Address Contract Verified
Address
0x6ee65dF4cAA55514786D1fD11aAB6f37A6639b2B
Balance
0 ETH
Nonce
1
Code Size
15003 bytes
Creator
0x9A21BE29...bDE1 at tx 0x3c24ce1b...98501a
Indexed Transactions
0
Contract Bytecode
15003 bytes
0x608060405260043610610245575f3560e01c806377b367381161013857806390e95fe2116100b5578063ccdf4f9a11610079578063ccdf4f9a146107f9578063d3fb935914610835578063e80db5db1461085f578063ee1cc94414610889578063f2fde38b146108b1578063f4a0a528146108d957610245565b806390e95fe21461073b5780639c345408146107575780639c5c2c3214610781578063c6266693146107a9578063c7e42b1b146107d157610245565b806382686e3f116100fc57806382686e3f1461066f57806383e3500f146106975780638488bb4e146106bf5780638648e4d1146106e95780638da5cb5b1461071157610245565b806377b36738146105a357806377e4be09146105cd5780637ac6140e146105f75780637affe7751461061f578063802dda001461064757610245565b806357743238116101c65780636817c76c1161018a5780636817c76c146104e75780636b8f9c43146105115780636c8b213d14610539578063715018a61461056357806375794a3c1461057957610245565b806357743238146104075780635b7633d0146104435780635b92ac0d1461046d5780635c5ef8841461049757806366db8780146104bf57610245565b80633ccfd60b1161020d5780633ccfd60b146103395780633f6c9bba1461034f578063428640d8146103795780634d2b9d67146103b55780634e6fd6c4146103dd57610245565b8063046dc1661461024957806306995c68146102715780630ef192fe146102ad57806337d7fbfe146102e95780633cc3a0ed14610311575b5f80fd5b348015610254575f80fd5b5061026f600480360381019061026a9190612f05565b610901565b005b34801561027c575f80fd5b5061029760048036038101906102929190612f63565b610a10565b6040516102a49190612f9d565b60405180910390f35b3480156102b8575f80fd5b506102d360048036038101906102ce9190612f63565b610a25565b6040516102e09190612f9d565b60405180910390f35b3480156102f4575f80fd5b5061030f600480360381019061030a9190612f63565b610a3f565b005b34801561031c575f80fd5b5061033760048036038101906103329190612f05565b610a91565b005b348015610344575f80fd5b5061034d610b5c565b005b34801561035a575f80fd5b50610363610c67565b6040516103709190612f9d565b60405180910390f35b348015610384575f80fd5b5061039f600480360381019061039a9190612f05565b610c6d565b6040516103ac9190612fd0565b60405180910390f35b3480156103c0575f80fd5b506103db60048036038101906103d69190612f63565b610c8a565b005b3480156103e8575f80fd5b506103f1610cdc565b6040516103fe9190612ff8565b60405180910390f35b348015610412575f80fd5b5061042d60048036038101906104289190612f63565b610ce2565b60405161043a9190612fd0565b60405180910390f35b34801561044e575f80fd5b50610457610cff565b6040516104649190612ff8565b60405180910390f35b348015610478575f80fd5b50610481610d24565b60405161048e9190612fd0565b60405180910390f35b3480156104a2575f80fd5b506104bd60048036038101906104b8919061303b565b610d36565b005b3480156104ca575f80fd5b506104e560048036038101906104e09190613066565b610d91565b005b3480156104f2575f80fd5b506104fb610df1565b6040516105089190612f9d565b60405180910390f35b34801561051c575f80fd5b5061053760048036038101906105329190612f05565b610df7565b005b348015610544575f80fd5b5061054d610f06565b60405161055a9190612f9d565b60405180910390f35b34801561056e575f80fd5b50610577610f0c565b005b348015610584575f80fd5b5061058d610f1f565b60405161059a9190612f9d565b60405180910390f35b3480156105ae575f80fd5b506105b7610f25565b6040516105c49190612ff8565b60405180910390f35b3480156105d8575f80fd5b506105e1610f4a565b6040516105ee9190612fd0565b60405180910390f35b348015610602575f80fd5b5061061d60048036038101906106189190613105565b610f5c565b005b34801561062a575f80fd5b5061064560048036038101906106409190612f05565b61115a565b005b348015610652575f80fd5b5061066d600480360381019061066891906131cb565b611225565b005b34801561067a575f80fd5b506106956004803603810190610690919061303b565b61193f565b005b3480156106a2575f80fd5b506106bd60048036038101906106b89190612f63565b61199a565b005b3480156106ca575f80fd5b506106d36119ec565b6040516106e09190612ff8565b60405180910390f35b3480156106f4575f80fd5b5061070f600480360381019061070a91906132c3565b611a11565b005b34801561071c575f80fd5b50610725611b45565b6040516107329190612ff8565b60405180910390f35b610755600480360381019061075091906131cb565b611b6c565b005b348015610762575f80fd5b5061076b6121a5565b6040516107789190612fd0565b60405180910390f35b34801561078c575f80fd5b506107a760048036038101906107a291906133eb565b6121b7565b005b3480156107b4575f80fd5b506107cf60048036038101906107ca9190612f05565b6124b3565b005b3480156107dc575f80fd5b506107f760048036038101906107f29190612f05565b6125c2565b005b348015610804575f80fd5b5061081f600480360381019061081a9190612f63565b612774565b60405161082c9190612fd0565b60405180910390f35b348015610840575f80fd5b5061084961279a565b6040516108569190612ff8565b60405180910390f35b34801561086a575f80fd5b506108736127bf565b6040516108809190612ff8565b60405180910390f35b348015610894575f80fd5b506108af60048036038101906108aa919061303b565b6127e4565b005b3480156108bc575f80fd5b506108d760048036038101906108d29190612f05565b61283f565b005b3480156108e4575f80fd5b506108ff60048036038101906108fa9190612f63565b6128c3565b005b610909612915565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361096e576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f161a11d78e4c8a98c15b73ea9fd62ecc47a26992a28ca57d3307f1568dd637de8183604051610a0492919061349b565b60405180910390a15050565b6008602052805f5260405f205f915090505481565b5f60085f8381526020019081526020015f20549050919050565b610a47612915565b5f600f54905081600f819055507f412092ab9576ac5d3453fb14148ce54c27c7a47cc42db0a362f69b0130aa4cb68183604051610a859291906134c2565b60405180910390a15050565b610a99612915565b5f600e5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600e5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167fa2510d4bfbcc9161d0f9dd559e5de6396c121d97079efeedb9e059df9b563db660405160405180910390a35050565b610b64612915565b5f4790505f610b71611b45565b73ffffffffffffffffffffffffffffffffffffffff1682604051610b9490613516565b5f6040518083038185875af1925050503d805f8114610bce576040519150601f19603f3d011682016040523d82523d5f602084013e610bd3565b606091505b5050905080610c0e576040517f750b219c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610c16611b45565b73ffffffffffffffffffffffffffffffffffffffff167feaff4b37086828766ad3268786972c0cd24259d4c87a80f9d3963a3c3d999b0d83604051610c5b9190612f9d565b60405180910390a25050565b600f5481565b600d602052805f5260405f205f915054906101000a900460ff1681565b610c92612915565b5f600b54905081600b819055507fdf1ec86b1d36828e0c12bb55dffe6bfa0c4c991edc80d8f62b24cf9cb32c0d798183604051610cd09291906134c2565b60405180910390a15050565b61dead81565b6007602052805f5260405f205f915054906101000a900460ff1681565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b60065f9054906101000a900460ff1681565b610d3e612915565b8060105f6101000a81548160ff0219169083151502179055507f5fed0b7cbc452e04a488a7fb01e0bc6165555a2e7543ffd9cea88c52df0e44fb81604051610d869190612fd0565b60405180910390a150565b610d99612915565b80600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055505050565b60055481565b610dff612915565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610e64576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160045f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507fffb7f4dfd1a3815fdaf50941d3302f05ceb8ad88a7ec21b3bfd38e46b55151ea8183604051610efa92919061349b565b60405180910390a15050565b600b5481565b610f14612915565b610f1d5f61299c565b565b60095481565b600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600c5f9054906101000a900460ff1681565b610f64612915565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610fc9576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60075f8481526020019081526020015f205f9054906101000a900460ff161561101e576040517fa8ace31b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6009549050600160075f8681526020019081526020015f205f6101000a81548160ff0219169083151502179055508060085f8681526020019081526020015f20819055506001816110709190613557565b60098190555060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636c6ad2428685856040518463ffffffff1660e01b81526004016110d4939291906135e4565b5f604051808303815f87803b1580156110eb575f80fd5b505af11580156110fd573d5f803e3d5ffd5b5050505080848673ffffffffffffffffffffffffffffffffffffffff167f3cc3fa16ccd3bea979668a91ffefb9bf82fe6709f3b9f870da55a6fc9e4792c2868660405161114b929190613614565b60405180910390a45050505050565b611162612915565b5f600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600a5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167fb7df1e22892da6adcbb53d761c7c512e98052b70c0626c9a4a4540f0fcbfb0d260405160405180910390a35050565b61122d612a5d565b60065f9054906101000a900460ff16611272576040517feb56075600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60105f9054906101000a900460ff166112b7576040517ff1d3cef600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff16600e5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff160361133d576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60075f8781526020019081526020015f205f9054906101000a900460ff1615611392576040517fa8ace31b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b824211156113cc576040517f0819bdcd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6113db33878787878787612aa3565b611411576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f600f5490505f600c5f9054906101000a900460ff16801561148057505f73ffffffffffffffffffffffffffffffffffffffff16600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614155b1561161257600d5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16611611575f600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1662fdd58e33600b546040518363ffffffff1660e01b8152600401611531929190613636565b602060405180830381865afa15801561154c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115709190613671565b111561161057600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663f242432a3361dead600b5460016040518563ffffffff1660e01b81526004016115db949392919061370e565b5f604051808303815f87803b1580156115f2575f80fd5b505af1158015611604573d5f803e3d5ffd5b505050505f9150600190505b5b5b801561166e576001600d5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055505b5f6009549050600160075f8b81526020019081526020015f205f6101000a81548160ff0219169083151502179055508060085f8b81526020019081526020015f20819055506001816116c09190613557565b6009819055505f83111561184f575f600e5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166323b872dd3360045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16876040518463ffffffff1660e01b815260040161174e93929190613764565b6020604051808303815f875af115801561176a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061178e91906137ad565b9050806117c7576040517ff871b5aa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600e5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167faf393947bee6a53c481d9ff88f2edfc683252c9e62d5826bb7c44d11152b3b59866040516118459190612f9d565b60405180910390a3505b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636c6ad242338a8a6040518463ffffffff1660e01b81526004016118ad939291906135e4565b5f604051808303815f87803b1580156118c4575f80fd5b505af11580156118d6573d5f803e3d5ffd5b5050505080893373ffffffffffffffffffffffffffffffffffffffff167f3cc3fa16ccd3bea979668a91ffefb9bf82fe6709f3b9f870da55a6fc9e4792c28b8b604051611924929190613614565b60405180910390a4505050611937612b98565b505050505050565b611947612915565b80600c5f6101000a81548160ff0219169083151502179055507f70e09d90e688b0e5c51ed6e5f281c5a492b3f1c40dfcc29bb68da0487f806c228160405161198f9190612fd0565b60405180910390a150565b6119a2612915565b5f6009549050816009819055507fdf4c77117c3790cb06ec2a2cb697339995b12f06632a4984cc7eb3c3daebaed881836040516119e09291906134c2565b60405180910390a15050565b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b611a19612915565b818190508484905014611a58576040517fa24a13a600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f5b84849050811015611b3e57828282818110611a7857611a776137d8565b5b9050602002013560085f878785818110611a9557611a946137d8565b5b9050602002013581526020019081526020015f208190555060075f868684818110611ac357611ac26137d8565b5b9050602002013581526020019081526020015f205f9054906101000a900460ff16611b2b57600160075f878785818110611b0057611aff6137d8565b5b9050602002013581526020019081526020015f205f6101000a81548160ff0219169083151502179055505b8080611b3690613805565b915050611a5a565b5050505050565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b611b74612a5d565b60065f9054906101000a900460ff16611bb9576040517feb56075600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60075f8781526020019081526020015f205f9054906101000a900460ff1615611c0e576040517fa8ace31b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82421115611c48576040517f0819bdcd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611c5733878787878787612aa3565b611c8d576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60055490505f600c5f9054906101000a900460ff168015611cfc57505f73ffffffffffffffffffffffffffffffffffffffff16600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614155b15611e8e57600d5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16611e8d575f600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1662fdd58e33600b546040518363ffffffff1660e01b8152600401611dad929190613636565b602060405180830381865afa158015611dc8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dec9190613671565b1115611e8c57600a5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663f242432a3361dead600b5460016040518563ffffffff1660e01b8152600401611e57949392919061370e565b5f604051808303815f87803b158015611e6e575f80fd5b505af1158015611e80573d5f803e3d5ffd5b505050505f9150600190505b5b5b81341015611ec8576040517fcd1c886700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8015611f24576001600d5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055505b5f6009549050600160075f8b81526020019081526020015f205f6101000a81548160ff0219169083151502179055508060085f8b81526020019081526020015f2081905550600181611f769190613557565b6009819055505f3411156120b5575f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1634604051611fca90613516565b5f6040518083038185875af1925050503d805f8114612004576040519150601f19603f3d011682016040523d82523d5f602084013e612009565b606091505b5050905080612044576040517ff499da2000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f7e99594d80a854f08e1995929bca50d03000411d5987bfea7071cc8d125762c4346040516120ab9190612f9d565b60405180910390a2505b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636c6ad242338a8a6040518463ffffffff1660e01b8152600401612113939291906135e4565b5f604051808303815f87803b15801561212a575f80fd5b505af115801561213c573d5f803e3d5ffd5b5050505080893373ffffffffffffffffffffffffffffffffffffffff167f3cc3fa16ccd3bea979668a91ffefb9bf82fe6709f3b9f870da55a6fc9e4792c28b8b60405161218a929190613614565b60405180910390a450505061219d612b98565b505050505050565b60105f9054906101000a900460ff1681565b6121bf612915565b83839050868690501415806121da5750818190508686905014155b15612211576040517fa24a13a600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60095490505f5b87879050811015612494575f888883818110612238576122376137d8565b5b905060200201602081019061224d9190612f05565b90505f878784818110612263576122626137d8565b5b905060200201359050365f878786818110612281576122806137d8565b5b90506020028101906122939190613858565b915091505f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16036122fc576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60075f8481526020019081526020015f205f9054906101000a900460ff1615612351576040517fa8ace31b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f858761235e9190613557565b9050600160075f8681526020019081526020015f205f6101000a81548160ff0219169083151502179055508060085f8681526020019081526020015f208190555060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636c6ad2428685856040518463ffffffff1660e01b81526004016123fd939291906135e4565b5f604051808303815f87803b158015612414575f80fd5b505af1158015612426573d5f803e3d5ffd5b5050505080848673ffffffffffffffffffffffffffffffffffffffff167f3cc3fa16ccd3bea979668a91ffefb9bf82fe6709f3b9f870da55a6fc9e4792c28686604051612474929190613614565b60405180910390a45050505050808061248c90613805565b915050612219565b5086869050816124a49190613557565b60098190555050505050505050565b6124bb612915565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603612520576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160035f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f3031b4b27765dea43fa73ae93b7d9fda4f5fa1019ac8d1f82c4f48b6189da2f281836040516125b692919061349b565b60405180910390a15050565b6125ca612915565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361262f576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8173ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016126699190612ff8565b602060405180830381865afa158015612684573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906126a89190613671565b90505f811115612770575f8273ffffffffffffffffffffffffffffffffffffffff1663a9059cbb6126d7611b45565b846040518363ffffffff1660e01b81526004016126f5929190613636565b6020604051808303815f875af1158015612711573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061273591906137ad565b90508061276e576040517ff871b5aa00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505b5050565b5f60075f8381526020019081526020015f205f9054906101000a900460ff169050919050565b600e5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b6127ec612915565b8060065f6101000a81548160ff0219169083151502179055507f4f6846e1a6a026ffba330735c9ca2845cfe23bccb44541d241c637b8542fa7a0816040516128349190612fd0565b60405180910390a150565b612847612915565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036128b7575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016128ae9190612ff8565b60405180910390fd5b6128c08161299c565b50565b6128cb612915565b5f6005549050816005819055507f2e1c9e000c6e8dda4d03536adb13b7cb6034ccff90d17f01de381e4d5097b52581836040516129099291906134c2565b60405180910390a15050565b61291d612ba1565b73ffffffffffffffffffffffffffffffffffffffff1661293b611b45565b73ffffffffffffffffffffffffffffffffffffffff161461299a5761295e612ba1565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016129919190612ff8565b60405180910390fd5b565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600260015403612a99576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600181905550565b5f80888888888846604051602001612ac09695949392919061394d565b6040516020818303038152906040528051906020012090505f612ae282612ba8565b905060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16612b7286868080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f8201169050808301925050505050505083612bdb90919063ffffffff16565b73ffffffffffffffffffffffffffffffffffffffff161492505050979650505050505050565b60018081905550565b5f33905090565b5f7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f5281601c52603c5f209050919050565b5f805f80612be98686612c05565b925092509250612bf98282612c5a565b82935050505092915050565b5f805f6041845103612c45575f805f602087015192506040870151915060608701515f1a9050612c3788828585612dbc565b955095509550505050612c53565b5f600285515f1b9250925092505b9250925092565b5f6003811115612c6d57612c6c6139a9565b5b826003811115612c8057612c7f6139a9565b5b0315612db85760016003811115612c9a57612c996139a9565b5b826003811115612cad57612cac6139a9565b5b03612ce4576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026003811115612cf857612cf76139a9565b5b826003811115612d0b57612d0a6139a9565b5b03612d4f57805f1c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401612d469190612f9d565b60405180910390fd5b600380811115612d6257612d616139a9565b5b826003811115612d7557612d746139a9565b5b03612db757806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401612dae91906139ee565b60405180910390fd5b5b5050565b5f805f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115612df8575f600385925092509250612e99565b5f6001888888886040515f8152602001604052604051612e1b9493929190613a22565b6020604051602081039080840390855afa158015612e3b573d5f803e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603612e8c575f60015f801b93509350935050612e99565b805f805f1b935093509350505b9450945094915050565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f612ed482612eab565b9050919050565b612ee481612eca565b8114612eee575f80fd5b50565b5f81359050612eff81612edb565b92915050565b5f60208284031215612f1a57612f19612ea3565b5b5f612f2784828501612ef1565b91505092915050565b5f819050919050565b612f4281612f30565b8114612f4c575f80fd5b50565b5f81359050612f5d81612f39565b92915050565b5f60208284031215612f7857612f77612ea3565b5b5f612f8584828501612f4f565b91505092915050565b612f9781612f30565b82525050565b5f602082019050612fb05f830184612f8e565b92915050565b5f8115159050919050565b612fca81612fb6565b82525050565b5f602082019050612fe35f830184612fc1565b92915050565b612ff281612eca565b82525050565b5f60208201905061300b5f830184612fe9565b92915050565b61301a81612fb6565b8114613024575f80fd5b50565b5f8135905061303581613011565b92915050565b5f602082840312156130505761304f612ea3565b5b5f61305d84828501613027565b91505092915050565b5f806040838503121561307c5761307b612ea3565b5b5f61308985828601612ef1565b925050602061309a85828601613027565b9150509250929050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f8401126130c5576130c46130a4565b5b8235905067ffffffffffffffff8111156130e2576130e16130a8565b5b6020830191508360018202830111156130fe576130fd6130ac565b5b9250929050565b5f805f806060858703121561311d5761311c612ea3565b5b5f61312a87828801612ef1565b945050602061313b87828801612f4f565b935050604085013567ffffffffffffffff81111561315c5761315b612ea7565b5b613168878288016130b0565b925092505092959194509250565b5f8083601f84011261318b5761318a6130a4565b5b8235905067ffffffffffffffff8111156131a8576131a76130a8565b5b6020830191508360018202830111156131c4576131c36130ac565b5b9250929050565b5f805f805f80608087890312156131e5576131e4612ea3565b5b5f6131f289828a01612f4f565b965050602087013567ffffffffffffffff81111561321357613212612ea7565b5b61321f89828a016130b0565b9550955050604061323289828a01612f4f565b935050606087013567ffffffffffffffff81111561325357613252612ea7565b5b61325f89828a01613176565b92509250509295509295509295565b5f8083601f840112613283576132826130a4565b5b8235905067ffffffffffffffff8111156132a05761329f6130a8565b5b6020830191508360208202830111156132bc576132bb6130ac565b5b9250929050565b5f805f80604085870312156132db576132da612ea3565b5b5f85013567ffffffffffffffff8111156132f8576132f7612ea7565b5b6133048782880161326e565b9450945050602085013567ffffffffffffffff81111561332757613326612ea7565b5b6133338782880161326e565b925092505092959194509250565b5f8083601f840112613356576133556130a4565b5b8235905067ffffffffffffffff811115613373576133726130a8565b5b60208301915083602082028301111561338f5761338e6130ac565b5b9250929050565b5f8083601f8401126133ab576133aa6130a4565b5b8235905067ffffffffffffffff8111156133c8576133c76130a8565b5b6020830191508360208202830111156133e4576133e36130ac565b5b9250929050565b5f805f805f806060878903121561340557613404612ea3565b5b5f87013567ffffffffffffffff81111561342257613421612ea7565b5b61342e89828a01613341565b9650965050602087013567ffffffffffffffff81111561345157613450612ea7565b5b61345d89828a0161326e565b9450945050604087013567ffffffffffffffff8111156134805761347f612ea7565b5b61348c89828a01613396565b92509250509295509295509295565b5f6040820190506134ae5f830185612fe9565b6134bb6020830184612fe9565b9392505050565b5f6040820190506134d55f830185612f8e565b6134e26020830184612f8e565b9392505050565b5f81905092915050565b50565b5f6135015f836134e9565b915061350c826134f3565b5f82019050919050565b5f613520826134f6565b9150819050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61356182612f30565b915061356c83612f30565b92508282019050808211156135845761358361352a565b5b92915050565b5f82825260208201905092915050565b828183375f83830152505050565b5f601f19601f8301169050919050565b5f6135c3838561358a565b93506135d083858461359a565b6135d9836135a8565b840190509392505050565b5f6040820190506135f75f830186612fe9565b818103602083015261360a8184866135b8565b9050949350505050565b5f6020820190508181035f83015261362d8184866135b8565b90509392505050565b5f6040820190506136495f830185612fe9565b6136566020830184612f8e565b9392505050565b5f8151905061366b81612f39565b92915050565b5f6020828403121561368657613685612ea3565b5b5f6136938482850161365d565b91505092915050565b5f819050919050565b5f819050919050565b5f6136c86136c36136be8461369c565b6136a5565b612f30565b9050919050565b6136d8816136ae565b82525050565b5f82825260208201905092915050565b5f6136f95f836136de565b9150613704826134f3565b5f82019050919050565b5f60a0820190506137215f830187612fe9565b61372e6020830186612fe9565b61373b6040830185612f8e565b61374860608301846136cf565b8181036080830152613759816136ee565b905095945050505050565b5f6060820190506137775f830186612fe9565b6137846020830185612fe9565b6137916040830184612f8e565b949350505050565b5f815190506137a781613011565b92915050565b5f602082840312156137c2576137c1612ea3565b5b5f6137cf84828501613799565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f61380f82612f30565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036138415761384061352a565b5b600182019050919050565b5f80fd5b5f80fd5b5f80fd5b5f80833560016020038436030381126138745761387361384c565b5b80840192508235915067ffffffffffffffff82111561389657613895613850565b5b6020830192506001820236038313156138b2576138b1613854565b5b509250929050565b5f8160601b9050919050565b5f6138d0826138ba565b9050919050565b5f6138e1826138c6565b9050919050565b6138f96138f482612eca565b6138d7565b82525050565b5f819050919050565b61391961391482612f30565b6138ff565b82525050565b5f81905092915050565b5f613934838561391f565b935061394183858461359a565b82840190509392505050565b5f61395882896138e8565b6014820191506139688288613908565b602082019150613979828688613929565b91506139858285613908565b6020820191506139958284613908565b602082019150819050979650505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b5f819050919050565b6139e8816139d6565b82525050565b5f602082019050613a015f8301846139df565b92915050565b5f60ff82169050919050565b613a1c81613a07565b82525050565b5f608082019050613a355f8301876139df565b613a426020830186613a13565b613a4f60408301856139df565b613a5c60608301846139df565b9594505050505056fea2646970667358221220407273d1d9d8901b735c12483293687179d41758792b1ad2034eb56c33144ad664736f6c63430008140033
Verified Source Code Full Match
Compiler: v0.8.20+commit.a1b79de6
EVM: shanghai
Optimization: No
BitmapRegistryMinter.sol 573 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
/**
* @title BitmapRegistryMinter
* @notice Middleman contract for minting archived Bitmap NFTs via Transient Labs core contract
*/
// Interface for Transient Labs Core Contract
interface ITLCoreContract {
function externalMint(address recipient, string calldata uri) external;
}
// Interface for ERC1155 balance check and transfer
interface IERC1155 {
function balanceOf(address account, uint256 id) external view returns (uint256);
function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
}
// Interface for ERC20 token transfers
interface IERC20 {
function transfer(address to, uint256 amount) external returns (bool);
function transferFrom(address from, address to, uint256 amount) external returns (bool);
function balanceOf(address account) external view returns (uint256);
}
contract BitmapRegistryMinter is Ownable, ReentrancyGuard {
using ECDSA for bytes32;
// =============================================================
// STATE
// =============================================================
/// @notice Address that signs mint authorization
address public signerAddress;
/// @notice Transient Labs NFT Core Contract address
address public coreContract;
/// @notice Wallet that receives mint payments automatically
address public payoutWallet;
/// @notice Price to mint a single day/block
uint256 public mintPrice;
/// @notice Whether minting is currently active
bool public isMintActive;
/// @notice Tracks which days/blocks have been minted (dayId => minted)
mapping(uint256 => bool) public dayMinted;
/// @notice Maps dayId to the actual tokenId in the core contract
mapping(uint256 => uint256) public dayToTokenId;
/// @notice The next token ID that will be assigned (matches core contract sequence)
uint256 public nextTokenId;
/// @notice Address of the Data Block NFT collection for free mint eligibility
address public dataBlockCollection;
/// @notice Specific token ID in the ERC1155 collection required for free mint
uint256 public dataBlockTokenId = 1;
/// @notice Toggle for Data Block free mint logic
bool public dataBlockFreeMintActive;
/// @notice Tracks whether an address has already claimed their single free mint
mapping(address => bool) public hasClaimedFreeMint;
/// @notice ERC-20 token address accepted for payment (optional)
address public erc20PaymentToken;
/// @notice Price to mint in ERC-20 tokens (uses token's decimals)
uint256 public erc20MintPrice;
/// @notice Toggle for ERC-20 payment option
bool public isErc20PaymentActive;
/// @notice Dead address for burning tokens (tokens sent here are permanently inaccessible)
address constant public DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;
// =============================================================
// EVENTS
// =============================================================
event DayMinted(address indexed minter, uint256 indexed dayId, uint256 indexed tokenId, string uri);
event MintPriceUpdated(uint256 oldPrice, uint256 newPrice);
event MintActiveUpdated(bool active);
event SignerAddressUpdated(address oldSigner, address newSigner);
event CoreContractUpdated(address oldContract, address newContract);
event PayoutWalletUpdated(address oldWallet, address newWallet);
event NextTokenIdUpdated(uint256 oldId, uint256 newId);
event PaymentForwarded(address indexed to, uint256 amount);
event FundsWithdrawn(address indexed to, uint256 amount);
event DataBlockCollectionUpdated(address indexed oldCollection, address indexed newCollection);
event DataBlockTokenIdUpdated(uint256 oldId, uint256 newId);
event DataBlockFreeMintActiveUpdated(bool active);
event Erc20PaymentTokenUpdated(address indexed oldToken, address indexed newToken);
event Erc20MintPriceUpdated(uint256 oldPrice, uint256 newPrice);
event Erc20PaymentActiveUpdated(bool active);
event Erc20PaymentReceived(address indexed from, address indexed token, uint256 amount);
// =============================================================
// ERRORS
// =============================================================
error MintingPaused();
error InsufficientPayment();
error DayAlreadyMinted();
error SignatureExpired();
error InvalidSignature();
error PaymentFailed();
error WithdrawFailed();
error ZeroAddress();
error Erc20TransferFailed();
error Erc20PaymentNotActive();
error InvalidPaymentMethod();
error ArrayLengthMismatch();
// =============================================================
// CONSTRUCTOR
// =============================================================
/**
* @param _coreContract Transient Labs core contract address
* @param _signerAddress Address of the wallet signing mint authorizations
* @param _payoutWallet Address that receives mint payments
* @param _mintPrice Initial mint price in wei
* @param _startTokenId The starting token ID (should match next available ID on core contract)
*/
constructor(
address _coreContract,
address _signerAddress,
address _payoutWallet,
uint256 _mintPrice,
uint256 _startTokenId
) Ownable(msg.sender) {
if (_coreContract == address(0) || _signerAddress == address(0) || _payoutWallet == address(0)) revert ZeroAddress();
coreContract = _coreContract;
signerAddress = _signerAddress;
payoutWallet = _payoutWallet;
mintPrice = _mintPrice;
nextTokenId = _startTokenId;
isMintActive = false;
}
// =============================================================
// MINT FUNCTION
// =============================================================
/**
* @notice Mint an archived day/block as an NFT
* @param dayId The unique identifier for the day/block (e.g., Bitcoin block number)
* @param uri The metadata URI for this token
* @param deadline Unix timestamp after which the signature expires
* @param signature Server-signed authorization
*/
function mintDay(
uint256 dayId,
string calldata uri,
uint256 deadline,
bytes calldata signature
) external payable nonReentrant {
// Checks
if (!isMintActive) revert MintingPaused();
if (dayMinted[dayId]) revert DayAlreadyMinted();
if (block.timestamp > deadline) revert SignatureExpired();
if (!_verifySignature(msg.sender, dayId, uri, deadline, signature)) revert InvalidSignature();
uint256 price = mintPrice;
bool isFreeMint = false;
// If Data Block free mint is active, check eligibility (1 per wallet for holders)
if (dataBlockFreeMintActive && dataBlockCollection != address(0)) {
if (!hasClaimedFreeMint[msg.sender]) {
if (IERC1155(dataBlockCollection).balanceOf(msg.sender, dataBlockTokenId) > 0) {
// Burn 1 Data Block by sending to dead address
IERC1155(dataBlockCollection).safeTransferFrom(
msg.sender,
DEAD_ADDRESS,
dataBlockTokenId,
1,
""
);
price = 0;
isFreeMint = true;
}
}
}
if (msg.value < price) revert InsufficientPayment();
// Effects
if (isFreeMint) {
hasClaimedFreeMint[msg.sender] = true;
}
uint256 tokenId = nextTokenId;
dayMinted[dayId] = true;
dayToTokenId[dayId] = tokenId;
nextTokenId = tokenId + 1;
// Interactions - Forward payment to payout wallet if any
if (msg.value > 0) {
(bool paymentSuccess, ) = payable(payoutWallet).call{value: msg.value}("");
if (!paymentSuccess) revert PaymentFailed();
emit PaymentForwarded(payoutWallet, msg.value);
}
// Mint the NFT
ITLCoreContract(coreContract).externalMint(msg.sender, uri);
emit DayMinted(msg.sender, dayId, tokenId, uri);
}
/**
* @notice Mint an archived day/block as an NFT using ERC-20 token payment
* @param dayId The unique identifier for the day/block (e.g., Bitcoin block number)
* @param uri The metadata URI for this token
* @param deadline Unix timestamp after which the signature expires
* @param signature Server-signed authorization
* @dev Requires prior ERC-20 approval from minter to this contract
*/
function mintDayWithErc20(
uint256 dayId,
string calldata uri,
uint256 deadline,
bytes calldata signature
) external nonReentrant {
// Checks
if (!isMintActive) revert MintingPaused();
if (!isErc20PaymentActive) revert Erc20PaymentNotActive();
if (erc20PaymentToken == address(0)) revert ZeroAddress();
if (dayMinted[dayId]) revert DayAlreadyMinted();
if (block.timestamp > deadline) revert SignatureExpired();
if (!_verifySignature(msg.sender, dayId, uri, deadline, signature)) revert InvalidSignature();
uint256 price = erc20MintPrice;
bool isFreeMint = false;
// If Data Block free mint is active, check eligibility (1 per wallet for holders)
if (dataBlockFreeMintActive && dataBlockCollection != address(0)) {
if (!hasClaimedFreeMint[msg.sender]) {
if (IERC1155(dataBlockCollection).balanceOf(msg.sender, dataBlockTokenId) > 0) {
// Burn 1 Data Block by sending to dead address
IERC1155(dataBlockCollection).safeTransferFrom(
msg.sender,
DEAD_ADDRESS,
dataBlockTokenId,
1,
""
);
price = 0;
isFreeMint = true;
}
}
}
// Effects
if (isFreeMint) {
hasClaimedFreeMint[msg.sender] = true;
}
uint256 tokenId = nextTokenId;
dayMinted[dayId] = true;
dayToTokenId[dayId] = tokenId;
nextTokenId = tokenId + 1;
// Interactions - Transfer ERC-20 payment to payout wallet if any
if (price > 0) {
bool success = IERC20(erc20PaymentToken).transferFrom(msg.sender, payoutWallet, price);
if (!success) revert Erc20TransferFailed();
emit Erc20PaymentReceived(msg.sender, erc20PaymentToken, price);
}
// Mint the NFT
ITLCoreContract(coreContract).externalMint(msg.sender, uri);
emit DayMinted(msg.sender, dayId, tokenId, uri);
}
// =============================================================
// SIGNATURE VERIFICATION
// =============================================================
/**
* @dev Verifies the signature was created by the authorized signer
* @param sender The address attempting to mint
* @param dayId The day/block being minted
* @param uri The metadata URI
* @param deadline Expiration timestamp
* @param signature The cryptographic signature
*/
function _verifySignature(
address sender,
uint256 dayId,
string calldata uri,
uint256 deadline,
bytes calldata signature
) internal view returns (bool) {
// Reconstruct the message hash exactly as the backend creates it
// Includes chainid to prevent cross-chain replay attacks
bytes32 messageHash = keccak256(
abi.encodePacked(sender, dayId, uri, deadline, block.chainid)
);
bytes32 ethSignedMessageHash = MessageHashUtils.toEthSignedMessageHash(messageHash);
// Recover signer and verify
return ethSignedMessageHash.recover(signature) == signerAddress;
}
// =============================================================
// ADMIN FUNCTIONS
// =============================================================
/**
* @notice Update the Data Block collection address for free mints
* @param _collection New collection address
*/
function setDataBlockCollection(address _collection) external onlyOwner {
address oldCollection = dataBlockCollection;
dataBlockCollection = _collection;
emit DataBlockCollectionUpdated(oldCollection, _collection);
}
/**
* @notice Update the Data Block token ID for free mints (ERC1155)
* @param _tokenId New token ID
*/
function setDataBlockTokenId(uint256 _tokenId) external onlyOwner {
uint256 oldId = dataBlockTokenId;
dataBlockTokenId = _tokenId;
emit DataBlockTokenIdUpdated(oldId, _tokenId);
}
/**
* @notice Enable or disable the Data Block free mint logic
* @param _active Whether free mint logic should be active
*/
function setDataBlockFreeMintActive(bool _active) external onlyOwner {
dataBlockFreeMintActive = _active;
emit DataBlockFreeMintActiveUpdated(_active);
}
/**
* @notice Manually set free mint claim status for a wallet
* @param _wallet Wallet address
* @param _status Claim status
*/
function setHasClaimedFreeMint(address _wallet, bool _status) external onlyOwner {
hasClaimedFreeMint[_wallet] = _status;
}
/**
* @notice Set the ERC-20 token address accepted for payment
* @param _token ERC-20 token contract address
*/
function setErc20PaymentToken(address _token) external onlyOwner {
address oldToken = erc20PaymentToken;
erc20PaymentToken = _token;
emit Erc20PaymentTokenUpdated(oldToken, _token);
}
/**
* @notice Set the mint price in ERC-20 tokens
* @param _price Price in the smallest unit of the ERC-20 token (e.g., wei for 18 decimal tokens)
*/
function setErc20MintPrice(uint256 _price) external onlyOwner {
uint256 oldPrice = erc20MintPrice;
erc20MintPrice = _price;
emit Erc20MintPriceUpdated(oldPrice, _price);
}
/**
* @notice Enable or disable ERC-20 payment option
* @param _active Whether ERC-20 payment should be active
*/
function setErc20PaymentActive(bool _active) external onlyOwner {
isErc20PaymentActive = _active;
emit Erc20PaymentActiveUpdated(_active);
}
/**
* @notice Withdraw any ERC-20 tokens stuck in contract (for edge cases)
* @param _token ERC-20 token address to withdraw
*/
function withdrawErc20(address _token) external onlyOwner {
if (_token == address(0)) revert ZeroAddress();
uint256 balance = IERC20(_token).balanceOf(address(this));
if (balance > 0) {
bool success = IERC20(_token).transfer(owner(), balance);
if (!success) revert Erc20TransferFailed();
}
}
/**
* @notice Airdrop a day/block to a specific recipient (Admin only)
* @param recipient The address to receive the NFT
* @param dayId The day/block to mint
* @param uri The metadata URI
*/
function airdropDay(
address recipient,
uint256 dayId,
string calldata uri
) external onlyOwner {
if (recipient == address(0)) revert ZeroAddress();
if (dayMinted[dayId]) revert DayAlreadyMinted();
// Effects
uint256 tokenId = nextTokenId;
dayMinted[dayId] = true;
dayToTokenId[dayId] = tokenId;
nextTokenId = tokenId + 1;
// Interactions - Mint the NFT to recipient
ITLCoreContract(coreContract).externalMint(recipient, uri);
emit DayMinted(recipient, dayId, tokenId, uri);
}
/**
* @notice Airdrop multiple days/blocks in one transaction (Admin only)
* @param recipients Array of addresses to receive the NFTs
* @param dayIds Array of day/block IDs to mint
* @param uris Array of metadata URIs
*/
function airdropBatch(
address[] calldata recipients,
uint256[] calldata dayIds,
string[] calldata uris
) external onlyOwner {
if (recipients.length != dayIds.length || recipients.length != uris.length) revert ArrayLengthMismatch();
uint256 startTokenId = nextTokenId;
for (uint256 i = 0; i < recipients.length; i++) {
address recipient = recipients[i];
uint256 dayId = dayIds[i];
string calldata uri = uris[i];
if (recipient == address(0)) revert ZeroAddress();
if (dayMinted[dayId]) revert DayAlreadyMinted();
// Effects
uint256 tokenId = startTokenId + i;
dayMinted[dayId] = true;
dayToTokenId[dayId] = tokenId;
// Interactions
ITLCoreContract(coreContract).externalMint(recipient, uri);
emit DayMinted(recipient, dayId, tokenId, uri);
}
nextTokenId = startTokenId + recipients.length;
}
/**
* @notice Update the mint price
* @param _price New price in wei
*/
function setMintPrice(uint256 _price) external onlyOwner {
uint256 oldPrice = mintPrice;
mintPrice = _price;
emit MintPriceUpdated(oldPrice, _price);
}
/**
* @notice Enable or disable minting
* @param _active Whether minting should be active
*/
function setMintActive(bool _active) external onlyOwner {
isMintActive = _active;
emit MintActiveUpdated(_active);
}
/**
* @notice Update the signer address
* @param _signer New signer address
*/
function setSignerAddress(address _signer) external onlyOwner {
if (_signer == address(0)) revert ZeroAddress();
address oldSigner = signerAddress;
signerAddress = _signer;
emit SignerAddressUpdated(oldSigner, _signer);
}
/**
* @notice Update the core contract address
* @param _coreContract New core contract address
*/
function setCoreContract(address _coreContract) external onlyOwner {
if (_coreContract == address(0)) revert ZeroAddress();
address oldContract = coreContract;
coreContract = _coreContract;
emit CoreContractUpdated(oldContract, _coreContract);
}
/**
* @notice Update the payout wallet address
* @param _payoutWallet New payout wallet address
*/
function setPayoutWallet(address _payoutWallet) external onlyOwner {
if (_payoutWallet == address(0)) revert ZeroAddress();
address oldWallet = payoutWallet;
payoutWallet = _payoutWallet;
emit PayoutWalletUpdated(oldWallet, _payoutWallet);
}
/**
* @notice Update the next token ID
* @param _nextId New next token ID
*/
function setNextTokenId(uint256 _nextId) external onlyOwner {
uint256 oldId = nextTokenId;
nextTokenId = _nextId;
emit NextTokenIdUpdated(oldId, _nextId);
}
/**
* @notice Manually set token IDs for multiple days in batch
* @param _dayIds Array of day/block numbers to set
* @param _tokenIds Array of token IDs to associate with each day
*/
function setTokenIdsForDays(uint256[] calldata _dayIds, uint256[] calldata _tokenIds) external onlyOwner {
if (_dayIds.length != _tokenIds.length) revert ArrayLengthMismatch();
for (uint256 i = 0; i < _dayIds.length; i++) {
dayToTokenId[_dayIds[i]] = _tokenIds[i];
// Also mark as minted if not already
if (!dayMinted[_dayIds[i]]) {
dayMinted[_dayIds[i]] = true;
}
}
}
/**
* @notice Withdraw any ETH stuck in contract (for edge cases like accidental sends)
*/
function withdraw() external onlyOwner {
uint256 amount = address(this).balance;
(bool success, ) = payable(owner()).call{value: amount}("");
if (!success) revert WithdrawFailed();
emit FundsWithdrawn(owner(), amount);
}
// =============================================================
// VIEW FUNCTIONS
// =============================================================
/**
* @notice Check if a day has been minted
* @param dayId The day/block to check
*/
function isDayMinted(uint256 dayId) external view returns (bool) {
return dayMinted[dayId];
}
/**
* @notice Get the token ID for a minted day
* @param dayId The day/block to look up
* @return tokenId The token ID in the core contract (0 if not minted)
*/
function getTokenIdForDay(uint256 dayId) external view returns (uint256) {
return dayToTokenId[dayId];
}
}
ReentrancyGuard.sol 87 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
MessageHashUtils.sol 99 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
ECDSA.sol 180 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Strings.sol 490 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
SignedMath.sol 68 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
Math.sol 749 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
Panic.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
Read Contract
DEAD_ADDRESS 0x4e6fd6c4 → address
coreContract 0xe80db5db → address
dataBlockCollection 0x77b36738 → address
dataBlockFreeMintActive 0x77e4be09 → bool
dataBlockTokenId 0x6c8b213d → uint256
dayMinted 0x57743238 → bool
dayToTokenId 0x06995c68 → uint256
erc20MintPrice 0x3f6c9bba → uint256
erc20PaymentToken 0xd3fb9359 → address
getTokenIdForDay 0x0ef192fe → uint256
hasClaimedFreeMint 0x428640d8 → bool
isDayMinted 0xccdf4f9a → bool
isErc20PaymentActive 0x9c345408 → bool
isMintActive 0x5b92ac0d → bool
mintPrice 0x6817c76c → uint256
nextTokenId 0x75794a3c → uint256
owner 0x8da5cb5b → address
payoutWallet 0x8488bb4e → address
signerAddress 0x5b7633d0 → address
Write Contract 22 functions
These functions modify contract state and require a wallet transaction to execute.
airdropBatch 0x9c5c2c32
address[] recipients
uint256[] dayIds
string[] uris
airdropDay 0x7ac6140e
address recipient
uint256 dayId
string uri
mintDay 0x90e95fe2
uint256 dayId
string uri
uint256 deadline
bytes signature
mintDayWithErc20 0x802dda00
uint256 dayId
string uri
uint256 deadline
bytes signature
renounceOwnership 0x715018a6
No parameters
setCoreContract 0xc6266693
address _coreContract
setDataBlockCollection 0x7affe775
address _collection
setDataBlockFreeMintActive 0x82686e3f
bool _active
setDataBlockTokenId 0x4d2b9d67
uint256 _tokenId
setErc20MintPrice 0x37d7fbfe
uint256 _price
setErc20PaymentActive 0x5c5ef884
bool _active
setErc20PaymentToken 0x3cc3a0ed
address _token
setHasClaimedFreeMint 0x66db8780
address _wallet
bool _status
setMintActive 0xee1cc944
bool _active
setMintPrice 0xf4a0a528
uint256 _price
setNextTokenId 0x83e3500f
uint256 _nextId
setPayoutWallet 0x6b8f9c43
address _payoutWallet
setSignerAddress 0x046dc166
address _signer
setTokenIdsForDays 0x8648e4d1
uint256[] _dayIds
uint256[] _tokenIds
transferOwnership 0xf2fde38b
address newOwner
withdraw 0x3ccfd60b
No parameters
withdrawErc20 0xc7e42b1b
address _token
Recent Transactions
No transactions found for this address