Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x6F6FB6fBEc4FB65A6535357d9D7e8f4f62319Ac0
Balance 0 ETH
Nonce 1
Code Size 5474 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

5474 bytes
0x608060405234801561001057600080fd5b50600436106100ea5760003560e01c8063715018a61161008c578063aa6ca80811610066578063aa6ca808146101d4578063b4d88938146101e9578063ccf362c8146101fc578063f2fde38b1461021d57600080fd5b8063715018a61461018e5780638da5cb5b146101965780639353b9df146101b157600080fd5b806328f7c72c116100c857806328f7c72c146101425780635a6b9a7a1461015557806363c6a5e4146101685780636fa320b61461017b57600080fd5b806302aa6318146100ef57806321497b321461010d57806328747eb11461012d575b600080fd5b6100f7610230565b6040516101049190610f5a565b60405180910390f35b61012061011b366004611011565b6103e4565b604051610104919061102c565b61014061013b3660046110bb565b61049a565b005b610140610150366004611115565b610695565b6101406101633660046111bb565b610745565b610140610176366004611011565b6108ea565b6101406101893660046111bb565b610998565b610140610a9d565b6000546040516001600160a01b039091168152602001610104565b6101c46101bf366004611011565b610ab1565b604051610104949392919061124d565b6101dc610b73565b6040516101049190611286565b6101406101f73660046111bb565b610bd5565b61020f61020a3660046112c7565b610cd6565b604051908152602001610104565b61014061022b366004611011565b610d03565b60015460609060009067ffffffffffffffff811115610251576102516112fa565b6040519080825280602002602001820160405280156102a257816020015b604080516080810182526000808252602080830182905292820152606080820152825260001990920191018161026f5790505b50905060005b81518110156103de5760026000600183815481106102c8576102c8611310565b6000918252602080832091909101546001600160a01b039081168452838201949094526040928301909120825160808101845281549485168152600160a01b90940460ff1615159184019190915260018101549183019190915260028101805460608401919061033790611326565b80601f016020809104026020016040519081016040528092919081815260200182805461036390611326565b80156103b05780601f10610385576101008083540402835291602001916103b0565b820191906000526020600020905b81548152906001019060200180831161039357829003601f168201915b5050505050815250508282815181106103cb576103cb611310565b60209081029190910101526001016102a8565b50919050565b60015460609060008167ffffffffffffffff811115610405576104056112fa565b60405190808252806020026020018201604052801561042e578160200160208202803683370190505b50905060005b828110156104925761046d6001828154811061045257610452611310565b6000918252602090912001546001600160a01b031686610cd6565b82828151811061047f5761047f611310565b6020908102919091010152600101610434565b509392505050565b6001600160a01b038085166000908152600260205260409020548591166104d457604051633a35c2f960e01b815260040160405180910390fd5b6001600160a01b038516600090815260026020526040902054600160a01b900460ff161561051557604051634fde0cfb60e01b815260040160405180910390fd5b6001600160a01b038516600090815260026020908152604080832081513393810193909352908201879052919060600160408051601f19818403018152828252805160209182012090830152016040516020818303038152906040528051906020012090506105bb858580806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250505050600184015483610d46565b6105d8576040516309bde33960e01b815260040160405180910390fd5b856105e38833610cd6565b10610601576040516312d37ee560e31b815260040160405180910390fd5b600061060d8833610cd6565b610617908861135a565b6001600160a01b03891660008181526003602090815260408083203380855292529091208a905591925061064b9183610d5c565b6040518181526001600160a01b0389169033907ff7a40077ff7a04c7e61f6f26fb13774259ddf1b6bce9ecf26a8276cdd39926839060200160405180910390a35050505050505050565b84831415806106a45750848114155b156106c257604051631df89e8b60e01b815260040160405180910390fd5b60005b8581101561073c576107348787838181106106e2576106e2611310565b90506020020160208101906106f79190611011565b86868481811061070957610709611310565b9050602002013585858581811061072257610722611310565b905060200281019061013b919061137b565b6001016106c5565b50505050505050565b61074d610db3565b6001600160a01b0380861660009081526002602052604090205486911661078757604051633a35c2f960e01b815260040160405180910390fd5b6001600160a01b038616600090815260026020526040902054600160a01b900460ff166107c75760405163a35c9dcd60e01b815260040160405180910390fd5b6040516370a0823160e01b815230600482015286906000906001600160a01b038316906370a0823190602401602060405180830381865afa158015610810573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061083491906113c5565b90508015610850576108506001600160a01b0383163383610d5c565b6001600160a01b0388166000908152600260208190526040909120600181018990550161087e86888361142c565b506001600160a01b03881660008181526002602052604090819020805460ff60a01b19169055517fc4ec7a7b42a913a3a13905b59341adda4d7b1a07f407f343d6e439c605dfd920906108d8908a908a908a908a906114ec565b60405180910390a25050505050505050565b6108f2610db3565b6001600160a01b0380821660009081526002602052604090205482911661092c57604051633a35c2f960e01b815260040160405180910390fd5b6001600160a01b038216600090815260026020526040902054600160a01b900460ff161561096d57604051634fde0cfb60e01b815260040160405180910390fd5b506001600160a01b03166000908152600260205260409020805460ff60a01b1916600160a01b179055565b6109a0610db3565b6001600160a01b0385811660009081526002602052604090205416156109d957604051634ae0966d60e11b815260040160405180910390fd5b6001805480820182557fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf60180546001600160a01b0388166001600160a01b0319918216811790925560008281526002602081905260409091208054909216909217815591820186905501610a4e83858361142c565b50846001600160a01b03167f9a824e17bd9805e4733e5ec0e27fe252bf62d1227755699ee6292a0cd2f33db485858585604051610a8e94939291906114ec565b60405180910390a25050505050565b610aa5610db3565b610aaf6000610de0565b565b60026020819052600091825260409091208054600182015492820180546001600160a01b03831694600160a01b90930460ff16939190610af090611326565b80601f0160208091040260200160405190810160405280929190818152602001828054610b1c90611326565b8015610b695780601f10610b3e57610100808354040283529160200191610b69565b820191906000526020600020905b815481529060010190602001808311610b4c57829003601f168201915b5050505050905084565b60606001805480602002602001604051908101604052809291908181526020018280548015610bcb57602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610bad575b5050505050905090565b610bdd610db3565b6001600160a01b03808616600090815260026020526040902054869116610c1757604051633a35c2f960e01b815260040160405180910390fd5b6001600160a01b038616600090815260026020526040902054600160a01b900460ff1615610c5857604051634fde0cfb60e01b815260040160405180910390fd5b6001600160a01b03861660009081526002602081905260409091206001810187905501610c8684868361142c565b50856001600160a01b03167f9a824e17bd9805e4733e5ec0e27fe252bf62d1227755699ee6292a0cd2f33db486868686604051610cc694939291906114ec565b60405180910390a2505050505050565b6001600160a01b038083166000908152600360209081526040808320938516835292905220545b92915050565b610d0b610db3565b6001600160a01b038116610d3a57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b610d4381610de0565b50565b600082610d538584610e30565b14949350505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610dae908490610e6b565b505050565b6000546001600160a01b03163314610aaf5760405163118cdaa760e01b8152336004820152602401610d31565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600081815b845181101561049257610e6182868381518110610e5457610e54611310565b6020026020010151610ee2565b9150600101610e35565b600080602060008451602086016000885af180610e8e576040513d6000823e3d81fd5b50506000513d91508115610ea6578060011415610eb3565b6001600160a01b0384163b155b15610edc57604051635274afe760e01b81526001600160a01b0385166004820152602401610d31565b50505050565b6000818310610efe576000828152602084905260409020610f0d565b60008381526020839052604090205b9392505050565b6000815180845260005b81811015610f3a57602081850181015186830182015201610f1e565b506000602082860101526020601f19601f83011685010191505092915050565b6000602082016020835280845180835260408501915060408160051b86010192506020860160005b82811015610fe957868503603f19018452815180516001600160a01b0316865260208082015115159087015260408082015190870152606090810151608091870182905290610fd390870182610f14565b9550506020938401939190910190600101610f82565b50929695505050505050565b80356001600160a01b038116811461100c57600080fd5b919050565b60006020828403121561102357600080fd5b610f0d82610ff5565b602080825282518282018190526000918401906040840190835b81811015611064578351835260209384019390920191600101611046565b509095945050505050565b60008083601f84011261108157600080fd5b50813567ffffffffffffffff81111561109957600080fd5b6020830191508360208260051b85010111156110b457600080fd5b9250929050565b600080600080606085870312156110d157600080fd5b6110da85610ff5565b935060208501359250604085013567ffffffffffffffff8111156110fd57600080fd5b6111098782880161106f565b95989497509550505050565b6000806000806000806060878903121561112e57600080fd5b863567ffffffffffffffff81111561114557600080fd5b61115189828a0161106f565b909750955050602087013567ffffffffffffffff81111561117157600080fd5b61117d89828a0161106f565b909550935050604087013567ffffffffffffffff81111561119d57600080fd5b6111a989828a0161106f565b979a9699509497509295939492505050565b6000806000806000608086880312156111d357600080fd5b6111dc86610ff5565b945060208601359350604086013567ffffffffffffffff8111156111ff57600080fd5b8601601f8101881361121057600080fd5b803567ffffffffffffffff81111561122757600080fd5b88602082840101111561123957600080fd5b959894975060200195606001359392505050565b60018060a01b0385168152831515602082015282604082015260806060820152600061127c6080830184610f14565b9695505050505050565b602080825282518282018190526000918401906040840190835b818110156110645783516001600160a01b03168352602093840193909201916001016112a0565b600080604083850312156112da57600080fd5b6112e383610ff5565b91506112f160208401610ff5565b90509250929050565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b600181811c9082168061133a57607f821691505b6020821081036103de57634e487b7160e01b600052602260045260246000fd5b81810381811115610cfd57634e487b7160e01b600052601160045260246000fd5b6000808335601e1984360301811261139257600080fd5b83018035915067ffffffffffffffff8211156113ad57600080fd5b6020019150600581901b36038213156110b457600080fd5b6000602082840312156113d757600080fd5b5051919050565b601f821115610dae57806000526020600020601f840160051c810160208510156114055750805b601f840160051c820191505b818110156114255760008155600101611411565b5050505050565b67ffffffffffffffff831115611444576114446112fa565b611458836114528354611326565b836113de565b6000601f84116001811461148c57600085156114745750838201355b600019600387901b1c1916600186901b178355611425565b600083815260209020601f19861690835b828110156114bd578685013582556020948501946001909201910161149d565b50868210156114da5760001960f88860031b161c19848701351681555b505060018560011b0183555050505050565b848152606060208201528260608201528284608083013760006080848301015260006080601f19601f86011683010190508260408301529594505050505056fea264697066735822122065f53c37ae54642910217f9770a62cd83b61437cb204bc5eff9ccd5511cc180e64736f6c634300081d0033

Verified Source Code Full Match

Compiler: v0.8.29+commit.ab55807c EVM: paris Optimization: Yes (200 runs)
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
IERC1363.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
IERC165.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";
IERC20.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
SafeERC20.sol 212 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Hashes.sol 31 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
MerkleProof.sol 514 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
MerkleDistributor.sol 238 lines
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.29;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title Merkle Distributor
 * @notice Handles token airdrops for any number of asset tokens
 * @dev Tree data is stored on IPFS for each token distribution
 */
contract MerkleDistributor is Ownable {
    using SafeERC20 for IERC20;

    struct Distribution {
        address token;
        bool isPaused;
        bytes32 merkleRoot;
        string ipfsHash;
    }
    address[] private tokens;
    mapping(address => Distribution) public distributions;
    mapping(address => mapping(address => uint256)) private claimed;

    event Claimed(address indexed account, address indexed token, uint256 amount);
    event DistributionUpdated(
        address indexed token,
        bytes32 merkleRoot,
        string ipfsHash,
        uint256 totalAmount
    );
    event WithdrawUnclaimedTokens(
        address indexed token,
        bytes32 merkleRoot,
        string ipfsHash,
        uint256 totalAmount
    );

    error DistributionExists();
    error DistributionNotFound();
    error DistributionPaused();
    error DistributionNotPaused();
    error InvalidLengths();
    error InvalidProof();
    error NothingToClaim();

    constructor() Ownable(msg.sender) {}

    /**
     * @notice Reverts if no distribution exists for _token
     **/
    modifier distributionExists(address _token) {
        if (distributions[_token].token == address(0)) revert DistributionNotFound();
        _;
    }

    /**
     * @notice Returns a list of all supported tokens
     * @return list of supported tokens
     **/
    function getTokens() external view returns (address[] memory) {
        return tokens;
    }

    /**
     * @notice Returns a list of all distributions
     * @return list of distributions
     **/
    function getDistributions() external view returns (Distribution[] memory) {
        Distribution[] memory dists = new Distribution[](tokens.length);

        for (uint256 i = 0; i < dists.length; ++i) {
            dists[i] = distributions[tokens[i]];
        }

        return dists;
    }

    /**
     * @notice Returns the total amount that an account has claimed from a distribution
     * @param _token token address
     * @param _account address of account
     **/
    function getClaimed(address _token, address _account) public view returns (uint256) {
        return claimed[_token][_account];
    }

    /**
     * @notice Returns the total amount that a user has claimed across all distributions
     * @param _account address of account
     * @return claimed account's claimed amount for each distribution
     */
    function getAllClaimed(address _account) external view returns (uint256[] memory) {
        uint256 tokenCount = tokens.length;
        uint256[] memory retClaimed = new uint256[](tokenCount);

        for (uint256 i = 0; i < tokenCount; ++i) {
            retClaimed[i] = getClaimed(tokens[i], _account);
        }

        return retClaimed;
    }

    /**
     * @notice Adds a new token distribution
     * @param _token token address
     * @param _merkleRoot merkle root for the distribution tree
     * @param _ipfsHash ipfs hash for the distribution tree (CIDv1)
     * @param _totalAmount total distribution amount
     **/
    function addDistribution(
        address _token,
        bytes32 _merkleRoot,
        string calldata _ipfsHash,
        uint256 _totalAmount
    ) public onlyOwner {
        if (distributions[_token].token != address(0)) revert DistributionExists();

        tokens.push(_token);
        distributions[_token].token = _token;
        distributions[_token].merkleRoot = _merkleRoot;
        distributions[_token].ipfsHash = _ipfsHash;

        emit DistributionUpdated(_token, _merkleRoot, _ipfsHash, _totalAmount);
    }

    /**
     * @notice Updates an existing token distribution by distributing additional tokens
     * @dev merkle tree should be updated to reflect additional amount -> the amount for each
     * account should be incremented by any additional allocation and any new accounts should be added
     * to the tree
     * @param _token token address
     * @param _merkleRoot updated merkle root for the distribution tree
     * @param _ipfsHash ipfs hash for the distribution tree (CIDv1)
     * @param _totalAmount total distribution amount including existing and additional amount
     **/
    function updateDistribution(
        address _token,
        bytes32 _merkleRoot,
        string calldata _ipfsHash,
        uint256 _totalAmount
    ) public onlyOwner distributionExists(_token) {
        if (distributions[_token].isPaused) revert DistributionPaused();

        distributions[_token].merkleRoot = _merkleRoot;
        distributions[_token].ipfsHash = _ipfsHash;

        emit DistributionUpdated(_token, _merkleRoot, _ipfsHash, _totalAmount);
    }

    /**
     * @notice Claims multiple token distributions
     * @param _tokens list of token addresses
     * @param _amounts list of amounts as recorded in sender's merkle tree entries
     * @param _merkleProofs list of merkle proofs for the token claims
     **/
    function claimDistributions(
        address[] calldata _tokens,
        uint256[] calldata _amounts,
        bytes32[][] calldata _merkleProofs
    ) external {
        if (_tokens.length != _amounts.length || _tokens.length != _merkleProofs.length)
            revert InvalidLengths();

        for (uint256 i = 0; i < _tokens.length; ++i) {
            claimDistribution(_tokens[i], _amounts[i], _merkleProofs[i]);
        }
    }

    /**
     * @notice Claims a token distribution
     * @param _token token address
     * @param _amount amount as recorded in sender's merkle tree entry
     * @param _merkleProof merkle proof for the token claim
     **/
    function claimDistribution(
        address _token,
        uint256 _amount,
        bytes32[] calldata _merkleProof
    ) public distributionExists(_token) {
        if (distributions[_token].isPaused) revert DistributionPaused();
        Distribution storage distribution = distributions[_token];

        bytes32 node = keccak256(bytes.concat(keccak256(abi.encode(msg.sender, _amount))));
        if (!MerkleProof.verify(_merkleProof, distribution.merkleRoot, node)) revert InvalidProof();

        if (getClaimed(_token, msg.sender) >= _amount) revert NothingToClaim();

        uint256 amount = _amount - getClaimed(_token, msg.sender);
        claimed[_token][msg.sender] = _amount;
        IERC20(_token).safeTransfer(msg.sender, amount);

        emit Claimed(msg.sender, _token, amount);
    }

    /**
     * @notice Withdraws unclaimed tokens
     * @dev merkle tree should be updated to reflect current state of claims -> the amount for each
     * account should be set to equal claimed[account]
     * @param _token token address
     * @param _merkleRoot updated merkle root for the distribution tree
     * @param _ipfsHash updated ipfs hash for the distribution tree (CIDv1)
     * @param _totalAmount updated total amount (should be equal to the total claimed amount across all accounts)
     **/
    function withdrawUnclaimedTokens(
        address _token,
        bytes32 _merkleRoot,
        string calldata _ipfsHash,
        uint256 _totalAmount
    ) external onlyOwner distributionExists(_token) {
        if (!distributions[_token].isPaused) revert DistributionNotPaused();

        IERC20 token = IERC20(_token);
        uint256 balance = token.balanceOf(address(this));
        if (balance != 0) {
            token.safeTransfer(msg.sender, balance);
        }

        distributions[_token].merkleRoot = _merkleRoot;
        distributions[_token].ipfsHash = _ipfsHash;
        distributions[_token].isPaused = false;

        emit WithdrawUnclaimedTokens(_token, _merkleRoot, _ipfsHash, _totalAmount);
    }

    /**
     * @notice Pauses a token distribution for withdrawal of unclaimed tokens
     * @dev must be called before withdrawUnclaimedTokens to ensure state doesn't change
     * while the new merkle root is calculated
     * @param _token token address
     **/
    function pauseForWithdrawal(address _token) external onlyOwner distributionExists(_token) {
        if (distributions[_token].isPaused) revert DistributionPaused();
        distributions[_token].isPaused = true;
    }
}

Read Contract

distributions 0x9353b9df → address, bool, bytes32, string
getAllClaimed 0x21497b32 → uint256[]
getClaimed 0xccf362c8 → uint256
getDistributions 0x02aa6318 → tuple[]
getTokens 0xaa6ca808 → address[]
owner 0x8da5cb5b → address

Write Contract 8 functions

These functions modify contract state and require a wallet transaction to execute.

addDistribution 0x6fa320b6
address _token
bytes32 _merkleRoot
string _ipfsHash
uint256 _totalAmount
claimDistribution 0x28747eb1
address _token
uint256 _amount
bytes32[] _merkleProof
claimDistributions 0x28f7c72c
address[] _tokens
uint256[] _amounts
bytes32[][] _merkleProofs
pauseForWithdrawal 0x63c6a5e4
address _token
renounceOwnership 0x715018a6
No parameters
transferOwnership 0xf2fde38b
address newOwner
updateDistribution 0xb4d88938
address _token
bytes32 _merkleRoot
string _ipfsHash
uint256 _totalAmount
withdrawUnclaimedTokens 0x5a6b9a7a
address _token
bytes32 _merkleRoot
string _ipfsHash
uint256 _totalAmount

Token Balances (1)

View Transfers →
LINK 1.4

Recent Transactions

No transactions found for this address