Cryo Explorer Ethereum Mainnet

Address Contract Partially Verified

Address 0x646E50E8F5b148026E813f064Fe376C5cfD1aFAf
Balance 0 ETH
Nonce 3
Code Size 12222 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

12222 bytes
0x6080604052600436106101e9575f3560e01c80638da5cb5b11610108578063cd5a62be1161009d578063e51eaf2c1161006d578063e51eaf2c146108f3578063e5f483a314610907578063f2fde38b1461093e578063f600f1831461095d578063f9119bbd1461097c575f5ffd5b8063cd5a62be1461081d578063dd924acd14610850578063e121ce411461086f578063e30c3978146108d6575f5ffd5b8063be6c1614116100d8578063be6c16141461062b578063c19d93fb1461064a578063c86a41f71461075f578063cc411767146107fe575f5ffd5b80638da5cb5b1461059d5780639f47f048146105b9578063a2f7b3a5146105d8578063ba36159e1461060c575f5ffd5b80633fc8cef31161017e578063715018a61161014e578063715018a61461052d57806379ba5097146105415780637b9a9dc1146105555780637c887c591461056a575f5ffd5b80633fc8cef3146103a0578063457c7afa146103d357806354c250b3146103f257806358465535146104f1575f5ffd5b8063313644df116101b9578063313644df1461030c5780633a237aa0146103375780633a4b66f1146103565780633b2a4d511461037d575f5ffd5b80630ee3d3821461025f5780632c76d7a61461027e5780632fc50cbf146102ce57806330c93cef146102ed575f5ffd5b3661025b577f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004015f604051808303818588803b158015610247575f5ffd5b505af1158015610259573d5f5f3e3d5ffd5b005b5f5ffd5b34801561026a575f5ffd5b506102596102793660046126dc565b6109af565b348015610289575f5ffd5b506102b17f000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156481565b6040516001600160a01b0390911681526020015b60405180910390f35b3480156102d9575f5ffd5b506102596102e8366004612712565b6109d3565b3480156102f8575f5ffd5b506102596103073660046126dc565b610a27565b348015610317575f5ffd5b506008545f908152600a60205260409020546001600160a01b03166102b1565b348015610342575f5ffd5b506002546102b1906001600160a01b031681565b348015610361575f5ffd5b5061036a610abb565b60405161ffff90911681526020016102c5565b348015610388575f5ffd5b5061039260095481565b6040519081526020016102c5565b3480156103ab575f5ffd5b506102b17f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281565b3480156103de575f5ffd5b506102596103ed36600461273f565b610efe565b3480156103fd575f5ffd5b5061049c61040c36600461273f565b604080516080810182525f808252602082018190529181018290526060810191909152506001600160a01b03165f908152600760209081526040918290208251608081018452905463ffffffff8082168352600160201b82041692820192909252600160401b82046001600160801b031692810192909252600160c01b90046001600160401b0316606082015290565b6040516102c591905f60808201905063ffffffff835116825263ffffffff60208401511660208301526001600160801b0360408401511660408301526001600160401b03606084015116606083015292915050565b3480156104fc575f5ffd5b5061051061050b36600461275a565b610f6c565b604080519283526001600160e01b039091166020830152016102c5565b348015610538575f5ffd5b506102596110ca565b34801561054c575f5ffd5b506102596110dd565b348015610560575f5ffd5b5061039260085481565b348015610575575f5ffd5b506102b17f0000000000000000000000001f98431c8ad98523631ae4a59f267346ea31f98481565b3480156105a8575f5ffd5b505f546001600160a01b03166102b1565b3480156105c4575f5ffd5b506102596105d3366004612798565b611126565b3480156105e3575f5ffd5b506102b16105f23660046127eb565b600a6020525f90815260409020546001600160a01b031681565b348015610617575f5ffd5b50610259610626366004612712565b61120a565b348015610636575f5ffd5b5061025961064536600461286e565b611254565b348015610655575f5ffd5b506106f26040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a0810191909152506040805160c08101825260045463ffffffff8082168352600160201b820416602083015261ffff600160401b820416928201929092526001600160401b03600160501b830481166060830152600160901b909204909116608082015260055460a082015290565b6040516102c591905f60c08201905063ffffffff835116825263ffffffff602084015116602083015261ffff60408401511660408301526001600160401b0360608401511660608301526001600160401b03608084015116608083015260a083015160a083015292915050565b34801561076a575f5ffd5b506107bf61077936600461273f565b60076020525f908152604090205463ffffffff80821691600160201b810490911690600160401b81046001600160801b031690600160c01b90046001600160401b031684565b6040805163ffffffff95861681529490931660208501526001600160801b03909116918301919091526001600160401b031660608201526080016102c5565b348015610809575f5ffd5b506102596108183660046126dc565b611347565b348015610828575f5ffd5b506102b17f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f81565b34801561085b575f5ffd5b5061025961086a3660046127eb565b6113d6565b34801561087a575f5ffd5b506108b261088936600461273f565b60036020525f90815260409020546001600160e01b03811690600160e01b900463ffffffff1682565b604080516001600160e01b03909316835263ffffffff9091166020830152016102c5565b3480156108e1575f5ffd5b506001546001600160a01b03166102b1565b3480156108fe575f5ffd5b506102596113fe565b348015610912575f5ffd5b50600654610926906001600160401b031681565b6040516001600160401b0390911681526020016102c5565b348015610949575f5ffd5b5061025961095836600461273f565b6114ac565b348015610968575f5ffd5b50610259610977366004612712565b61151c565b348015610987575f5ffd5b506102b17f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b181565b6109b7611570565b6004805463ffffffff191663ffffffff92909216919091179055565b6001600160401b038116670de0b6b3a76400006109f0828261159c565b6109f8611570565b5050600480546001600160401b03909216600160501b0267ffffffffffffffff60501b19909216919091179055565b610a2f6115ce565b80610a39816115f9565b610a627f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2611620565b610a6b8161168e565b610ab67f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc27f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b1856116ae565b505050565b5f600481610adf6008545f908152600a60205260409020546001600160a01b031690565b90505f816001600160a01b031663a62614e26040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b1e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b429190612915565b90506103e88161ffff1610610b6a576040516331ec7c0f60e11b815260040160405180910390fd5b6040516370a0823160e01b81523060048201525f907f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f6001600160a01b0316906370a0823190602401602060405180830381865afa158015610bce573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf2919061292e565b8454909150600160201b900463ffffffff16151580610c15575083600101548110155b610c3257604051634a15122d60e11b815260040160405180910390fd5b835463ffffffff80821691610c5091600160201b9091041642612959565b101580610c61575083600101548110155b610c7e57604051632792526560e21b815260040160405180910390fd5b83545f90610c9d908390600160501b90046001600160401b0316611846565b8554909150610cca906c01431e0fae6d7217caa000000090600160501b90046001600160401b0316611846565b610ce1906c01431e0fae6d7217caa000000061296c565b821115610d2e578454610d12906c01431e0fae6d7217caa000000090600160501b90046001600160401b0316611846565b9050610d2b816c01431e0fae6d7217caa000000061296c565b91505b610d388183612959565b60405163a9059cbb60e01b81526001600160a01b038681166004830152602482018390529193507f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f9091169063a9059cbb906044016020604051808303815f875af1158015610da9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dcd919061298e565b50836001600160a01b0316633a4b66f16040518163ffffffff1660e01b81526004016020604051808303815f875af1158015610e0b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e2f9190612915565b855467ffffffff000000001916600160201b4263ffffffff16021786556009805491975083915f90610e6290849061296c565b909155505060405163a9059cbb60e01b8152336004820152602481018290527f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f6001600160a01b03169063a9059cbb906044016020604051808303815f875af1158015610ed1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ef5919061298e565b50505050505090565b80610f0881611871565b610f10611570565b6002546040516001600160a01b038085169216907fe29b0c9a6487aafa3c3ceb89f97f492476d5d1b3c03dbbdd4e1c004d8bd83ef4905f90a350600280546001600160a01b0319166001600160a01b0392909216919091179055565b5f5f5f610fa57f0000000000000000000000001f98431c8ad98523631ae4a59f267346ea31f984610fa08888612710611898565b61190e565b6001600160a01b0381165f908152600360209081526040918290208251808401909352546001600160e01b0381168352600160e01b900463ffffffff1690820181905291925090158015611001575080516001600160e01b0316155b156110435760405180604001604052806702c68af0bb140000670de0b6b3a764000061102d91906129a7565b6001600160401b03168152600f60209091015290505b5f8160200151603c61105591906129c6565b90505f611061846119f4565b90508163ffffffff168163ffffffff16101561109057604051632e3cfc7f60e01b815260040160405180910390fd5b5f61109b8584611bac565b5090505f6110a882611ddb565b8551975090506110ba818a8d8d6120f5565b9750505050505050935093915050565b6110d2611570565b6110db5f6121cb565b565b60015433906001600160a01b0316811461111a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b611123816121cb565b50565b8063ffffffff166111368161168e565b61113e6121e4565b670de0b6b3a76400006001600160e01b0384161115611170576040516338fd8f3960e21b815260040160405180910390fd5b8163ffffffff16836001600160e01b0316856001600160a01b03167f6b866971e730de54469a032413d79dc0037a7da3f92641b3a839ecc013a9c73e60405160405180910390a4506040805180820182526001600160e01b03938416815263ffffffff92831660208083019182526001600160a01b039096165f90815260039096529190942093519051909116600160e01b029116179055565b6001600160401b038116670de0b6b3a7640000611227828261159c565b61122f611570565b50506006805467ffffffffffffffff19166001600160401b0392909216919091179055565b60608101516001600160401b0316670de0b6b3a7640000611275828261159c565b826020015163ffffffff166112898161168e565b83604001516001600160801b03166112a08161168e565b6112a8611570565b5050506001600160a01b039092165f818152600760208181526040808420805463ffffffff808216895296909552928252855191860151908601516060909601516001600160401b03908116600160c01b026001600160c01b036001600160801b03909816600160401b0297909716918616600160201b0267ffffffffffffffff19909516929095169190911792909217929092161791909117905550565b61134f6115ce565b80611359816115f9565b6113827f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b1611620565b61138b8161168e565b610ab67f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b17f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f856116ae565b6113de611570565b806c01431e0fae6d7217caa00000006113f7828261159c565b5050600555565b611406611570565b6008545f908152600a60205260409020546001600160a01b03166001600160a01b031663a62614e26040518163ffffffff1660e01b8152600401602060405180830381865afa15801561145b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061147f9190612915565b61ffff166103e8146114a45760405163a4f2556b60e01b815260040160405180910390fd5b6110db612223565b6114b4611570565b600180546001600160a01b0383166001600160a01b031990911681179091556114e45f546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6001600160401b038116670de0b6b3a7640000611539828261159c565b611541611570565b5050600480546001600160401b03909216600160901b0267ffffffffffffffff60901b19909216919091179055565b5f546001600160a01b031633146110db5760405163118cdaa760e01b8152336004820152602401611111565b8181818110156115c85760405163f5c38b6160e01b815260048101929092526024820152604401611111565b50505050565b333b1580156115dc57503233145b6110db57604051639f8129d160e01b815260040160405180910390fd5b8063ffffffff1642111561112357604051630407b05b60e31b815260040160405180910390fd5b6040516370a0823160e01b81523060048201525f906001600160a01b038316906370a0823190602401602060405180830381865afa158015611664573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611688919061292e565b92915050565b805f0361112357604051635a53a6e960e01b815260040160405180910390fd5b6001600160a01b0383165f908152600760205260409020805463ffffffff808216916116e391600160201b9091041642612959565b101561170257604051637b22948960e01b815260040160405180910390fd5b5f61170c85611620565b8254909150600160401b90046001600160801b031681111561173c57508054600160401b90046001600160801b03165b81545f9061175b908390600160c01b90046001600160401b0316611846565b90506117678183612959565b91505f6117778787855f8961233f565b60405163a9059cbb60e01b8152336004820152602481018490529091506001600160a01b0388169063a9059cbb906044016020604051808303815f875af11580156117c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e8919061298e565b5080866001600160a01b0316886001600160a01b03167f089c02e97a69a4f00ded600e029a273a5729f89d2373fee461bd4c6021d96fb060405160405180910390a45050815463ffffffff19164263ffffffff161790915550505050565b5f815f190483118202156118615763c4c5d7f55f526004601cfd5b50670de0b6b3a764000091020490565b6001600160a01b038116611123576040516359c662df60e11b815260040160405180910390fd5b604080516060810182525f8082526020820181905291810191909152826001600160a01b0316846001600160a01b031611156118d2579192915b6040518060600160405280856001600160a01b03168152602001846001600160a01b031681526020018362ffffff1681525090505b9392505050565b5f81602001516001600160a01b0316825f01516001600160a01b031610611933575f5ffd5b815160208084015160408086015181516001600160a01b0395861681860152949092168482015262ffffff90911660608085019190915281518085038201815260808501909252815191909201206001600160f81b031960a08401529085901b6bffffffffffffffffffffffff191660a183015260b58201527fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b5460d582015260f50160408051601f1981840301815291905280516020909101209392505050565b5f5f5f836001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e060405180830381865afa158015611a33573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a5791906129ec565b5050509350935050505f8161ffff1611611a985760405162461bcd60e51b81526020600482015260026024820152614e4960f01b6044820152606401611111565b5f806001600160a01b03861663252c09d784611ab5876001612a7f565b611abf9190612aad565b6040516001600160e01b031960e084901b16815261ffff9091166004820152602401608060405180830381865afa158015611afc573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b209190612ae1565b93505050915080611b985760405163252c09d760e01b81525f60048201526001600160a01b0387169063252c09d790602401608060405180830381865afa158015611b6d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b919190612ae1565b5091935050505b611ba28242612b36565b9695505050505050565b5f5f8263ffffffff165f03611be85760405162461bcd60e51b8152602060048201526002602482015261042560f41b6044820152606401611111565b6040805160028082526060820183525f9260208301908036833701905050905083815f81518110611c1b57611c1b612b52565b602002602001019063ffffffff16908163ffffffff16815250505f81600181518110611c4957611c49612b52565b602002602001019063ffffffff16908163ffffffff16815250505f5f866001600160a01b031663883bdbfd846040518263ffffffff1660e01b8152600401611c919190612b66565b5f60405180830381865afa158015611cab573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052611cd29190810190612c43565b915091505f825f81518110611ce957611ce9612b52565b602002602001015183600181518110611d0457611d04612b52565b6020026020010151611d169190612d06565b90505f825f81518110611d2b57611d2b612b52565b602002602001015183600181518110611d4657611d46612b52565b602090810291909101015103905063ffffffff8816611d658184612d33565b97505f8360060b128015611d845750611d7e8184612d6f565b60060b15155b15611d975787611d9381612d90565b9850505b63ffffffff8916640100000000600160c01b03602084901b16611dc16001600160a01b0383612db1565b611dcb9190612de2565b9750505050505050509250929050565b5f5f5f8360020b12611df0578260020b611df7565b8260020b5f035b9050620d89e8811115611e1d576040516315e4079d60e11b815260040160405180910390fd5b5f816001165f03611e3257600160801b611e44565b6ffffcb933bd6fad37aa2d162d1a5940015b70ffffffffffffffffffffffffffffffffff1690506002821615611e78576ffff97272373d413259a46990580e213a0260801c5b6004821615611e97576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b6008821615611eb6576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b6010821615611ed5576fffcb9843d60f6159c9db58835c9266440260801c5b6020821615611ef4576fff973b41fa98c081472e6896dfb254c00260801c5b6040821615611f13576fff2ea16466c96a3843ec78b326b528610260801c5b6080821615611f32576ffe5dee046a99a2a811c461f1969c30530260801c5b610100821615611f52576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b610200821615611f72576ff987a7253ac413176f2b074cf7815e540260801c5b610400821615611f92576ff3392b0822b70005940c7a398e4b70f30260801c5b610800821615611fb2576fe7159475a2c29b7443b29c7fa6e889d90260801c5b611000821615611fd2576fd097f3bdfd2022b8845ad8f792aa58250260801c5b612000821615611ff2576fa9f746462d870fdf8a65dc1f90e061e50260801c5b614000821615612012576f70d869a156d2a1b890bb3df62baf32f70260801c5b618000821615612032576f31be135f97d08fd981231505542fcfa60260801c5b62010000821615612053576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b62020000821615612073576e5d6af8dedb81196699c329225ee6040260801c5b62040000821615612092576d2216e584f5fa1ea926041bedfe980260801c5b620800008216156120af576b048a170391f7dc42444e8fa20260801c5b5f8460020b13156120ce57805f19816120ca576120ca612a99565b0490505b600160201b8106156120e15760016120e3565b5f5b60ff16602082901c0192505050919050565b5f6001600160801b036001600160a01b03861611612168575f61212260026001600160a01b038816612ef3565b9050826001600160a01b0316846001600160a01b0316106121515761214c600160c01b8683612516565b612160565b6121608186600160c01b612516565b9150506121c3565b5f6121816001600160a01b03871680600160401b612516565b9050826001600160a01b0316846001600160a01b0316106121b0576121ab600160801b8683612516565b6121bf565b6121bf8186600160801b612516565b9150505b949350505050565b600180546001600160a01b0319169055611123816125cc565b6002546001600160a01b031633148061220657505f546001600160a01b031633145b6110db576040516371dd489b60e11b815260040160405180910390fd5b5f6122567f000000000000000000000000997689bcb9c04c5bbc29acafc449beef2bc630f16001600160a01b031661261b565b60405163485cc95560e01b81526001600160a01b037f000000000000000000000000e2cfd7a01ec63875cd9da6c7c1b7025166c2fa2f811660048301527f00000000000000000000000050371d550e1eab5aec08d2d79b77b14b79dcc57e811660248301529192509082169063485cc955906044015f604051808303815f87803b1580156122e2575f5ffd5b505af11580156122f4573d5f5f3e3d5ffd5b5050505080600a5f60085f815461230a90612f01565b9182905550815260208101919091526040015f2080546001600160a01b0319166001600160a01b039290921691909117905550565b60405163095ea7b360e01b81526001600160a01b037f000000000000000000000000e592427a0aece92de3edee1f18e0157c0586156481166004830152602482018590525f919087169063095ea7b3906044016020604051808303815f875af11580156123ae573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123d2919061298e565b506040516bffffffffffffffffffffffff19606088811b8216602084015261027160ec1b603484015287901b1660378201525f90604b0160405160208183030381529060405290505f5f612427898989610f6c565b915091505f865f14612439578661244c565b61244c83836001600160e01b0316611846565b6040805160a08101825286815230602082015263ffffffff891681830152606081018b905260808101839052905163c04b8d5960e01b8152919250907f000000000000000000000000e592427a0aece92de3edee1f18e0157c058615646001600160a01b03169063c04b8d59906124c7908490600401612f19565b6020604051808303815f875af11580156124e3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612507919061292e565b9b9a5050505050505050505050565b5f838302815f1985870982811083820303915050805f0361254a5783828161254057612540612a99565b0492505050611907565b808411612561576125616003851502601118612626565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f611688825f612637565b634e487b715f52806020526024601cfd5b5f814710156126625760405163cf47918160e01b815247600482015260248101839052604401611111565b763d602d80600a3d3981f3363d3d373d3d3d363d730000008360601b60e81c175f526e5af43d82803e903d91602b57fd5bf38360781b176020526037600983f090506001600160a01b0381166116885760405163b06ebf3d60e01b815260040160405180910390fd5b63ffffffff81168114611123575f5ffd5b5f602082840312156126ec575f5ffd5b8135611907816126cb565b80356001600160401b038116811461270d575f5ffd5b919050565b5f60208284031215612722575f5ffd5b611907826126f7565b6001600160a01b0381168114611123575f5ffd5b5f6020828403121561274f575f5ffd5b81356119078161272b565b5f5f5f6060848603121561276c575f5ffd5b83356127778161272b565b925060208401356127878161272b565b929592945050506040919091013590565b5f5f5f606084860312156127aa575f5ffd5b83356127b58161272b565b925060208401356001600160e01b03811681146127d0575f5ffd5b915060408401356127e0816126cb565b809150509250925092565b5f602082840312156127fb575f5ffd5b5035919050565b634e487b7160e01b5f52604160045260245ffd5b604051608081016001600160401b038111828210171561283857612838612802565b60405290565b604051601f8201601f191681016001600160401b038111828210171561286657612866612802565b604052919050565b5f5f82840360a0811215612880575f5ffd5b833561288b8161272b565b92506080601f198201121561289e575f5ffd5b506128a7612816565b60208401356128b5816126cb565b815260408401356128c5816126cb565b602082015260608401356001600160801b03811681146128e3575f5ffd5b60408201526128f4608085016126f7565b6060820152809150509250929050565b805161ffff8116811461270d575f5ffd5b5f60208284031215612925575f5ffd5b61190782612904565b5f6020828403121561293e575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561168857611688612945565b8082018082111561168857611688612945565b8051801515811461270d575f5ffd5b5f6020828403121561299e575f5ffd5b6119078261297f565b6001600160401b03828116828216039081111561168857611688612945565b63ffffffff81811683821602908116908181146129e5576129e5612945565b5092915050565b5f5f5f5f5f5f5f60e0888a031215612a02575f5ffd5b8751612a0d8161272b565b8097505060208801518060020b8114612a24575f5ffd5b9550612a3260408901612904565b9450612a4060608901612904565b9350612a4e60808901612904565b925060a088015160ff81168114612a63575f5ffd5b9150612a7160c0890161297f565b905092959891949750929550565b61ffff818116838216019081111561168857611688612945565b634e487b7160e01b5f52601260045260245ffd5b5f61ffff831680612ac057612ac0612a99565b8061ffff84160691505092915050565b8051600681900b811461270d575f5ffd5b5f5f5f5f60808587031215612af4575f5ffd5b8451612aff816126cb565b9350612b0d60208601612ad0565b92506040850151612b1d8161272b565b9150612b2b6060860161297f565b905092959194509250565b63ffffffff828116828216039081111561168857611688612945565b634e487b7160e01b5f52603260045260245ffd5b602080825282518282018190525f918401906040840190835b81811015612ba357835163ffffffff16835260209384019390920191600101612b7f565b509095945050505050565b5f6001600160401b03821115612bc657612bc6612802565b5060051b60200190565b5f82601f830112612bdf575f5ffd5b8151612bf2612bed82612bae565b61283e565b8082825260208201915060208360051b860101925085831115612c13575f5ffd5b602085015b83811015612c39578051612c2b8161272b565b835260209283019201612c18565b5095945050505050565b5f5f60408385031215612c54575f5ffd5b82516001600160401b03811115612c69575f5ffd5b8301601f81018513612c79575f5ffd5b8051612c87612bed82612bae565b8082825260208201915060208360051b850101925087831115612ca8575f5ffd5b6020840193505b82841015612cd157612cc084612ad0565b825260209384019390910190612caf565b8095505050505060208301516001600160401b03811115612cf0575f5ffd5b612cfc85828601612bd0565b9150509250929050565b600682810b9082900b03667fffffffffffff198112667fffffffffffff8213171561168857611688612945565b5f8160060b8360060b80612d4957612d49612a99565b667fffffffffffff1982145f1982141615612d6657612d66612945565b90059392505050565b5f8260060b80612d8157612d81612a99565b808360060b0791505092915050565b5f8160020b627fffff198103612da857612da8612945565b5f190192915050565b6001600160c01b03818116838216818102909216918183048114821517612dda57612dda612945565b505092915050565b5f6001600160c01b03831680612dfa57612dfa612a99565b6001600160c01b03929092169190910492915050565b6001815b6001841115612e4b57808504811115612e2f57612e2f612945565b6001841615612e3d57908102905b60019390931c928002612e14565b935093915050565b5f82612e6157506001611688565b81612e6d57505f611688565b8160018114612e835760028114612e8d57612ea9565b6001915050611688565b60ff841115612e9e57612e9e612945565b50506001821b611688565b5060208310610133831016604e8410600b8410161715612ecc575081810a611688565b612ed85f198484612e10565b805f1904821115612eeb57612eeb612945565b029392505050565b5f61190760ff841683612e53565b5f60018201612f1257612f12612945565b5060010190565b602081525f825160a0602084015280518060c0850152806020830160e086015e5f60e0828601015260018060a01b0360208601511660408501526040850151606085015260608501516080850152608085015160a085015260e0601f19601f830116850101925050509291505056fea2646970667358221220a16ee702c2f2b0f6137b456f428e74084cac9a65925ace6cf4f54573addef88064736f6c634300081b0033

Verified Source Code Partial Match

Compiler: v0.8.27+commit.40a35a09 EVM: cancun Optimization: Yes (200 runs)
MatrixVault.sol 233 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {wmul} from "@utils/Math.sol";
import {IHyper} from "@interfaces/IHyper.sol";
import {Constants} from "@const/Constants.sol";
import {HyperStaking} from "./HyperStaking.sol";
import {IWETH9, IERC20} from "@interfaces/IWETH9.sol";
import {IMatrixVault} from "@interfaces/IMatrixVault.sol";
import {IMatrixBuyAndBurn} from "@interfaces/IBuyAndBurn.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {SwapActions, SwapActionsState} from "@core/actions/SwapActions.sol";

contract MatrixVault is SwapActions, IMatrixVault {
    using Clones for address;

    uint256 constant HUNDRED_B = 100_000_000_000e18;

    IHyper public immutable hyper;
    IERC20 public immutable titanX;
    IWETH9 public immutable weth;
    address immutable impl;
    address immutable bnb;

    State _state;

    uint64 public rewardsBnBAllocation = Constants.WAD / 2;

    mapping(address inputToken => IMatrixBuyAndBurn.State) public buyActionStates;
    uint256 public lastInstanceId;

    uint256 public totalHyperStaked;

    mapping(uint256 id => address instance) public instances;

    receive() external payable {
        weth.deposit{value: msg.value}();
    }

    constructor(
        address _hyper,
        address _titanX,
        address _weth,
        address _bnb,
        uint32 _stakingCooldown,
        uint256 _minStakeAmount,
        SwapActionsState memory _s
    ) notAddress0(_hyper) notAddress0(_titanX) notAddress0(_weth) notAddress0(_bnb) SwapActions(_s) {
        hyper = IHyper(_hyper);
        titanX = IERC20(_titanX);
        weth = IWETH9(_weth);
        bnb = _bnb;

        IMatrixBuyAndBurn.State memory defaultState = IMatrixBuyAndBurn.State({
            intervalBetween: 10 minutes,
            incentive: Constants.DEFAULT_INCENTIVE,
            swapCap: type(uint128).max,
            lastCallTs: 0
        });

        _state.stakeIncentive = 0.0002e18; // 0.02%
        _state.rewardsIncentive = 0.0002e18; // 0.02%
        _state.stakingCooldown = _stakingCooldown;
        _state.minStakeAmount = _minStakeAmount;

        {
            defaultState.swapCap = 0.13e18;
            buyActionStates[address(weth)] = defaultState;
        }
        {
            defaultState.swapCap = 640_000_000e18;
            defaultState.intervalBetween = 10 minutes;
            defaultState.incentive = 0.025e18; // 2.5%
            buyActionStates[address(titanX)] = defaultState;
        }

        impl = address(new HyperStaking());
        _deployInstance();
    }

    ///////////////////////////////
    //////// BUYING LOGIC ////////
    //////////////////////////////

    /// @inheritdoc IMatrixVault
    function buyHyper(uint32 _deadline) external onlyEOA notExpired(_deadline) notAmount0(erc20Bal(titanX)) {
        _buyAction(address(titanX), address(hyper), _deadline);
    }

    /// @inheritdoc IMatrixVault
    function buyTitanX(uint32 _deadline) external onlyEOA notExpired(_deadline) notAmount0(erc20Bal(weth)) {
        _buyAction(address(weth), address(titanX), _deadline);
    }

    ///////////////////////////////
    /////// ADMIN FUNCTIONS ///////
    //////////////////////////////

    /// @inheritdoc IMatrixVault
    function changeBuyActionState(address _inputToken, IMatrixBuyAndBurn.State memory _s)
        external
        notGt(_s.incentive, Constants.WAD)
        notAmount0(_s.intervalBetween)
        notAmount0(_s.swapCap)
        onlyOwner
    {
        _s.lastCallTs = buyActionStates[_inputToken].lastCallTs;

        buyActionStates[_inputToken] = _s;
    }

    /// @inheritdoc IMatrixVault
    function changeBnBAllocation(uint64 _newBnbAllocation) external notGt(_newBnbAllocation, Constants.WAD) onlyOwner {
        rewardsBnBAllocation = _newBnbAllocation;
    }

    /// @inheritdoc IMatrixVault
    function buyActionState(address _input) external view returns (IMatrixBuyAndBurn.State memory) {
        return buyActionStates[_input];
    }

    /// @inheritdoc IMatrixVault
    function changeMinStakeAmount(uint256 _newMinStakeAmount) external onlyOwner notGt(_newMinStakeAmount, HUNDRED_B) {
        _state.minStakeAmount = _newMinStakeAmount;
    }

    /// @inheritdoc IMatrixVault
    function changeStakeIncentive(uint64 _newIncentive) external notGt(_newIncentive, Constants.WAD) onlyOwner {
        _state.stakeIncentive = _newIncentive;
    }

    /// @inheritdoc IMatrixVault
    function changeStakingCooldown(uint32 _newCooldown) external onlyOwner {
        _state.stakingCooldown = _newCooldown;
    }

    /// @inheritdoc IMatrixVault
    function changeRewardsIncentive(uint64 _newIncentive) external notGt(_newIncentive, Constants.WAD) onlyOwner {
        _state.rewardsIncentive = _newIncentive;
    }

    ///////////////////////////////
    ///////// STAKE LOGIC ////////
    //////////////////////////////

    /// @inheritdoc IMatrixVault
    function stake() external returns (uint16 id) {
        State storage $ = _state;

        HyperStaking activeVault = HyperStaking(lastInstance());

        uint16 lastStakingPosition = activeVault.lastStakingId();

        require(lastStakingPosition < 1000, MaxStakePositionsReached());

        uint256 hyperBalance = hyper.balanceOf(address(this));

        require($.lastStakeTs != 0 || hyperBalance >= $.minStakeAmount, MinAmountNotAcumulated());

        require(
            block.timestamp - $.lastStakeTs >= $.stakingCooldown || hyperBalance >= $.minStakeAmount,
            CooldownNotPassed()
        );

        uint256 incentive = (wmul(hyperBalance, $.stakeIncentive));

        if (hyperBalance > HUNDRED_B + (wmul(HUNDRED_B, $.stakeIncentive))) {
            incentive = (wmul(HUNDRED_B, $.stakeIncentive));
            hyperBalance = HUNDRED_B + incentive;
        }

        hyperBalance -= incentive;

        hyper.transfer(address(activeVault), hyperBalance);

        id = activeVault.stake();

        $.lastStakeTs = uint32(block.timestamp);

        totalHyperStaked += hyperBalance;

        hyper.transfer(msg.sender, incentive);
    }

    /// @inheritdoc IMatrixVault
    function lastInstance() public view returns (address) {
        return instances[lastInstanceId];
    }

    /// @inheritdoc IMatrixVault
    function state() public view returns (State memory) {
        return _state;
    }

    /// @inheritdoc IMatrixVault
    function deployInstance() external onlyOwner {
        require(HyperStaking(lastInstance()).lastStakingId() == 1000, MaxStakePositionsNotReached());
        _deployInstance();
    }

    function _deployInstance() internal {
        HyperStaking newInstance = HyperStaking(impl.clone());

        newInstance.initialize(address(hyper), bnb);

        instances[++lastInstanceId] = address(newInstance);
    }

    function _buyAction(address inputToken, address outputToken, uint32 _deadline) internal {
        IMatrixBuyAndBurn.State storage $ = buyActionStates[address(inputToken)];

        require(block.timestamp - $.intervalBetween >= $.lastCallTs, IMatrixBuyAndBurn.IntervalWait());
        uint256 balance = erc20Bal(IERC20(inputToken));

        if (balance > $.swapCap) balance = $.swapCap;

        uint256 incentive = wmul(balance, $.incentive);

        balance -= incentive;

        uint256 outputAmount = swapExactInput(inputToken, outputToken, balance, 0, _deadline);

        IERC20(inputToken).transfer(msg.sender, incentive);

        emit BuyAction(inputToken, outputToken, outputAmount);

        $.lastCallTs = uint32(block.timestamp);
    }

    function erc20Bal(IERC20 t) internal view returns (uint256) {
        return t.balanceOf(address(this));
    }
}
Math.sol 407 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* solhint-disable func-visibility, no-inline-assembly */

error Math__toInt256_overflow();
error Math__toUint64_overflow();
error Math__add_overflow_signed();
error Math__sub_overflow_signed();
error Math__mul_overflow_signed();
error Math__mul_overflow();
error Math__div_overflow();

uint256 constant WAD = 1e18;

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L367
function toInt256(uint256 x) pure returns (int256) {
    if (x >= 1 << 255) revert Math__toInt256_overflow();
    return int256(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L53
function toUint64(uint256 x) pure returns (uint64) {
    if (x >= 1 << 64) revert Math__toUint64_overflow();
    return uint64(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L602
function abs(int256 x) pure returns (uint256 z) {
    assembly ("memory-safe") {
        let mask := sub(0, shr(255, x))
        z := xor(mask, add(mask, x))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L620
function min(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), lt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L628
function min(int256 x, int256 y) pure returns (int256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), slt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L636
function max(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), gt(y, x)))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L74
function add(uint256 x, int256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := add(x, y)
    }
    if ((y > 0 && z < x) || (y < 0 && z > x)) {
        revert Math__add_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L79
function sub(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := sub(x, y)
    }
    if ((y > 0 && z > x) || (y < 0 && z < x)) {
        revert Math__sub_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L84
function mul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = int256(x) * y;
        if (int256(x) < 0 || (y != 0 && z / y != int256(x))) {
            revert Math__mul_overflow_signed();
        }
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L54
function wmul(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, y), WAD)
    }
}

function wmul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = mul(x, y) / int256(WAD);
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L69C22-L69C22
function wmulUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L84
function wdiv(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, WAD), y)
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L99
function wdivUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/jug.sol#L62
function wpow(uint256 x, uint256 n, uint256 b) pure returns (uint256 z) {
    unchecked {
        assembly ("memory-safe") {
            switch n
            case 0 { z := b }
            default {
                switch x
                case 0 { z := 0 }
                default {
                    switch mod(n, 2)
                    case 0 { z := b }
                    default { z := x }
                    let half := div(b, 2) // for rounding.
                    for { n := div(n, 2) } n { n := div(n, 2) } {
                        let xx := mul(x, x)
                        if shr(128, x) { revert(0, 0) }
                        let xxRound := add(xx, half)
                        if lt(xxRound, xx) { revert(0, 0) }
                        x := div(xxRound, b)
                        if mod(n, 2) {
                            let zx := mul(z, x)
                            if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) }
                            let zxRound := add(zx, half)
                            if lt(zxRound, zx) { revert(0, 0) }
                            z := div(zxRound, b)
                        }
                    }
                }
            }
        }
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L110
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
function wpow(int256 x, int256 y) pure returns (int256) {
    // Using `ln(x)` means `x` must be greater than 0.
    return wexp((wln(x) * y) / int256(WAD));
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L116
/// @dev Returns `exp(x)`, denominated in `WAD`.
function wexp(int256 x) pure returns (int256 r) {
    unchecked {
        // When the result is < 0.5 we return zero. This happens when
        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
        if (x <= -42139678854452767551) return r;

        /// @solidity memory-safe-assembly
        assembly {
            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if iszero(slt(x, 135305999368893231589)) {
                mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                revert(0x1c, 0x04)
            }
        }

        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
        // for more intermediate precision and a binary basis. This base conversion
        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
        x = (x << 78) / 5 ** 18;

        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
        int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
        x = x - k * 54916777467707473351141471128;

        // k is in the range [-61, 195].

        // Evaluate using a (6, 7)-term rational approximation.
        // p is made monic, we'll multiply by a scale factor later.
        int256 y = x + 1346386616545796478920950773328;
        y = ((y * x) >> 96) + 57155421227552351082224309758442;
        int256 p = y + x - 94201549194550492254356042504812;
        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
        p = p * x + (4385272521454847904659076985693276 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        int256 q = x - 2855989394907223263936484059900;
        q = ((q * x) >> 96) + 50020603652535783019961831881945;
        q = ((q * x) >> 96) - 533845033583426703283633433725380;
        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
        q = ((q * x) >> 96) + 26449188498355588339934803723976023;

        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial won't have zeros in the domain as all its roots are complex.
            // No scaling is necessary because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r should be in the range (0.09, 0.25) * 2**96.

        // We now need to multiply r by:
        // * the scale factor s = ~6.031367120.
        // * the 2**k factor from the range reduction.
        // * the 1e18 / 2**96 factor for base conversion.
        // We do this all at once, with an intermediate result in 2**213
        // basis, so the final right shift is always by a positive amount.
        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L184
/// @dev Returns `ln(x)`, denominated in `WAD`.
function wln(int256 x) pure returns (int256 r) {
    unchecked {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
        }

        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
        // We do this by multiplying by 2**96 / 10**18. But since
        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
        // and add ln(2**96 / 10**18) at the end.

        // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x).
        int256 t;
        /// @solidity memory-safe-assembly
        assembly {
            t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x))))
            t := or(t, shl(5, lt(0xffffffff, shr(t, x))))
            t := or(t, shl(4, lt(0xffff, shr(t, x))))
            t := or(t, shl(3, lt(0xff, shr(t, x))))
            // forgefmt: disable-next-item
            t := xor(
                t,
                byte(
                    and(
                        0x1f,
                        shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)
                    ),
                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff
                )
            )
        }

        // Reduce range of x to (1, 2) * 2**96
        // ln(2^k * x) = k * ln(2) + ln(x)
        x = int256(uint256(x << uint256(t)) >> 159);

        // Evaluate using a (8, 8)-term rational approximation.
        // p is made monic, we will multiply by a scale factor later.
        int256 p = x + 3273285459638523848632254066296;
        p = ((p * x) >> 96) + 24828157081833163892658089445524;
        p = ((p * x) >> 96) + 43456485725739037958740375743393;
        p = ((p * x) >> 96) - 11111509109440967052023855526967;
        p = ((p * x) >> 96) - 45023709667254063763336534515857;
        p = ((p * x) >> 96) - 14706773417378608786704636184526;
        p = p * x - (795164235651350426258249787498 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        // q is monic by convention.
        int256 q = x + 5573035233440673466300451813936;
        q = ((q * x) >> 96) + 71694874799317883764090561454958;
        q = ((q * x) >> 96) + 283447036172924575727196451306956;
        q = ((q * x) >> 96) + 401686690394027663651624208769553;
        q = ((q * x) >> 96) + 204048457590392012362485061816622;
        q = ((q * x) >> 96) + 31853899698501571402653359427138;
        q = ((q * x) >> 96) + 909429971244387300277376558375;
        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r is in the range (0, 0.125) * 2**96

        // Finalization, we need to:
        // * multiply by the scale factor s = 5.549…
        // * add ln(2**96 / 10**18)
        // * add k * ln(2)
        // * multiply by 10**18 / 2**96 = 5**18 >> 78

        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
        r *= 1677202110996718588342820967067443963516166;
        // add ln(2) * k * 5e18 * 2**192
        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t);
        // add ln(2**96 / 10**18) * 5e18 * 2**192
        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
        // base conversion: mul 2**18 / 2**192
        r >>= 174;
    }
}

/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
        z := 181 // The "correct" value is 1, but this saves a multiplication later.

        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

        // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
        // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
        let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
        r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
        r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
        r := or(r, shl(4, lt(0xffffff, shr(r, x))))
        z := shl(shr(1, r), z)

        // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
        // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
        // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
        // That's not possible if `x < 256` but we can just verify those cases exhaustively.

        // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
        // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
        // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

        // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
        // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
        // with largest error when `s = 1` and when `s = 256` or `1/256`.

        // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
        // Then we can estimate `sqrt(y)` using
        // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

        // There is no overflow risk here since `y < 2**136` after the first branch above.
        z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))

        // If `x+1` is a perfect square, the Babylonian method cycles between
        // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
        z := sub(z, lt(div(x, z), z))
    }
}
IHyper.sol 29 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @title Interface for HYPER
interface IHyper is IERC20 {
    enum StakeStatus {
        ACTIVE,
        ENDED,
        BURNED
    }

    struct UserStakeInfo {
        uint152 hyperAmount;
        uint152 shares;
        uint16 numOfDays;
        uint48 stakeStartTs;
        uint48 maturityTs;
        StakeStatus status;
    }

    function claimUserAvailableHyperPayouts() external;
    function getUserStakeInfo(address user, uint256 id) external returns (UserStakeInfo memory);
    function getUserHyperClaimableTotal(address _user) external returns (uint256);
    function triggerPayouts() external;
    function startStake(uint256 amount, uint256 numOfDays) external;
    function endStake(uint256 id) external;
}
Constants.sol 28 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

library Constants {
    address constant DEAD_ADDR = 0x000000000000000000000000000000000000dEaD;
    address constant GENESIS = 0x2DCAb38844EBB1B0F5A77fFbBb66430a51C2aef0;
    address constant PHOENIX_VAULT = 0x6B59b8E9635909B7f0FF2C577BB15c936f32619A;
    address constant LIQUIDITY_BONDING = 0xFc39aBcde6661C84635eBBcab5334eFEbE833456;
    address constant OWNER = 0xC8a38f5e29155D1A349e1c8156C336912994230E;

    uint64 constant WAD = 1e18;

    uint64 constant DEFAULT_INCENTIVE = 0.01e18; //1%

    ///@dev  The initial titan x amount needed to create liquidity pool
    uint256 constant INITIAL_TITAN_X_FOR_LIQ = 9_500_000_000e18;

    uint24 constant POOL_FEE = 10_000; //1%

    int24 constant TICK_SPACING = 200; // Uniswap's tick spacing for 1% pools is 200

    uint32 public constant AUCTION_DURATION = 24 hours;
    uint32 public constant GAP_BETWEEN_AUCTIONS = 24 hours;
    uint8 public constant MAX_AUCTIONS = 28;
    uint32 public constant AUCTION_CLAIM_BUFFER = 1 hours;

    uint256 public constant TOTAL_SUPPLY = 1_000_000_000e18;
}
HyperStaking.sol 118 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {wmul} from "@utils/Math.sol";
import {Errors} from "@utils/Errors.sol";
import {IHyper} from "@interfaces/IHyper.sol";
import {Constants} from "@const/Constants.sol";
import {Constants} from "@const/Constants.sol";
import {IMatrixVault} from "@interfaces/IMatrixVault.sol";
import {IHyperStaking} from "@interfaces/IHyperStaking.sol";
import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";

contract HyperStaking is IHyperStaking, Initializable, Errors {
    uint256 constant MAX_STAKE_LENGTH = 3500;

    uint16 public lastStakingId;

    IHyper hyper;
    IMatrixVault _matrixVault;
    address bnb;

    modifier updateRewards() {
        hyper.triggerPayouts();
        _;
    }

    modifier onlyMatrixVault() {
        require(msg.sender == matrixVault(), OnlyStakingVault());
        _;
    }

    constructor() {
        _disableInitializers();
    }

    /// @inheritdoc IHyperStaking
    function initialize(address _hyper, address _bnb) external initializer {
        _matrixVault = IMatrixVault(payable(msg.sender));
        hyper = IHyper(_hyper);
        bnb = _bnb;
    }

    /// @inheritdoc IHyperStaking
    function stake() external onlyMatrixVault returns (uint16 id) {
        hyper.startStake(hyper.balanceOf(_this()), MAX_STAKE_LENGTH);

        id = ++lastStakingId;
    }

    /// @inheritdoc IHyperStaking
    function batchUnstake(uint16[] memory _ids) external updateRewards {
        uint256 availableRewards = hyper.getUserHyperClaimableTotal(_this());

        if (availableRewards > 0) claimRewards();

        uint256 totalUnstaked;
        for (uint16 i; i < _ids.length; ++i) {
            totalUnstaked += _unstake(_ids[i]);
        }

        hyper.transfer(matrixVault(), hyper.balanceOf(_this()));
    }

    /// @inheritdoc IHyperStaking
    function claimRewards() public updateRewards notAmount0(hyper.getUserHyperClaimableTotal(_this())) {
        hyper.claimUserAvailableHyperPayouts();

        _distribute(hyper.balanceOf(_this()));
    }

    function _unstake(uint16 _id) internal notAmount0(_id) updateRewards returns (uint256 received) {
        require(_id <= lastStakingId, InvalidPositionId());

        IHyper.UserStakeInfo memory stakeInfo = hyper.getUserStakeInfo(_this(), _id);
        uint256 balanceBefore = hyper.balanceOf(_this());
        if (stakeInfo.status == IHyper.StakeStatus.ACTIVE) hyper.endStake(_id);

        received = hyper.balanceOf(_this()) - balanceBefore;
    }

    /**
     * @notice internal function to disitrbute hyper
     * @param _amount amount of hyper to distribute
     */
    function _distribute(uint256 _amount) internal {
        uint256 incentive = wmul(_amount, _matrixVault.state().rewardsIncentive);
        uint256 genesis = wmul(_amount, uint256(0.04e18));

        _amount -= incentive;
        _amount -= genesis;

        hyper.transfer(Constants.GENESIS, genesis);
        hyper.transfer(msg.sender, incentive);

        uint256 bnbAllocation = _matrixVault.rewardsBnBAllocation();

        uint256 toBnB = wmul(_amount, bnbAllocation);
        uint256 toMatrixVault = wmul(_amount, Constants.WAD - bnbAllocation);

        if (toBnB > 0) hyper.transfer(bnb, toBnB);
        if (toMatrixVault > 0) hyper.transfer(matrixVault(), toMatrixVault);
    }

    /// @inheritdoc IHyperStaking
    function matrixVault() public view returns (address payable) {
        return payable(address(_matrixVault));
    }

    /// @inheritdoc IHyperStaking
    function stakePositionInfo(uint16 _id) external returns (IHyper.UserStakeInfo memory) {
        return hyper.getUserStakeInfo(_this(), _id);
    }
    /// @dev Internal function to get the address of the contract

    function _this() internal view returns (address) {
        return address(this);
    }
}
IWETH9.sol 13 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.27;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @title Interface for WETH9
interface IWETH9 is IERC20 {
    /// @notice Deposit ether to get wrapped ether
    function deposit() external payable;

    /// @notice Withdraw wrapped ether to get ether
    function withdraw(uint256) external;
}
IMatrixVault.sol 163 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {IMatrixBuyAndBurn} from "./IBuyAndBurn.sol";
import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";

/**
 * @title IMatrixVault
 * @dev Interface for the Matrix Vault contract, responsible for staking, managing instances, and buying actions.
 */
interface IMatrixVault {
    /**
     * @notice Represents the staking state and configuration.
     * @param stakingCooldown The cooldown period (in seconds) required before staking is allowed again.
     * @param lastStakeTs The timestamp of the last stake event.
     * @param lastStakingPosition The ID of the last staking position created.
     * @param minStakeAmount The minimum amount required to stake.
     * @param maxStakeAmount The maximum amount allowed to stake.
     * @param privateMode Indicates if the vault is in private mode (restricting certain actions).
     * @param incentive An incentive amount (if applicable) for staking or other actions.
     */
    struct State {
        uint32 stakingCooldown;
        uint32 lastStakeTs;
        uint16 lastStakingPosition;
        uint64 stakeIncentive;
        uint64 rewardsIncentive;
        uint256 minStakeAmount;
    }

    /**
     * @notice Emitted when a buy action is executed, swapping an input token for an output token.
     * @param inputToken The address of the input token used in the swap.
     * @param outputToken The address of the output token received from the swap.
     * @param outputAmount The amount of the output token received from the swap.
     */
    event BuyAction(address indexed inputToken, address indexed outputToken, uint256 indexed outputAmount);

    /* ==== ERRORS ==== */

    /// @notice Thrown when the maximum number of staking positions is reached.
    error MaxStakePositionsReached();

    /// @notice Thrown when trying to stake but the maximum number of staking positions has not been reached.
    error MaxStakePositionsNotReached();

    /// @notice Thrown when a function is called by an entity other than the staking vault.
    error OnlyStakingVault();

    /// @notice Thrown when attempting to stake before the cooldown period has passed.
    error CooldownNotPassed();

    error MinAmountNotAcumulated();

    /* ==== VIEW FUNCTIONS ==== */

    /**
     * @notice Returns the current state of the vault.
     * @return state The current vault state, including staking cooldown, staking limits, and incentive settings.
     */
    function state() external view returns (State memory);

    /**
     * @notice Returns the current state of the vault.
     * @return state The current vault state, including staking cooldown, staking limits, and incentive settings.
     */
    function rewardsBnBAllocation() external view returns (uint64);

    /**
     * @notice Gets the state of the buying token
     * @param _input The token used for buying
     */
    function buyActionState(address _input) external view returns (IMatrixBuyAndBurn.State memory);

    /**
     * @notice Returns the ID of the last deployed instance.
     * @return lastInstanceId The ID of the last instance deployed by the vault.
     */
    function lastInstanceId() external view returns (uint256);

    /**
     * @notice Returns the address of a deployed instance by its ID.
     * @param id The ID of the instance.
     * @return instance The address of the instance with the given ID.
     */
    function instances(uint256 id) external view returns (address);

    /**
     * @notice Returns the address of the last deployed instance.
     * @return lastInstance The address of the last instance deployed by the vault.
     */
    function lastInstance() external view returns (address);

    /* ==== EXTERNAL FUNCTIONS ==== */

    /**
     * @notice Executes a buy action to purchase HYPER tokens, converting TITANX to HYPER.
     * @param _deadline The deadline for the transaction to be executed.
     */
    function buyHyper(uint32 _deadline) external;

    /**
     * @notice Executes a buy action to purchase TitanX tokens, converting WETH to TITANX.
     * @param _deadline The deadline for the transaction to be executed.
     */
    function buyTitanX(uint32 _deadline) external;

    /**
     * @notice Changes the state of a buy action for a specified input token.
     * @param _inputToken The address of the input token for which to change the buy action state.
     * @param _s The new state of the buy action for the specified token.
     */
    function changeBuyActionState(address _inputToken, IMatrixBuyAndBurn.State memory _s) external;

    /**
     * @notice Changes the buy and burn allocation when distributing hyper from staking rewards.
     * @param _newBnbAllocation The new percentage bnb allocation the auction to use.
     */
    function changeBnBAllocation(uint64 _newBnbAllocation) external;

    /**
     * @notice Changes the minimum amount required to start a stake
     * @param _newMinStakeAmount The new minimum stake amount required to start a stake
     */
    function changeMinStakeAmount(uint256 _newMinStakeAmount) external;

    /**
     * @notice Changes the incentive for calling `MatrixVault::stake`
     * @param _newStakeIncentive The new incentive percentage for calling `MatrixVault::stake`
     */
    function changeStakeIncentive(uint64 _newStakeIncentive) external;

    /**
     * @notice Changes the cooldown in between stakes
     * @param _newCooldown The new cooldown between stakes
     */
    function changeStakingCooldown(uint32 _newCooldown) external;

    /**
     * @notice Changes the incentive for calling `HyperStaking::claimRewards` on all instances
     * @param _newRewardsIncentive The new incentive percentage for calling `HyperStaking::claimRewards`
     */
    function changeRewardsIncentive(uint64 _newRewardsIncentive) external;

    /**
     * @notice Stakes tokens into the vault, creating a new staking position.
     * @return id The ID of the newly created staking position.
     */
    function stake() external returns (uint16 id);

    /**
     * @notice Deploys a new instance from the vault.
     */
    function deployInstance() external;

    /* ==== FALLBACK FUNCTION ==== */

    /**
     * @notice Fallback function to receive ETH.
     * This allows the vault to accept ETH sent directly to it.
     */
    receive() external payable;
}
IBuyAndBurn.sol 96 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IMatrixBuyAndBurn
 * @dev Interface for the MatrixBuyAndBurn contract, which performs token buy-and-burn operations and manages buy incentives.
 */
interface IMatrixBuyAndBurn {
    /* == STRUCTS == */

    /**
     * @notice Holds the state variables related to buy-and-burn operations.
     * @param lastCallTs The timestamp of the last buy-and-burn call.
     * @param intervalBetween The minimum interval (in seconds) required between buy-and-burn operations.
     * @param swapCap The maximum allowable amount of tokens that can be swapped for the buy-and-burn.
     * @param incentive The incentive amount provided for performing a buy-and-burn operation.
     */
    struct State {
        uint32 lastCallTs;
        uint32 intervalBetween;
        uint128 swapCap;
        uint64 incentive;
    }

    /* == STATE GETTERS == */

    /**
     * @notice Returns the total amount of MATRIX tokens that have been burnt.
     * @return totalMatrixBurnt The total number of MATRIX tokens that have been burnt.
     */
    function totalMatrixBurnt() external view returns (uint256);

    /**
     * @notice Returns the buy action state for a specific input token.
     * @param _inputToken The address of the input token whose buy action state is being queried.
     * @return buyActionState The `State` struct containing settings for the specified input token.
     */
    function buyActionState(address _inputToken) external view returns (State memory);

    /* == EVENTS == */

    /**
     * @notice Emitted when a buy-and-burn operation is performed.
     * @param matrixAmount The amount of MATRIX tokens burnt in the operation.
     * @param infernoAmount The amount of tokens sent to the Inferno pool as a result of the operation.
     */
    event BuyAndBurn(uint256 indexed matrixAmount, uint256 indexed infernoAmount);

    /**
     * @notice Emitted when a buy action is executed, swapping an input token for an output token.
     * @param inputToken The address of the input token used in the swap.
     * @param outputToken The address of the output token received from the swap.
     * @param outputAmount The amount of the output token received from the swap.
     */
    event BuyAction(address indexed inputToken, address indexed outputToken, uint256 indexed outputAmount);

    /* == ERRORS == */

    /// @notice Thrown when attempting a buy-and-burn operation before the required interval has passed.
    error IntervalWait();

    /* == FUNCTIONS == */

    /**
     * @notice Modifies the buy action state settings for a specific input token.
     * @param _inputToken The address of the input token for which the buy action state is being modified.
     * @param _s The new state settings for the buy action, including interval, cap, and incentive.
     * @dev Only callable by the contract owner.
     */
    function changeBuyActionState(address _inputToken, State memory _s) external;

    /**
     * @notice Executes a buy action to swap WETH for titanX.
     * @param _deadline The timestamp by which the buy action must be completed.
     */
    function buyTitanX(uint32 _deadline) external;

    /**
     * @notice Executes a buy action to swap titanX for HYPER.
     * @param _deadline The timestamp by which the buy action must be completed.
     */
    function buyHyper(uint32 _deadline) external;

    /**
     * @notice Executes a buy-and-burn operation, swapping HYPER for MATRIX tokens, distributing to incentive pool, and burning.
     * @param _deadline The timestamp by which the buy-and-burn operation must be completed.
     */
    function buyNBurn(uint32 _deadline) external;

    /**
     * @notice Directly burns MATRIX tokens.
     */
    function burnMatrix() external;
}
Clones.sol 262 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation` and `salt` multiple time will revert, since the clones cannot be deployed twice at the same
     * address.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 0x2d); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 0x20), 0x2d, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 0x5fd3) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 0x2d),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}
SwapActions.sol 194 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {Errors} from "@utils/Errors.sol";
import {wmul, min} from "@utils/Math.sol";
import {Constants} from "@const/Constants.sol";
import {PoolAddress} from "@libs/PoolAddress.sol";
import {OracleLibrary} from "@libs/OracleLibrary.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
import {Ownable, Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
import {ISwapRouter} from "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";

/// @notice Struct representing slippage settings for a pool.
struct Slippage {
    uint224 slippage; //< Slippage in WAD (scaled by 1e18)
    uint32 twapLookback; //< TWAP lookback period in minutes (used as seconds in code)
}

struct SwapActionsState {
    address v3Router;
    address v3Factory;
    address owner;
}

/**
 * @title SwapActions
 * @notice A contract that facilitates token swapping on Uniswap V3 with slippage management.
 * @dev Uses Uniswap V3 Router and Oracle libraries for swap actions and TWAP calculations.
 */
contract SwapActions is Ownable2Step, Errors {
    //==========IMMUTABLE==========//

    /// @notice Address of the Uniswap V3 Router
    address public immutable uniswapV3Router;

    /// @notice Address of the Uniswap V3 Factory
    address public immutable v3Factory;

    //==========STATE==========//

    /// @notice Address of the admin responsible for managing slippage
    address public slippageAdmin;

    /// @notice Mapping of pool addresses to their respective slippage settings
    mapping(address pool => Slippage) public slippageConfigs;

    //==========ERRORS==========//

    /// @notice Thrown when an invalid slippage is provided
    error SwapActions__InvalidSlippage();

    /// @notice Thrown when a non-admin/non-owner attempts to perform slippage actions
    error SwapActions__OnlySlippageAdmin();

    error SwapActions__InvalidObservation();

    //==========EVENTS===========//

    event SlippageAdminChanged(address indexed oldAdmin, address indexed newAdmin);
    event SlippageConfigChanged(address indexed pool, uint224 indexed newSlippage, uint32 indexed newLookback);

    //========MODIFIERS==========//

    /**
     * @dev Ensures the caller is either the slippage admin or the contract owner.
     */
    modifier onlySlippageAdminOrOwner() {
        _onlySlippageAdminOrOwner();
        _;
    }

    //========CONSTRUCTOR==========//

    /**
     * @param params The aprams to initialize the SwapAcitons contract.
     */
    constructor(SwapActionsState memory params) Ownable(params.owner) {
        uniswapV3Router = params.v3Router;
        v3Factory = params.v3Factory;
        slippageAdmin = params.owner;
    }

    //========EXTERNAL/PUBLIC==========//

    /**
     * @notice Change the address of the slippage admin.
     * @param _new New slippage admin address.
     * @dev Only callable by the contract owner.
     */
    function changeSlippageAdmin(address _new) external notAddress0(_new) onlyOwner {
        emit SlippageAdminChanged(slippageAdmin, _new);

        slippageAdmin = _new;
    }

    /**
     * @notice Change slippage configuration for a specific pool.
     * @param pool Address of the Uniswap V3 pool.
     * @param _newSlippage New slippage value (in WAD).
     * @param _newLookBack New TWAP lookback period (in minutes).
     * @dev Only callable by the slippage admin or the owner.
     */
    function changeSlippageConfig(address pool, uint224 _newSlippage, uint32 _newLookBack)
        external
        notAmount0(_newLookBack)
        onlySlippageAdminOrOwner
    {
        require(_newSlippage <= Constants.WAD, SwapActions__InvalidSlippage());

        emit SlippageConfigChanged(pool, _newSlippage, _newLookBack);

        slippageConfigs[pool] = Slippage({slippage: _newSlippage, twapLookback: _newLookBack});
    }

    //========INTERNAL/PRIVATE==========//

    /**
     * @notice Perform an exact input swap on Uniswap V3.
     * @param tokenIn Address of the input token.
     * @param tokenOut Address of the output token.
     * @param tokenInAmount Amount of the input token to swap.
     * @param minAmountOut Optional minimum amount out, if it's 0 it uses the twap
     * @param deadline Deadline timestamp for the swap.
     * @return amountReceived Amount of the output token received.
     * @dev The function uses the TWAP (Time-Weighted Average Price) to ensure the swap is performed within slippage tolerance.
     */
    function swapExactInput(
        address tokenIn,
        address tokenOut,
        uint256 tokenInAmount,
        uint256 minAmountOut,
        uint32 deadline
    ) internal returns (uint256 amountReceived) {
        IERC20(tokenIn).approve(uniswapV3Router, tokenInAmount);

        bytes memory path = abi.encodePacked(tokenIn, Constants.POOL_FEE, tokenOut);

        (uint256 twapAmount, uint224 slippage) = getTwapAmount(tokenIn, tokenOut, tokenInAmount);

        uint256 minAmount = minAmountOut == 0 ? wmul(twapAmount, slippage) : minAmountOut;

        ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({
            path: path,
            recipient: address(this),
            deadline: deadline,
            amountIn: tokenInAmount,
            amountOutMinimum: minAmount
        });

        return ISwapRouter(uniswapV3Router).exactInput(params);
    }

    /**
     * @notice Get the TWAP (Time-Weighted Average Price) and slippage for a given token pair.
     * @param tokenIn Address of the input token.
     * @param tokenOut Address of the output token.
     * @param amount Amount of the input token.
     * @return twapAmount The TWAP amount of the output token for the given input.
     * @return slippage The slippage tolerance for the pool.
     */
    function getTwapAmount(address tokenIn, address tokenOut, uint256 amount)
        public
        view
        returns (uint256 twapAmount, uint224 slippage)
    {
        address poolAddress =
            PoolAddress.computeAddress(v3Factory, PoolAddress.getPoolKey(tokenIn, tokenOut, Constants.POOL_FEE));

        Slippage memory slippageConfig = slippageConfigs[poolAddress];

        if (slippageConfig.twapLookback == 0 && slippageConfig.slippage == 0) {
            slippageConfig = Slippage({twapLookback: 15, slippage: Constants.WAD - 0.2e18});
        }

        uint32 secondsAgo = slippageConfig.twapLookback * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(poolAddress);

        if (oldestObservation < secondsAgo) revert SwapActions__InvalidObservation();

        (int24 arithmeticMeanTick,) = OracleLibrary.consult(poolAddress, secondsAgo);
        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        slippage = slippageConfig.slippage;
        twapAmount = OracleLibrary.getQuoteForSqrtRatioX96(sqrtPriceX96, amount, tokenIn, tokenOut);
    }

    /**
     * @dev Internal function to check if the caller is the slippage admin or contract owner.
     */
    function _onlySlippageAdminOrOwner() private view {
        require(msg.sender == slippageAdmin || msg.sender == owner(), SwapActions__OnlySlippageAdmin());
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
Errors.sol 90 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

contract Errors {
    /// @notice Error thrown when an address is the zero address.
    error Address0();
    /// @notice Error thrown when the caller is not an EOA.
    error OnlyEOA();

    /// @notice Error thrown when an amount is zero.
    error Amount0();

    /// @notice Error thrown when an operation is attempted after the specified deadline.
    error Expired();

    /// @notice Error thrown when one value is greater than another.
    /// @param a The first value that is greater than the second value.
    /// @param b The second value which is smaller or equal to the first value.
    error GreaterThan(uint256 a, uint256 b);

    /**
     * @notice Modifier to prevent operations with a zero amount.
     * @dev Throws an `Amount0` error if the provided amount is zero.
     * @param a The amount to be checked.
     */
    modifier notAmount0(uint256 a) {
        _notAmount0(a);
        _;
    }

    /**
     * @notice Modifier to ensure a function is called before a specified deadline.
     * @dev Throws an `Expired` error if the current block timestamp exceeds the provided deadline.
     * @param _deadline The deadline timestamp by which the function must be called.
     */
    modifier notExpired(uint32 _deadline) {
        _notExpired(_deadline);
        _;
    }

    /**
     * @notice Modifier to prevent operations with the zero address.
     * @dev Throws an `Address0` error if the provided address is the zero address.
     * @param a The address to be checked.
     */
    modifier notAddress0(address a) {
        _notAddress0(a);
        _;
    }

    /**
     * @notice Modifier to ensure the first value is not greater than the second.
     * @dev Throws a `GreaterThan` error if `b` is smaller than `a`.
     * @param a The first value to be compared.
     * @param b The second value to be compared.
     */
    modifier notGt(uint256 a, uint256 b) {
        _notGt(a, b);
        _;
    }

    /**
     * @notice Modifier to prevent operations when the caller is not an EOA.
     * @dev Throws an `OnlyEOA` error if the caller is not an EOA.
     */
    modifier onlyEOA() {
        _onlyEOA();
        _;
    }

    function _onlyEOA() internal view {
        require(msg.sender.code.length == 0 && tx.origin == msg.sender, OnlyEOA());
    }

    function _notGt(uint256 a, uint256 b) internal pure {
        require(b >= a, GreaterThan(a, b));
    }

    function _notAddress0(address a) internal pure {
        require(a != address(0), Address0());
    }

    function _notExpired(uint32 _deadline) internal view {
        require(block.timestamp <= _deadline, Expired());
    }

    function _notAmount0(uint256 a) internal pure {
        require(a != 0, Amount0());
    }
}
IHyperStaking.sol 62 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {IHyper} from "@interfaces/IHyper.sol";

interface IHyperStaking {
    /**
     * @notice Error thrown when a caller other than MatrixVault attempts to access a restricted function
     */
    error OnlyStakingVault();

    /**
     * @notice Error thrown when an invalid position ID is provided
     */
    error InvalidPositionId();

    /**
     * @notice Initializes the HyperStaking contract
     * @param _hyper Address of the Hyper token contract
     * @param _bnb Address of the BNB contract
     */
    function initialize(address _hyper, address _bnb) external;

    /**
     * @notice Creates a new staking position
     * @dev Can only be called by the MatrixVault
     * @return id The ID of the newly created staking position
     */
    function stake() external returns (uint16 id);

    /**
     * @notice Unstakes Hyper tokens from multiple staking positions
     * @dev Claims any available rewards before unstaking
     * @param _ids Array of staking position IDs to unstake
     */
    function batchUnstake(uint16[] memory _ids) external;

    /**
     * @notice Claims accumulated staking rewards
     * @dev Updates rewards before claiming and distributes them according to protocol rules
     */
    function claimRewards() external;

    /**
     * @notice Retrieves the current Matrix Vault address
     * @return Address of the Matrix Vault contract
     */
    function matrixVault() external view returns (address payable);

    /**
     * @notice Retrieves information about a specific staking position
     * @param _id The ID of the staking position
     * @return Staking position information struct from the Hyper contract
     */
    function stakePositionInfo(uint16 _id) external returns (IHyper.UserStakeInfo memory);

    /**
     * @notice The ID of the last created staking position
     * @return The latest staking ID
     */
    function lastStakingId() external view returns (uint16);
}
Initializable.sol 228 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}
IERC20.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
Create2.sol 92 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}
Errors.sol 33 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
PoolAddress.sol 46 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        uint24 fee;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param fee The fee level of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(address tokenA, address tokenB, uint24 fee) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Uniswap V3 factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex"ff",
                            factory,
                            keccak256(abi.encode(key.token0, key.token1, key.fee)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}
OracleLibrary.sol 147 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

/**
 * @notice Adapted Uniswap V3 OracleLibrary computation to be compliant with Solidity 0.8.x and later.
 *
 * Documentation for Auditors:
 *
 * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility
 * with Solidity version 0.8.x.
 *
 * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows.
 * Therefore, the code no longer needs to use SafeMath library (or similar) for basic arithmetic operations.
 * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking.
 *
 * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, the code is inherently
 * safer and less prone to certain types of arithmetic errors.
 *
 * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of SafeMath library
 * is omitted in this update.
 *
 * Git-style diff for the `consult` function:
 *
 * ```diff
 * function consult(address pool, uint32 secondsAgo)
 *     internal
 *     view
 *     returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
 * {
 *     require(secondsAgo != 0, 'BP');
 *
 *     uint32[] memory secondsAgos = new uint32[](2);
 *     secondsAgos[0] = secondsAgo;
 *     secondsAgos[1] = 0;
 *
 *     (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
 *         IUniswapV3Pool(pool).observe(secondsAgos);
 *
 *     int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
 *     uint160 secondsPerLiquidityCumulativesDelta =
 *         secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
 *
 * -   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
 * +   int56 secondsAgoInt56 = int56(uint56(secondsAgo));
 * +   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
 *     // Always round to negative infinity
 * -   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--;
 * +   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;
 *
 * -   uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
 * +   uint192 secondsAgoUint192 = uint192(secondsAgo);
 * +   uint192 secondsAgoX160 = secondsAgoUint192 * type(uint160).max;
 *     harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
 * }
 * ```
 */

/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
    /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
    /// @param pool Address of the pool that we want to observe
    /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
    /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
    /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
    function consult(address pool, uint32 secondsAgo)
        internal
        view
        returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
    {
        require(secondsAgo != 0, "BP");

        uint32[] memory secondsAgos = new uint32[](2);
        secondsAgos[0] = secondsAgo;
        secondsAgos[1] = 0;

        (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
            IUniswapV3Pool(pool).observe(secondsAgos);

        int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
        uint160 secondsPerLiquidityCumulativesDelta;
        unchecked {
            secondsPerLiquidityCumulativesDelta =
                secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
        }

        // Safe casting of secondsAgo to int56 for division
        int56 secondsAgoInt56 = int56(uint56(secondsAgo));
        arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
        // Always round to negative infinity
        if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;

        // Safe casting of secondsAgo to uint192 for multiplication
        uint192 secondsAgoUint192 = uint192(secondsAgo);
        harmonicMeanLiquidity = uint128(
            (secondsAgoUint192 * uint192(type(uint160).max)) / (uint192(secondsPerLiquidityCumulativesDelta) << 32)
        );
    }

    /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
    /// @param pool Address of Uniswap V3 pool that we want to observe
    /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
    function getOldestObservationSecondsAgo(address pool) internal view returns (uint32 secondsAgo) {
        (,, uint16 observationIndex, uint16 observationCardinality,,,) = IUniswapV3Pool(pool).slot0();
        require(observationCardinality > 0, "NI");

        (uint32 observationTimestamp,,, bool initialized) =
            IUniswapV3Pool(pool).observations((observationIndex + 1) % observationCardinality);

        // The next index might not be initialized if the cardinality is in the process of increasing
        // In this case the oldest observation is always in index 0
        if (!initialized) {
            (observationTimestamp,,,) = IUniswapV3Pool(pool).observations(0);
        }

        secondsAgo = uint32(block.timestamp) - observationTimestamp;
    }

    /// @notice Given a tick and a token amount, calculates the amount of token received in exchange
    /// a slightly modified version of the UniSwap library getQuoteAtTick to accept a sqrtRatioX96 as input parameter
    /// @param sqrtRatioX96 The sqrt ration
    /// @param baseAmount Amount of token to be converted
    /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
    /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
    /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
    function getQuoteForSqrtRatioX96(uint160 sqrtRatioX96, uint256 baseAmount, address baseToken, address quoteToken)
        internal
        pure
        returns (uint256 quoteAmount)
    {
        // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
        if (sqrtRatioX96 <= type(uint128).max) {
            uint256 ratioX192 = uint256(sqrtRatioX96) ** 2;
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX192, baseAmount, 1 << 192)
                : Math.mulDiv(1 << 192, baseAmount, ratioX192);
        } else {
            uint256 ratioX128 = Math.mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64);
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX128, baseAmount, 1 << 128)
                : Math.mulDiv(1 << 128, baseAmount, ratioX128);
        }
    }
}
TickMath.sol 214 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    error T();
    error R();

    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            if (absTick > uint256(int256(MAX_TICK))) revert T();

            uint256 ratio = absTick & 0x1 != 0
                ? 0xfffcb933bd6fad37aa2d162d1a594001
                : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            if (tick > 0) ratio = type(uint256).max / ratio;

            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // second inequality must be < because the price can never reach the price at the max tick
            if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
            uint256 ratio = uint256(sqrtPriceX96) << 32;

            uint256 r = ratio;
            uint256 msb = 0;

            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }

            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}
Ownable2Step.sol 67 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}
ISwapRouter.sol 67 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}
Math.sol 685 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
IUniswapV3Pool.sol 26 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolErrors,
    IUniswapV3PoolEvents
{

}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
IUniswapV3SwapCallback.sol 21 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}
Panic.sol 56 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
IUniswapV3PoolImmutables.sol 35 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}
IUniswapV3PoolState.sol 117 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}
IUniswapV3PoolDerivedState.sol 40 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}
IUniswapV3PoolActions.sol 103 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
IUniswapV3PoolOwnerActions.sol 23 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}
IUniswapV3PoolErrors.sol 19 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
}
IUniswapV3PoolEvents.sol 121 lines
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

Read Contract

buyActionState 0x54c250b3 → tuple
buyActionStates 0xc86a41f7 → uint32, uint32, uint128, uint64
getTwapAmount 0x58465535 → uint256, uint224
hyper 0xcd5a62be → address
instances 0xa2f7b3a5 → address
lastInstance 0x313644df → address
lastInstanceId 0x7b9a9dc1 → uint256
owner 0x8da5cb5b → address
pendingOwner 0xe30c3978 → address
rewardsBnBAllocation 0xe5f483a3 → uint64
slippageAdmin 0x3a237aa0 → address
slippageConfigs 0xe121ce41 → uint224, uint32
state 0xc19d93fb → tuple
titanX 0xf9119bbd → address
totalHyperStaked 0x3b2a4d51 → uint256
uniswapV3Router 0x2c76d7a6 → address
v3Factory 0x7c887c59 → address
weth 0x3fc8cef3 → address

Write Contract 15 functions

These functions modify contract state and require a wallet transaction to execute.

acceptOwnership 0x79ba5097
No parameters
buyHyper 0xcc411767
uint32 _deadline
buyTitanX 0x30c93cef
uint32 _deadline
changeBnBAllocation 0xba36159e
uint64 _newBnbAllocation
changeBuyActionState 0xbdd3bb9c
address _inputToken
tuple _s
changeMinStakeAmount 0xdd924acd
uint256 _newMinStakeAmount
changeRewardsIncentive 0xf600f183
uint64 _newIncentive
changeSlippageAdmin 0x457c7afa
address _new
changeSlippageConfig 0x9f47f048
address pool
uint224 _newSlippage
uint32 _newLookBack
changeStakeIncentive 0x2fc50cbf
uint64 _newIncentive
changeStakingCooldown 0x0ee3d382
uint32 _newCooldown
deployInstance 0xe51eaf2c
No parameters
renounceOwnership 0x715018a6
No parameters
stake 0x3a4b66f1
No parameters
returns: uint16
transferOwnership 0xf2fde38b
address newOwner

Recent Transactions

No transactions found for this address