1253959053125117d05353d5539560921b60448201526064016103b1565b6001600160a01b0382166000908152600a6020526040902054156106275760405162461bcd60e51b815260206004820152601760248201527f555345525f414c52454144595f5245474953544552454400000000000000000060448201526064016103b1565b604080518082018252828152600060208083018281526001600160a01b0387168352600a9091529281209151825591516001909101556006805483929061066f9084906112cb565b90915550506040518181526001600160a01b038316907f367720012556849cd313ddad2cd9fa2cfe6a8c73f20e5c3f98c85e937e70c48e90602001610524565b6106b7610ef9565b6002546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa158015610700573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061072491906112e4565b9050600082156107345782610736565b815b90508082101561077f5760405162461bcd60e51b8152602060048201526014602482015273494e53554646494349454e545f42414c414e434560601b60448201526064016103b1565b600254610796906001600160a01b03163383610ea2565b8082036107a4576006546007555b60405181815233907f5fafa99d0643513820be26656b45130b01e1c03062e1266bf36f88cbd3bd96959060200160405180910390a2505050565b6107e6610ef9565b6107f06000610f53565b565b6107fa610ef9565b600354421061081b5760405162461bcd60e51b81526004016103b1906112fd565b6127108111156108665760405162461bcd60e51b81526020600482015260166024820152751253959053125117d5539313d0d2d7d4115490d1539560521b60448201526064016103b1565b600855565b60015433906001600160a01b031681146108d95760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b60648201526084016103b1565b6108e281610f53565b50565b6108ed610ef9565b60028054821515600160a01b0260ff60a01b199091161790556040517fbde4e9212d4f3997edded9d14bb147574b656b3a2ca124c088fcadc9b4335c649061093a90831515815260200190565b60405180910390a150565b61094d610ef9565b600354421061096e5760405162461bcd60e51b81526004016103b1906112fd565b6003548210156109b75760405162461bcd60e51b8152602060048201526014602482015273434c4946465f454e445f4245464f52455f54474560601b60448201526064016103b1565b81811015610a075760405162461bcd60e51b815260206004820152601c60248201527f56455354494e475f454e445f4245464f52455f434c4946465f454e440000000060448201526064016103b1565b60048290556005819055610a1b8282611334565b6009555050565b60006005544210610a335750600090565b6000612710600854600654610a489190611347565b610a52919061135e565b600654610a5f9190611334565b9050600454421015610a7057919050565b600060045442610a809190611334565b905060006009548284610a939190611347565b610a9d919061135e565b9050610aa98184611334565b935050505090565b6000600754600654610ac39190611334565b905090565b6001600160a01b0381166000908152600a60205260408120548103610aef57506000919050565b600354421015610b0157506000919050565b6001600160a01b0382166000908152600a60205260409020600454421015610b6f5760006127106008548360000154610b3a9190611347565b610b44919061135e565b905081600101548111610b58576000610b67565b6001820154610b679082611334565b949350505050565b6000806127106008548460000154610b879190611347565b610b91919061135e565b90506000818460000154610ba59190611334565b9050600554421015610bf357600060045442610bc19190611334565b905060006009548284610bd49190611347565b610bde919061135e565b9050610bea81856112cb565b94505050610bf8565b835492505b83600101548311610c0a576000610c19565b6001840154610c199084611334565b9695505050505050565b610c2b610ef9565b6001600160a01b038216610c775760405162461bcd60e51b8152602060048201526013602482015272494e56414c49445f4f4c445f4144445245535360681b60448201526064016103b1565b6001600160a01b038116610cc35760405162461bcd60e51b8152602060048201526013602482015272494e56414c49445f4e45575f4144445245535360681b60448201526064016103b1565b6001600160a01b0382166000908152600a6020526040902054610d285760405162461bcd60e51b815260206004820152601760248201527f4f4c445f555345525f4e4f545f5245474953544552454400000000000000000060448201526064016103b1565b6001600160a01b0381166000908152600a602052604090205415610d8e5760405162461bcd60e51b815260206004820152601b60248201527f4e45575f555345525f414c52454144595f52454749535445524544000000000060448201526064016103b1565b6001600160a01b038281166000818152600a602090815260408083209486168084528184208654815560018088018054918301919091559685905593909555915491519182527fbdb2369d9ebaa72211b22e1e351e61aace6ab309d636885fbde9f8b872c22c26910160405180910390a35050565b610e0b610ef9565b6003544210610e2c5760405162461bcd60e51b81526004016103b1906112fd565b600355565b610e39610ef9565b600180546001600160a01b0383166001600160a01b03199091168117909155610e6a6000546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610ef4908490610f6c565b505050565b6000546001600160a01b031633146107f05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103b1565b600180546001600160a01b03191690556108e281611041565b6000610fc1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166110919092919063ffffffff16565b9050805160001480610fe2575080806020019051810190610fe29190611380565b610ef45760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016103b1565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6060610b67848460008585600080866001600160a01b031685876040516110b891906113c1565b60006040518083038185875af1925050503d80600081146110f5576040519150601f19603f3d011682016040523d82523d6000602084013e6110fa565b606091505b509150915061110b87838387611116565b979650505050505050565b6060831561118557825160000361117e576001600160a01b0385163b61117e5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103b1565b5081610b67565b610b67838381511561119a5781518083602001fd5b8060405162461bcd60e51b81526004016103b191906113dd565b80356001600160a01b03811681146111cb57600080fd5b919050565b600080604083850312156111e357600080fd5b6111ec836111b4565b946020939093013593505050565b60006020828403121561120c57600080fd5b5035919050565b80151581146108e257600080fd5b60006020828403121561123357600080fd5b813561123e81611213565b9392505050565b6000806040838503121561125857600080fd5b50508035926020909101359150565b60006020828403121561127957600080fd5b61123e826111b4565b6000806040838503121561129557600080fd5b61129e836111b4565b91506112ac602084016111b4565b90509250929050565b634e487b7160e01b600052601160045260246000fd5b808201808211156112de576112de6112b5565b92915050565b6000602082840312156112f657600080fd5b5051919050565b6020808252601a908201527f414c4c4f434154494f4e5f414c52454144595f53544152544544000000000000604082015260600190565b818103818111156112de576112de6112b5565b80820281158282048414176112de576112de6112b5565b60008261137b57634e487b7160e01b600052601260045260246000fd5b500490565b60006020828403121561139257600080fd5b815161123e81611213565b60005b838110156113b85781810151838201526020016113a0565b50506000910152565b600082516113d381846020870161139d565b9190910192915050565b60208152600082518060208401526113fc81604085016020870161139d565b601f01601f1916919091016040019291505056fea2646970667358221220170d5cb66159e77e7f042514b709274c5e12cd41e83608ccb20287f1db9a0afb64736f6c63430008130033
Verified Source Code Full Match
Compiler: v0.8.19+commit.7dd6d404
EVM: paris
Optimization: Yes (200 runs)
Ownable.sol 83 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Ownable2Step.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
SafeERC20.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
Address.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Allocation.sol 328 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
pragma abicoder v2;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
contract Allocation is Ownable2Step {
using SafeERC20 for IERC20;
using ECDSA for bytes32;
/// @notice Token used for allocation rewards
IERC20 public TOKEN;
/// @notice Flag to indicate whether allocation functionality is paused
bool public pauseAllocation;
/// @notice Timestamp. TGE
uint256 public allocationStart;
/// @notice Timestamp when cliff period ends
uint256 public cliffEnd;
/// @notice Timestamp when vesting period ends
uint256 public vestingEnd;
uint256 public totalVestingAmount;
uint256 public totalClaimedAmount;
uint256 public unlockPercent;
uint256 public vestingDuration;
struct AllocationAmount {
uint256 totalAmount; // Total allocation amount
uint256 claimedAmount; // Amount already claimed
}
/// @notice Mapping to store allocation data for each user
mapping(address => AllocationAmount) public allocationAmount;
/// @notice Mapping to store unique strings for each verifier (private, not accessible externally)
mapping(address => string) private verifierMessages;
/* ========== EVENTS ========== */
event AllocationClaimed(address indexed _user, uint256 _amount);
event AllocationRegistered(address indexed _user, uint256 _amount);
event PauseAllocationUpdated(bool _pauseAllocation);
event AllocationUserChanged(
address indexed _oldUser,
address indexed _newUser,
uint256 _amount
);
event EmergencyWithdraw(address indexed _to, uint256 _amount);
/* ========== CONSTRUCTOR ========== */
/**
* @notice Initializes the contract with token
* @param _token Address of the ERC20 token used for allocations
* @param _allocationStart Timestamp when allocations start
* @param _cliffEnd Timestamp when cliff period ends
* @param _vestingEnd Timestamp when vesting period ends
* @param _unlockPercent Initial unlock percentage (100 = 1%)
*/
constructor(
IERC20 _token,
uint256 _allocationStart,
uint256 _cliffEnd,
uint256 _vestingEnd,
uint256 _unlockPercent
) {
TOKEN = _token;
allocationStart = _allocationStart;
cliffEnd = _cliffEnd;
vestingEnd = _vestingEnd;
unlockPercent = _unlockPercent;
pauseAllocation = false;
vestingDuration = vestingEnd - cliffEnd;
}
/**
* @notice Ensures function can only be called when allocation is not paused
*/
modifier whenNotPaused() {
require(!pauseAllocation, "ALLOCATION_PAUSED");
_;
}
/**
* @notice Pauses or unpauses the allocation functionality
* @param _pauseAllocation Boolean indicating whether to pause (true) or unpause (false)
*/
function changePauseAllocation(bool _pauseAllocation) external onlyOwner {
pauseAllocation = _pauseAllocation;
emit PauseAllocationUpdated(_pauseAllocation);
}
/**
* @notice Sets the start time for all allocations
* @param _allocationStart Timestamp when allocations start
*/
function setAllocationStart(uint256 _allocationStart) external onlyOwner {
require(
block.timestamp < allocationStart,
"ALLOCATION_ALREADY_STARTED"
);
allocationStart = _allocationStart;
}
/**
* @notice Sets specific timestamps for cliff and vesting end
* @param _cliffEnd Timestamp when cliff period ends
* @param _vestingEnd Timestamp when vesting period ends
*/
function setVestingTimestamps(
uint256 _cliffEnd,
uint256 _vestingEnd
) external onlyOwner {
require(
block.timestamp < allocationStart,
"ALLOCATION_ALREADY_STARTED"
);
require(_cliffEnd >= allocationStart, "CLIFF_END_BEFORE_TGE");
require(_vestingEnd >= _cliffEnd, "VESTING_END_BEFORE_CLIFF_END");
cliffEnd = _cliffEnd;
vestingEnd = _vestingEnd;
vestingDuration = vestingEnd - cliffEnd;
}
/**
* @notice Updates unlock percentage
* @param _unlockPercent New initial unlock percentage (100 = 1%)
*/
function setUnlockPercent(uint256 _unlockPercent) external onlyOwner {
require(
block.timestamp < allocationStart,
"ALLOCATION_ALREADY_STARTED"
);
require(_unlockPercent <= 10000, "INVALID_UNLOCK_PERCENT");
unlockPercent = _unlockPercent;
}
/**
* @notice Registers a new allocation for a user
* @param _user Address of the user
* @param _amount Amount of tokens to allocate
*/
function registerAllocation(
address _user,
uint256 _amount
) external onlyOwner {
require(_user != address(0), "INVALID_ADDRESS");
require(_amount > 0, "INVALID_AMOUNT");
require(
allocationAmount[_user].totalAmount == 0,
"USER_ALREADY_REGISTERED"
);
allocationAmount[_user] = AllocationAmount({
totalAmount: _amount,
claimedAmount: 0
});
totalVestingAmount += _amount;
emit AllocationRegistered(_user, _amount);
}
/**
* @notice Allows a user to claim their available tokens
*/
function claim() external whenNotPaused {
require(allocationAmount[msg.sender].totalAmount > 0, "NOT_REGISTERED");
require(block.timestamp >= allocationStart, "CLAIM_NOT_STARTED");
uint256 claimableAmount = getClaimableAmount(msg.sender);
require(claimableAmount > 0, "NOTHING_TO_CLAIM");
AllocationAmount storage allocation = allocationAmount[msg.sender];
allocation.claimedAmount += claimableAmount;
totalClaimedAmount += claimableAmount;
TOKEN.safeTransfer(msg.sender, claimableAmount);
emit AllocationClaimed(msg.sender, claimableAmount);
}
/**
* @notice Function to query the claimable amount for a user
* @param _user User address
* @return Claimable amount
*/
function getClaimableAmount(address _user) public view returns (uint256) {
if (allocationAmount[_user].totalAmount == 0) {
return 0;
}
// Check if allocation has started (TGE)
if (block.timestamp < allocationStart) {
return 0;
}
AllocationAmount storage allocation = allocationAmount[_user];
// Check cliff period
if (block.timestamp < cliffEnd) {
// During cliff period, only initial unlock amount is claimable
uint256 immediateUnlockAmount = (allocation.totalAmount *
unlockPercent) / 10000;
// Exclude already claimed amount
return
immediateUnlockAmount > allocation.claimedAmount
? immediateUnlockAmount - allocation.claimedAmount
: 0;
}
uint256 totalClaimable;
// Calculate immediate unlock amount
uint256 immediateUnlock = (allocation.totalAmount * unlockPercent) /
10000;
// Calculate vesting amount
uint256 vestingAmount = allocation.totalAmount - immediateUnlock;
// Calculate vesting progress (after cliff period)
if (block.timestamp < vestingEnd) {
// If vesting is in progress
uint256 elapsedTime = block.timestamp - cliffEnd;
uint256 vestedAmount = (vestingAmount * elapsedTime) /
vestingDuration;
totalClaimable = immediateUnlock + vestedAmount;
} else {
// If vesting period has ended
totalClaimable = allocation.totalAmount;
}
// Exclude already claimed amount
return
totalClaimable > allocation.claimedAmount
? totalClaimable - allocation.claimedAmount
: 0;
}
/**
* @notice Function to change the address of a registered user
* @param _oldUser Old user address
* @param _newUser New user address
*/
function changeUserAddress(
address _oldUser,
address _newUser
) external onlyOwner {
require(_oldUser != address(0), "INVALID_OLD_ADDRESS");
require(_newUser != address(0), "INVALID_NEW_ADDRESS");
require(
allocationAmount[_oldUser].totalAmount > 0,
"OLD_USER_NOT_REGISTERED"
);
require(
allocationAmount[_newUser].totalAmount == 0,
"NEW_USER_ALREADY_REGISTERED"
);
// Copy allocation information from old user
allocationAmount[_newUser] = allocationAmount[_oldUser];
// Delete allocation information of old user
delete allocationAmount[_oldUser];
emit AllocationUserChanged(
_oldUser,
_newUser,
allocationAmount[_newUser].totalAmount
);
}
/**
* @notice Returns the remaining amount of tokens to be claimed
* @return Remaining amount to be claimed
*/
function getRemainingAmount() external view returns (uint256) {
return totalVestingAmount - totalClaimedAmount;
}
/**
* @notice Returns the remaining amount of tokens to be claimed
* @return Remaining amount to be claimed
*/
function getRemainingVestingAmount() external view returns (uint256) {
if (block.timestamp >= vestingEnd) {
return 0;
}
uint256 totalVestingAmountExcludingUnlock = totalVestingAmount -
((totalVestingAmount * unlockPercent) / 10000);
if (block.timestamp < cliffEnd) {
return totalVestingAmountExcludingUnlock;
}
uint256 elapsedTime = block.timestamp - cliffEnd;
uint256 vestedAmount = (totalVestingAmountExcludingUnlock *
elapsedTime) / vestingDuration;
return totalVestingAmountExcludingUnlock - vestedAmount;
}
/**
* @notice Emergency function to withdraw tokens from the contract
* @param _amount Amount of tokens to withdraw (0 means all balance)
* @dev Only callable by the contract owner
*/
function emergencyWithdraw(uint256 _amount) external onlyOwner {
uint256 tokenBalance = TOKEN.balanceOf(address(this));
uint256 amountToWithdraw = _amount == 0 ? tokenBalance : _amount;
require(tokenBalance >= amountToWithdraw, "INSUFFICIENT_BALANCE");
// Transfer
TOKEN.safeTransfer(msg.sender, amountToWithdraw);
// If withdrawing all tokens, consider updating totalVestingAmount and totalClaimedAmount
if (tokenBalance == amountToWithdraw) {
totalClaimedAmount = totalVestingAmount;
}
emit EmergencyWithdraw(msg.sender, amountToWithdraw);
}
}
Read Contract
TOKEN 0x82bfefc8 → address
allocationAmount 0xf370884f → uint256, uint256
allocationStart 0x691d47d2 → uint256
cliffEnd 0x9130297b → uint256
getClaimableAmount 0xe12f3a61 → uint256
getRemainingAmount 0xdabaae11 → uint256
getRemainingVestingAmount 0xc783a5b2 → uint256
owner 0x8da5cb5b → address
pauseAllocation 0x7a43ff72 → bool
pendingOwner 0xe30c3978 → address
totalClaimedAmount 0x9661cb0d → uint256
totalVestingAmount 0x2db94d19 → uint256
unlockPercent 0x756688c0 → uint256
vestingDuration 0x1514617e → uint256
vestingEnd 0x84a1931f → uint256
Write Contract 11 functions
These functions modify contract state and require a wallet transaction to execute.
acceptOwnership 0x79ba5097
No parameters
changePauseAllocation 0xb59a1db2
bool _pauseAllocation
changeUserAddress 0xeef1b515
address _oldUser
address _newUser
claim 0x4e71d92d
No parameters
emergencyWithdraw 0x5312ea8e
uint256 _amount
registerAllocation 0x4fdb9d97
address _user
uint256 _amount
renounceOwnership 0x715018a6
No parameters
setAllocationStart 0xeef9d8c8
uint256 _allocationStart
setUnlockPercent 0x78fc4ccf
uint256 _unlockPercent
setVestingTimestamps 0xc55c2112
uint256 _cliffEnd
uint256 _vestingEnd
transferOwnership 0xf2fde38b
address newOwner
Recent Transactions
No transactions found for this address