Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x4d8De863EB8c58a0d41B0ceB2ffee65929e4025b
Balance 0 ETH
Nonce 1
Code Size 5190 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

5190 bytes
0x608060405234801561001057600080fd5b506004361061018e5760003560e01c80638da5cb5b116100de578063dabaae1111610097578063eef1b51511610071578063eef1b515146102f2578063eef9d8c814610305578063f2fde38b14610318578063f370884f1461032b57600080fd5b8063dabaae11146102c6578063e12f3a61146102ce578063e30c3978146102e157600080fd5b80638da5cb5b146102755780639130297b146102865780639661cb0d1461028f578063b59a1db214610298578063c55c2112146102ab578063c783a5b2146102be57600080fd5b8063715018a61161014b57806379ba50971161012557806379ba5097146102155780637a43ff721461021d57806382bfefc81461024157806384a1931f1461026c57600080fd5b8063715018a6146101f1578063756688c0146101f957806378fc4ccf1461020257600080fd5b80631514617e146101935780632db94d19146101af5780634e71d92d146101b85780634fdb9d97146101c25780635312ea8e146101d5578063691d47d2146101e8575b600080fd5b61019c60095481565b6040519081526020015b60405180910390f35b61019c60065481565b6101c0610367565b005b6101c06101d03660046111d0565b610530565b6101c06101e33660046111fa565b6106af565b61019c60035481565b6101c06107de565b61019c60085481565b6101c06102103660046111fa565b6107f2565b6101c061086b565b60025461023190600160a01b900460ff1681565b60405190151581526020016101a6565b600254610254906001600160a01b031681565b6040516001600160a01b0390911681526020016101a6565b61019c60055481565b6000546001600160a01b0316610254565b61019c60045481565b61019c60075481565b6101c06102a6366004611221565b6108e5565b6101c06102b9366004611245565b610945565b61019c610a22565b61019c610ab1565b61019c6102dc366004611267565b610ac8565b6001546001600160a01b0316610254565b6101c0610300366004611282565b610c23565b6101c06103133660046111fa565b610e03565b6101c0610326366004611267565b610e31565b610352610339366004611267565b600a602052600090815260409020805460019091015482565b604080519283526020830191909152016101a6565b600254600160a01b900460ff16156103ba5760405162461bcd60e51b815260206004820152601160248201527010531313d0d0551253d397d4105554d151607a1b60448201526064015b60405180910390fd5b336000908152600a60205260409020546104075760405162461bcd60e51b815260206004820152600e60248201526d1393d517d49151d254d51154915160921b60448201526064016103b1565b60035442101561044d5760405162461bcd60e51b815260206004820152601160248201527010d310525357d393d517d4d51054951151607a1b60448201526064016103b1565b600061045833610ac8565b90506000811161049d5760405162461bcd60e51b815260206004820152601060248201526f4e4f5448494e475f544f5f434c41494d60801b60448201526064016103b1565b336000908152600a60205260408120600181018054919284926104c19084906112cb565b9250508190555081600760008282546104da91906112cb565b90915550506002546104f6906001600160a01b03163384610ea2565b60405182815233907f1747857504b94e5be51b1fe4b467e5d2daa63a0d21577089a13fa99f9414dcc8906020015b60405180910390a25050565b610538610ef9565b6001600160a01b0382166105805760405162461bcd60e51b815260206004820152600f60248201526e494e56414c49445f4144445245535360881b60448201526064016103b1565b600081116105c15760405162461bcd60e51b815260206004820152600e60248201526d1253959053125117d05353d5539560921b60448201526064016103b1565b6001600160a01b0382166000908152600a6020526040902054156106275760405162461bcd60e51b815260206004820152601760248201527f555345525f414c52454144595f5245474953544552454400000000000000000060448201526064016103b1565b604080518082018252828152600060208083018281526001600160a01b0387168352600a9091529281209151825591516001909101556006805483929061066f9084906112cb565b90915550506040518181526001600160a01b038316907f367720012556849cd313ddad2cd9fa2cfe6a8c73f20e5c3f98c85e937e70c48e90602001610524565b6106b7610ef9565b6002546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa158015610700573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061072491906112e4565b9050600082156107345782610736565b815b90508082101561077f5760405162461bcd60e51b8152602060048201526014602482015273494e53554646494349454e545f42414c414e434560601b60448201526064016103b1565b600254610796906001600160a01b03163383610ea2565b8082036107a4576006546007555b60405181815233907f5fafa99d0643513820be26656b45130b01e1c03062e1266bf36f88cbd3bd96959060200160405180910390a2505050565b6107e6610ef9565b6107f06000610f53565b565b6107fa610ef9565b600354421061081b5760405162461bcd60e51b81526004016103b1906112fd565b6127108111156108665760405162461bcd60e51b81526020600482015260166024820152751253959053125117d5539313d0d2d7d4115490d1539560521b60448201526064016103b1565b600855565b60015433906001600160a01b031681146108d95760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b60648201526084016103b1565b6108e281610f53565b50565b6108ed610ef9565b60028054821515600160a01b0260ff60a01b199091161790556040517fbde4e9212d4f3997edded9d14bb147574b656b3a2ca124c088fcadc9b4335c649061093a90831515815260200190565b60405180910390a150565b61094d610ef9565b600354421061096e5760405162461bcd60e51b81526004016103b1906112fd565b6003548210156109b75760405162461bcd60e51b8152602060048201526014602482015273434c4946465f454e445f4245464f52455f54474560601b60448201526064016103b1565b81811015610a075760405162461bcd60e51b815260206004820152601c60248201527f56455354494e475f454e445f4245464f52455f434c4946465f454e440000000060448201526064016103b1565b60048290556005819055610a1b8282611334565b6009555050565b60006005544210610a335750600090565b6000612710600854600654610a489190611347565b610a52919061135e565b600654610a5f9190611334565b9050600454421015610a7057919050565b600060045442610a809190611334565b905060006009548284610a939190611347565b610a9d919061135e565b9050610aa98184611334565b935050505090565b6000600754600654610ac39190611334565b905090565b6001600160a01b0381166000908152600a60205260408120548103610aef57506000919050565b600354421015610b0157506000919050565b6001600160a01b0382166000908152600a60205260409020600454421015610b6f5760006127106008548360000154610b3a9190611347565b610b44919061135e565b905081600101548111610b58576000610b67565b6001820154610b679082611334565b949350505050565b6000806127106008548460000154610b879190611347565b610b91919061135e565b90506000818460000154610ba59190611334565b9050600554421015610bf357600060045442610bc19190611334565b905060006009548284610bd49190611347565b610bde919061135e565b9050610bea81856112cb565b94505050610bf8565b835492505b83600101548311610c0a576000610c19565b6001840154610c199084611334565b9695505050505050565b610c2b610ef9565b6001600160a01b038216610c775760405162461bcd60e51b8152602060048201526013602482015272494e56414c49445f4f4c445f4144445245535360681b60448201526064016103b1565b6001600160a01b038116610cc35760405162461bcd60e51b8152602060048201526013602482015272494e56414c49445f4e45575f4144445245535360681b60448201526064016103b1565b6001600160a01b0382166000908152600a6020526040902054610d285760405162461bcd60e51b815260206004820152601760248201527f4f4c445f555345525f4e4f545f5245474953544552454400000000000000000060448201526064016103b1565b6001600160a01b0381166000908152600a602052604090205415610d8e5760405162461bcd60e51b815260206004820152601b60248201527f4e45575f555345525f414c52454144595f52454749535445524544000000000060448201526064016103b1565b6001600160a01b038281166000818152600a602090815260408083209486168084528184208654815560018088018054918301919091559685905593909555915491519182527fbdb2369d9ebaa72211b22e1e351e61aace6ab309d636885fbde9f8b872c22c26910160405180910390a35050565b610e0b610ef9565b6003544210610e2c5760405162461bcd60e51b81526004016103b1906112fd565b600355565b610e39610ef9565b600180546001600160a01b0383166001600160a01b03199091168117909155610e6a6000546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610ef4908490610f6c565b505050565b6000546001600160a01b031633146107f05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103b1565b600180546001600160a01b03191690556108e281611041565b6000610fc1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166110919092919063ffffffff16565b9050805160001480610fe2575080806020019051810190610fe29190611380565b610ef45760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016103b1565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6060610b67848460008585600080866001600160a01b031685876040516110b891906113c1565b60006040518083038185875af1925050503d80600081146110f5576040519150601f19603f3d011682016040523d82523d6000602084013e6110fa565b606091505b509150915061110b87838387611116565b979650505050505050565b6060831561118557825160000361117e576001600160a01b0385163b61117e5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103b1565b5081610b67565b610b67838381511561119a5781518083602001fd5b8060405162461bcd60e51b81526004016103b191906113dd565b80356001600160a01b03811681146111cb57600080fd5b919050565b600080604083850312156111e357600080fd5b6111ec836111b4565b946020939093013593505050565b60006020828403121561120c57600080fd5b5035919050565b80151581146108e257600080fd5b60006020828403121561123357600080fd5b813561123e81611213565b9392505050565b6000806040838503121561125857600080fd5b50508035926020909101359150565b60006020828403121561127957600080fd5b61123e826111b4565b6000806040838503121561129557600080fd5b61129e836111b4565b91506112ac602084016111b4565b90509250929050565b634e487b7160e01b600052601160045260246000fd5b808201808211156112de576112de6112b5565b92915050565b6000602082840312156112f657600080fd5b5051919050565b6020808252601a908201527f414c4c4f434154494f4e5f414c52454144595f53544152544544000000000000604082015260600190565b818103818111156112de576112de6112b5565b80820281158282048414176112de576112de6112b5565b60008261137b57634e487b7160e01b600052601260045260246000fd5b500490565b60006020828403121561139257600080fd5b815161123e81611213565b60005b838110156113b85781810151838201526020016113a0565b50506000910152565b600082516113d381846020870161139d565b9190910192915050565b60208152600082518060208401526113fc81604085016020870161139d565b601f01601f1916919091016040019291505056fea2646970667358221220170d5cb66159e77e7f042514b709274c5e12cd41e83608ccb20287f1db9a0afb64736f6c63430008130033

Verified Source Code Full Match

Compiler: v0.8.19+commit.7dd6d404 EVM: paris Optimization: Yes (200 runs)
Ownable.sol 83 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
Ownable2Step.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
SafeERC20.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
Address.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Allocation.sol 328 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
pragma abicoder v2;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";

contract Allocation is Ownable2Step {
    using SafeERC20 for IERC20;
    using ECDSA for bytes32;
    /// @notice Token used for allocation rewards
    IERC20 public TOKEN;

    /// @notice Flag to indicate whether allocation functionality is paused
    bool public pauseAllocation;

    /// @notice Timestamp. TGE
    uint256 public allocationStart;

    /// @notice Timestamp when cliff period ends
    uint256 public cliffEnd;

    /// @notice Timestamp when vesting period ends
    uint256 public vestingEnd;

    uint256 public totalVestingAmount;
    uint256 public totalClaimedAmount;
    uint256 public unlockPercent;
    uint256 public vestingDuration;

    struct AllocationAmount {
        uint256 totalAmount; // Total allocation amount
        uint256 claimedAmount; // Amount already claimed
    }

    /// @notice Mapping to store allocation data for each user
    mapping(address => AllocationAmount) public allocationAmount;

    /// @notice  Mapping to store unique strings for each verifier (private, not accessible externally)
    mapping(address => string) private verifierMessages;

    /* ========== EVENTS ========== */
    event AllocationClaimed(address indexed _user, uint256 _amount);
    event AllocationRegistered(address indexed _user, uint256 _amount);
    event PauseAllocationUpdated(bool _pauseAllocation);
    event AllocationUserChanged(
        address indexed _oldUser,
        address indexed _newUser,
        uint256 _amount
    );
    event EmergencyWithdraw(address indexed _to, uint256 _amount);

    /* ========== CONSTRUCTOR ========== */
    /**
     * @notice Initializes the contract with token
     * @param _token Address of the ERC20 token used for allocations
     * @param _allocationStart Timestamp when allocations start
     * @param _cliffEnd Timestamp when cliff period ends
     * @param _vestingEnd Timestamp when vesting period ends
     * @param _unlockPercent Initial unlock percentage (100 = 1%)
     */
    constructor(
        IERC20 _token,
        uint256 _allocationStart,
        uint256 _cliffEnd,
        uint256 _vestingEnd,
        uint256 _unlockPercent
    ) {
        TOKEN = _token;
        allocationStart = _allocationStart;
        cliffEnd = _cliffEnd;
        vestingEnd = _vestingEnd;
        unlockPercent = _unlockPercent;
        pauseAllocation = false;
        vestingDuration = vestingEnd - cliffEnd;
    }

    /**
     * @notice Ensures function can only be called when allocation is not paused
     */
    modifier whenNotPaused() {
        require(!pauseAllocation, "ALLOCATION_PAUSED");
        _;
    }

    /**
     * @notice Pauses or unpauses the allocation functionality
     * @param _pauseAllocation Boolean indicating whether to pause (true) or unpause (false)
     */
    function changePauseAllocation(bool _pauseAllocation) external onlyOwner {
        pauseAllocation = _pauseAllocation;
        emit PauseAllocationUpdated(_pauseAllocation);
    }

    /**
     * @notice Sets the start time for all allocations
     * @param _allocationStart Timestamp when allocations start
     */
    function setAllocationStart(uint256 _allocationStart) external onlyOwner {
        require(
            block.timestamp < allocationStart,
            "ALLOCATION_ALREADY_STARTED"
        );
        allocationStart = _allocationStart;
    }

    /**
     * @notice Sets specific timestamps for cliff and vesting end
     * @param _cliffEnd Timestamp when cliff period ends
     * @param _vestingEnd Timestamp when vesting period ends
     */
    function setVestingTimestamps(
        uint256 _cliffEnd,
        uint256 _vestingEnd
    ) external onlyOwner {
        require(
            block.timestamp < allocationStart,
            "ALLOCATION_ALREADY_STARTED"
        );
        require(_cliffEnd >= allocationStart, "CLIFF_END_BEFORE_TGE");
        require(_vestingEnd >= _cliffEnd, "VESTING_END_BEFORE_CLIFF_END");

        cliffEnd = _cliffEnd;
        vestingEnd = _vestingEnd;
        vestingDuration = vestingEnd - cliffEnd;
    }

    /**
     * @notice Updates unlock percentage
     * @param _unlockPercent New initial unlock percentage (100 = 1%)
     */
    function setUnlockPercent(uint256 _unlockPercent) external onlyOwner {
        require(
            block.timestamp < allocationStart,
            "ALLOCATION_ALREADY_STARTED"
        );
        require(_unlockPercent <= 10000, "INVALID_UNLOCK_PERCENT");
        unlockPercent = _unlockPercent;
    }

    /**
     * @notice Registers a new allocation for a user
     * @param _user Address of the user
     * @param _amount Amount of tokens to allocate
     */
    function registerAllocation(
        address _user,
        uint256 _amount
    ) external onlyOwner {
        require(_user != address(0), "INVALID_ADDRESS");
        require(_amount > 0, "INVALID_AMOUNT");
        require(
            allocationAmount[_user].totalAmount == 0,
            "USER_ALREADY_REGISTERED"
        );

        allocationAmount[_user] = AllocationAmount({
            totalAmount: _amount,
            claimedAmount: 0
        });
        totalVestingAmount += _amount;
        emit AllocationRegistered(_user, _amount);
    }

    /**
     * @notice Allows a user to claim their available tokens
     */
    function claim() external whenNotPaused {
        require(allocationAmount[msg.sender].totalAmount > 0, "NOT_REGISTERED");
        require(block.timestamp >= allocationStart, "CLAIM_NOT_STARTED");

        uint256 claimableAmount = getClaimableAmount(msg.sender);
        require(claimableAmount > 0, "NOTHING_TO_CLAIM");

        AllocationAmount storage allocation = allocationAmount[msg.sender];
        allocation.claimedAmount += claimableAmount;
        totalClaimedAmount += claimableAmount;
        TOKEN.safeTransfer(msg.sender, claimableAmount);

        emit AllocationClaimed(msg.sender, claimableAmount);
    }

    /**
     * @notice Function to query the claimable amount for a user
     * @param _user User address
     * @return Claimable amount
     */
    function getClaimableAmount(address _user) public view returns (uint256) {
        if (allocationAmount[_user].totalAmount == 0) {
            return 0;
        }

        // Check if allocation has started (TGE)
        if (block.timestamp < allocationStart) {
            return 0;
        }

        AllocationAmount storage allocation = allocationAmount[_user];

        // Check cliff period
        if (block.timestamp < cliffEnd) {
            // During cliff period, only initial unlock amount is claimable
            uint256 immediateUnlockAmount = (allocation.totalAmount *
                unlockPercent) / 10000;

            // Exclude already claimed amount
            return
                immediateUnlockAmount > allocation.claimedAmount
                    ? immediateUnlockAmount - allocation.claimedAmount
                    : 0;
        }

        uint256 totalClaimable;

        // Calculate immediate unlock amount
        uint256 immediateUnlock = (allocation.totalAmount * unlockPercent) /
            10000;

        // Calculate vesting amount
        uint256 vestingAmount = allocation.totalAmount - immediateUnlock;

        // Calculate vesting progress (after cliff period)
        if (block.timestamp < vestingEnd) {
            // If vesting is in progress
            uint256 elapsedTime = block.timestamp - cliffEnd;
            uint256 vestedAmount = (vestingAmount * elapsedTime) /
                vestingDuration;
            totalClaimable = immediateUnlock + vestedAmount;
        } else {
            // If vesting period has ended
            totalClaimable = allocation.totalAmount;
        }

        // Exclude already claimed amount
        return
            totalClaimable > allocation.claimedAmount
                ? totalClaimable - allocation.claimedAmount
                : 0;
    }

    /**
     * @notice Function to change the address of a registered user
     * @param _oldUser Old user address
     * @param _newUser New user address
     */
    function changeUserAddress(
        address _oldUser,
        address _newUser
    ) external onlyOwner {
        require(_oldUser != address(0), "INVALID_OLD_ADDRESS");
        require(_newUser != address(0), "INVALID_NEW_ADDRESS");
        require(
            allocationAmount[_oldUser].totalAmount > 0,
            "OLD_USER_NOT_REGISTERED"
        );
        require(
            allocationAmount[_newUser].totalAmount == 0,
            "NEW_USER_ALREADY_REGISTERED"
        );

        // Copy allocation information from old user
        allocationAmount[_newUser] = allocationAmount[_oldUser];

        // Delete allocation information of old user
        delete allocationAmount[_oldUser];

        emit AllocationUserChanged(
            _oldUser,
            _newUser,
            allocationAmount[_newUser].totalAmount
        );
    }

    /**
     * @notice Returns the remaining amount of tokens to be claimed
     * @return Remaining amount to be claimed
     */
    function getRemainingAmount() external view returns (uint256) {
        return totalVestingAmount - totalClaimedAmount;
    }

    /**
     * @notice Returns the remaining amount of tokens to be claimed
     * @return Remaining amount to be claimed
     */
    function getRemainingVestingAmount() external view returns (uint256) {
        if (block.timestamp >= vestingEnd) {
            return 0;
        }

        uint256 totalVestingAmountExcludingUnlock = totalVestingAmount -
            ((totalVestingAmount * unlockPercent) / 10000);

        if (block.timestamp < cliffEnd) {
            return totalVestingAmountExcludingUnlock;
        }

        uint256 elapsedTime = block.timestamp - cliffEnd;
        uint256 vestedAmount = (totalVestingAmountExcludingUnlock *
            elapsedTime) / vestingDuration;

        return totalVestingAmountExcludingUnlock - vestedAmount;
    }

    /**
     * @notice Emergency function to withdraw tokens from the contract
     * @param _amount Amount of tokens to withdraw (0 means all balance)
     * @dev Only callable by the contract owner
     */
    function emergencyWithdraw(uint256 _amount) external onlyOwner {
        uint256 tokenBalance = TOKEN.balanceOf(address(this));
        uint256 amountToWithdraw = _amount == 0 ? tokenBalance : _amount;

        require(tokenBalance >= amountToWithdraw, "INSUFFICIENT_BALANCE");

        // Transfer
        TOKEN.safeTransfer(msg.sender, amountToWithdraw);

        // If withdrawing all tokens, consider updating totalVestingAmount and totalClaimedAmount
        if (tokenBalance == amountToWithdraw) {
            totalClaimedAmount = totalVestingAmount;
        }

        emit EmergencyWithdraw(msg.sender, amountToWithdraw);
    }
}

Read Contract

TOKEN 0x82bfefc8 → address
allocationAmount 0xf370884f → uint256, uint256
allocationStart 0x691d47d2 → uint256
cliffEnd 0x9130297b → uint256
getClaimableAmount 0xe12f3a61 → uint256
getRemainingAmount 0xdabaae11 → uint256
getRemainingVestingAmount 0xc783a5b2 → uint256
owner 0x8da5cb5b → address
pauseAllocation 0x7a43ff72 → bool
pendingOwner 0xe30c3978 → address
totalClaimedAmount 0x9661cb0d → uint256
totalVestingAmount 0x2db94d19 → uint256
unlockPercent 0x756688c0 → uint256
vestingDuration 0x1514617e → uint256
vestingEnd 0x84a1931f → uint256

Write Contract 11 functions

These functions modify contract state and require a wallet transaction to execute.

acceptOwnership 0x79ba5097
No parameters
changePauseAllocation 0xb59a1db2
bool _pauseAllocation
changeUserAddress 0xeef1b515
address _oldUser
address _newUser
claim 0x4e71d92d
No parameters
emergencyWithdraw 0x5312ea8e
uint256 _amount
registerAllocation 0x4fdb9d97
address _user
uint256 _amount
renounceOwnership 0x715018a6
No parameters
setAllocationStart 0xeef9d8c8
uint256 _allocationStart
setUnlockPercent 0x78fc4ccf
uint256 _unlockPercent
setVestingTimestamps 0xc55c2112
uint256 _cliffEnd
uint256 _vestingEnd
transferOwnership 0xf2fde38b
address newOwner

Recent Transactions

No transactions found for this address