Address Contract Partially Verified
Address
0x72519fa6cd095C99d5d67e31ddc117409Bc5c047
Balance
0 ETH
Nonce
1
Code Size
1644 bytes
Creator
0x4c2F150F...5346 at tx 0x61916c6f...7d1c57
Indexed Transactions
0
Contract Bytecode
1644 bytes
0x6060604052600436106100a05763ffffffff60e060020a600035041663051d995581146100a557806312460fdd146100bd578063264da19e146100d357806333513739146100fb578063375b74c3146101115780633c389cc41461014057806342569ff3146101535780638cbf41451461016657806395a512331461017c578063a94c7c651461018f578063c9bc5dbd146101b1578063cb81fecf146101c7575b600080fd5b34156100b057600080fd5b6100bb6004356101da565b005b34156100c857600080fd5b6100bb600435610250565b34156100de57600080fd5b6100e9600435610302565b60405190815260200160405180910390f35b341561010657600080fd5b6100bb600435610314565b341561011c57600080fd5b610124610389565b604051600160a060020a03909116815260200160405180910390f35b341561014b57600080fd5b610124610398565b341561015e57600080fd5b6101246103a7565b341561017157600080fd5b6100bb6004356103b6565b341561018757600080fd5b6100e9610419565b341561019a57600080fd5b6100bb600160a060020a036004351660243561041f565b34156101bc57600080fd5b6100e9600435610575565b34156101d257600080fd5b6100e96105ec565b60025433600160a060020a039081169116146101f557600080fd5b600154600160a060020a0316633a8343ee8260405160e060020a63ffffffff84160281526004810191909152602401600060405180830381600087803b151561023d57600080fd5b5af1151561024a57600080fd5b50505050565b6002546000908190819033600160a060020a0390811691161461027257600080fd5b60008481526005602052604090208054909350915081151561029357600080fd5b5060008381526005602052604081205560045480820190811061024a5760048190557f3779579f908c94480802e9c026789736b5c6a0382577c15f94feb7e23eafcfd284838360405192835260208301919091526040808301919091526060909101905180910390a150505050565b60056020526000908152604090205481565b60035460009033600160a060020a0390811691161461033257600080fd5b506004548181039081111561034657600080fd5b60048190557f76f283ae36a7f1bcca5e9475a544804430c59279a8b72325d56fb5ade52ab632828260405191825260208201526040908101905180910390a15050565b600254600160a060020a031681565b600154600160a060020a031681565b600354600160a060020a031681565b60025433600160a060020a039081169116146103d157600080fd5b600154600160a060020a031663380ba30c8260405160e060020a63ffffffff84160281526004810191909152602401600060405180830381600087803b151561023d57600080fd5b60045481565b600354600090819033600160a060020a0390811691161461043f57600080fd5b600154600160a060020a03166318160ddd6040518163ffffffff1660e060020a028152600401602060405180830381600087803b151561047e57600080fd5b5af1151561048b57600080fd5b505050604051805192505050818101818110156104a757600080fd5b6004548111156104b657600080fd5b600154600160a060020a031663380ba30c8163be23d291878760405160e060020a63ffffffff8516028152600160a060020a0390921660048301526024820152604401602060405180830381600087803b151561051257600080fd5b5af1151561051f57600080fd5b5050506040518051905060405160e060020a63ffffffff84160281526004810191909152602401600060405180830381600087803b151561055f57600080fd5b5af1151561056c57600080fd5b50505050505050565b600081151561058357600080fd5b61058b6105f2565b905060206040519081016040908152838252600083815260056020522081519055507f938f54351a24c466787f903e29b0590fe701da10a63db9b78c2a10ad8a8e1f67818360405191825260208201526040908101905180910390a1919050565b60005481565b60008054600101808255600019430140903090604051928352600160a060020a03919091166c01000000000000000000000000026020830152603482015260540160405180910390209050905600a165627a7a72305820f02558155c0bc7b78c35a8fc0c21d3f69894565402e58f8565f615e1f78d50450029
Verified Source Code Partial Match
Compiler: v0.4.21+commit.dfe3193c
EVM: byzantium
Optimization: Yes (200 runs)
PrintLimiter.sol 1234 lines
pragma solidity ^0.4.21;
/** @title A contract for generating unique identifiers
*
* @notice A contract that provides a identifier generation scheme,
* guaranteeing uniqueness across all contracts that inherit from it,
* as well as unpredictability of future identifiers.
*
* @dev This contract is intended to be inherited by any contract that
* implements the callback software pattern for cooperative custodianship.
*
* @author Gemini Trust Company, LLC
*/
contract LockRequestable {
// MEMBERS
/// @notice the count of all invocations of `generateLockId`.
uint256 public lockRequestCount;
// CONSTRUCTOR
function LockRequestable() public {
lockRequestCount = 0;
}
// FUNCTIONS
/** @notice Returns a fresh unique identifier.
*
* @dev the generation scheme uses three components.
* First, the blockhash of the previous block.
* Second, the deployed address.
* Third, the next value of the counter.
* This ensure that identifiers are unique across all contracts
* following this scheme, and that future identifiers are
* unpredictable.
*
* @return a 32-byte unique identifier.
*/
function generateLockId() internal returns (bytes32 lockId) {
return keccak256(block.blockhash(block.number - 1), address(this), ++lockRequestCount);
}
}
/** @title A contract to inherit upgradeable custodianship.
*
* @notice A contract that provides re-usable code for upgradeable
* custodianship. That custodian may be an account or another contract.
*
* @dev This contract is intended to be inherited by any contract
* requiring a custodian to control some aspect of its functionality.
* This contract provides the mechanism for that custodianship to be
* passed from one custodian to the next.
*
* @author Gemini Trust Company, LLC
*/
contract CustodianUpgradeable is LockRequestable {
// TYPES
/// @dev The struct type for pending custodian changes.
struct CustodianChangeRequest {
address proposedNew;
}
// MEMBERS
/// @dev The address of the account or contract that acts as the custodian.
address public custodian;
/// @dev The map of lock ids to pending custodian changes.
mapping (bytes32 => CustodianChangeRequest) public custodianChangeReqs;
// CONSTRUCTOR
function CustodianUpgradeable(
address _custodian
)
LockRequestable()
public
{
custodian = _custodian;
}
// MODIFIERS
modifier onlyCustodian {
require(msg.sender == custodian);
_;
}
// PUBLIC FUNCTIONS
// (UPGRADE)
/** @notice Requests a change of the custodian associated with this contract.
*
* @dev Returns a unique lock id associated with the request.
* Anyone can call this function, but confirming the request is authorized
* by the custodian.
*
* @param _proposedCustodian The address of the new custodian.
* @return lockId A unique identifier for this request.
*/
function requestCustodianChange(address _proposedCustodian) public returns (bytes32 lockId) {
require(_proposedCustodian != address(0));
lockId = generateLockId();
custodianChangeReqs[lockId] = CustodianChangeRequest({
proposedNew: _proposedCustodian
});
emit CustodianChangeRequested(lockId, msg.sender, _proposedCustodian);
}
/** @notice Confirms a pending change of the custodian associated with this contract.
*
* @dev When called by the current custodian with a lock id associated with a
* pending custodian change, the `address custodian` member will be updated with the
* requested address.
*
* @param _lockId The identifier of a pending change request.
*/
function confirmCustodianChange(bytes32 _lockId) public onlyCustodian {
custodian = getCustodianChangeReq(_lockId);
delete custodianChangeReqs[_lockId];
emit CustodianChangeConfirmed(_lockId, custodian);
}
// PRIVATE FUNCTIONS
function getCustodianChangeReq(bytes32 _lockId) private view returns (address _proposedNew) {
CustodianChangeRequest storage changeRequest = custodianChangeReqs[_lockId];
// reject ‘null’ results from the map lookup
// this can only be the case if an unknown `_lockId` is received
require(changeRequest.proposedNew != 0);
return changeRequest.proposedNew;
}
/// @dev Emitted by successful `requestCustodianChange` calls.
event CustodianChangeRequested(
bytes32 _lockId,
address _msgSender,
address _proposedCustodian
);
/// @dev Emitted by successful `confirmCustodianChange` calls.
event CustodianChangeConfirmed(bytes32 _lockId, address _newCustodian);
}
/** @title A contract to inherit upgradeable token implementations.
*
* @notice A contract that provides re-usable code for upgradeable
* token implementations. It itself inherits from `CustodianUpgradable`
* as the upgrade process is controlled by the custodian.
*
* @dev This contract is intended to be inherited by any contract
* requiring a reference to the active token implementation, either
* to delegate calls to it, or authorize calls from it. This contract
* provides the mechanism for that implementation to be be replaced,
* which constitutes an implementation upgrade.
*
* @author Gemini Trust Company, LLC
*/
contract ERC20ImplUpgradeable is CustodianUpgradeable {
// TYPES
/// @dev The struct type for pending implementation changes.
struct ImplChangeRequest {
address proposedNew;
}
// MEMBERS
// @dev The reference to the active token implementation.
ERC20Impl public erc20Impl;
/// @dev The map of lock ids to pending implementation changes.
mapping (bytes32 => ImplChangeRequest) public implChangeReqs;
// CONSTRUCTOR
function ERC20ImplUpgradeable(address _custodian) CustodianUpgradeable(_custodian) public {
erc20Impl = ERC20Impl(0x0);
}
// MODIFIERS
modifier onlyImpl {
require(msg.sender == address(erc20Impl));
_;
}
// PUBLIC FUNCTIONS
// (UPGRADE)
/** @notice Requests a change of the active implementation associated
* with this contract.
*
* @dev Returns a unique lock id associated with the request.
* Anyone can call this function, but confirming the request is authorized
* by the custodian.
*
* @param _proposedImpl The address of the new active implementation.
* @return lockId A unique identifier for this request.
*/
function requestImplChange(address _proposedImpl) public returns (bytes32 lockId) {
require(_proposedImpl != address(0));
lockId = generateLockId();
implChangeReqs[lockId] = ImplChangeRequest({
proposedNew: _proposedImpl
});
emit ImplChangeRequested(lockId, msg.sender, _proposedImpl);
}
/** @notice Confirms a pending change of the active implementation
* associated with this contract.
*
* @dev When called by the custodian with a lock id associated with a
* pending change, the `ERC20Impl erc20Impl` member will be updated
* with the requested address.
*
* @param _lockId The identifier of a pending change request.
*/
function confirmImplChange(bytes32 _lockId) public onlyCustodian {
erc20Impl = getImplChangeReq(_lockId);
delete implChangeReqs[_lockId];
emit ImplChangeConfirmed(_lockId, address(erc20Impl));
}
// PRIVATE FUNCTIONS
function getImplChangeReq(bytes32 _lockId) private view returns (ERC20Impl _proposedNew) {
ImplChangeRequest storage changeRequest = implChangeReqs[_lockId];
// reject ‘null’ results from the map lookup
// this can only be the case if an unknown `_lockId` is received
require(changeRequest.proposedNew != address(0));
return ERC20Impl(changeRequest.proposedNew);
}
/// @dev Emitted by successful `requestImplChange` calls.
event ImplChangeRequested(
bytes32 _lockId,
address _msgSender,
address _proposedImpl
);
/// @dev Emitted by successful `confirmImplChange` calls.
event ImplChangeConfirmed(bytes32 _lockId, address _newImpl);
}
contract ERC20Interface {
// METHODS
// NOTE:
// public getter functions are not currently recognised as an
// implementation of the matching abstract function by the compiler.
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#name
// function name() public view returns (string);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#symbol
// function symbol() public view returns (string);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#totalsupply
// function decimals() public view returns (uint8);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#totalsupply
function totalSupply() public view returns (uint256);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#balanceof
function balanceOf(address _owner) public view returns (uint256 balance);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transfer
function transfer(address _to, uint256 _value) public returns (bool success);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transferfrom
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#approve
function approve(address _spender, uint256 _value) public returns (bool success);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#allowance
function allowance(address _owner, address _spender) public view returns (uint256 remaining);
// EVENTS
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#transfer-1
event Transfer(address indexed _from, address indexed _to, uint256 _value);
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md#approval
event Approval(address indexed _owner, address indexed _spender, uint256 _value);
}
/** @title Public interface to ERC20 compliant token.
*
* @notice This contract is a permanent entry point to an ERC20 compliant
* system of contracts.
*
* @dev This contract contains no business logic and instead
* delegates to an instance of ERC20Impl. This contract also has no storage
* that constitutes the operational state of the token. This contract is
* upgradeable in the sense that the `custodian` can update the
* `erc20Impl` address, thus redirecting the delegation of business logic.
* The `custodian` is also authorized to pass custodianship.
*
* @author Gemini Trust Company, LLC
*/
contract ERC20Proxy is ERC20Interface, ERC20ImplUpgradeable {
// MEMBERS
/// @notice Returns the name of the token.
string public name;
/// @notice Returns the symbol of the token.
string public symbol;
/// @notice Returns the number of decimals the token uses.
uint8 public decimals;
// CONSTRUCTOR
function ERC20Proxy(
string _name,
string _symbol,
uint8 _decimals,
address _custodian
)
ERC20ImplUpgradeable(_custodian)
public
{
name = _name;
symbol = _symbol;
decimals = _decimals;
}
// PUBLIC FUNCTIONS
// (ERC20Interface)
/** @notice Returns the total token supply.
*
* @return the total token supply.
*/
function totalSupply() public view returns (uint256) {
return erc20Impl.totalSupply();
}
/** @notice Returns the account balance of another account with address
* `_owner`.
*
* @return balance the balance of account with address `_owner`.
*/
function balanceOf(address _owner) public view returns (uint256 balance) {
return erc20Impl.balanceOf(_owner);
}
/** @dev Internal use only.
*/
function emitTransfer(address _from, address _to, uint256 _value) public onlyImpl {
emit Transfer(_from, _to, _value);
}
/** @notice Transfers `_value` amount of tokens to address `_to`.
*
* @dev Will fire the `Transfer` event. Will revert if the `_from`
* account balance does not have enough tokens to spend.
*
* @return success true if transfer completes.
*/
function transfer(address _to, uint256 _value) public returns (bool success) {
return erc20Impl.transferWithSender(msg.sender, _to, _value);
}
/** @notice Transfers `_value` amount of tokens from address `_from`
* to address `_to`.
*
* @dev Will fire the `Transfer` event. Will revert unless the `_from`
* account has deliberately authorized the sender of the message
* via some mechanism.
*
* @return success true if transfer completes.
*/
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {
return erc20Impl.transferFromWithSender(msg.sender, _from, _to, _value);
}
/** @dev Internal use only.
*/
function emitApproval(address _owner, address _spender, uint256 _value) public onlyImpl {
emit Approval(_owner, _spender, _value);
}
/** @notice Allows `_spender` to withdraw from your account multiple times,
* up to the `_value` amount. If this function is called again it
* overwrites the current allowance with _value.
*
* @dev Will fire the `Approval` event.
*
* @return success true if approval completes.
*/
function approve(address _spender, uint256 _value) public returns (bool success) {
return erc20Impl.approveWithSender(msg.sender, _spender, _value);
}
/** @notice Increases the amount `_spender` is allowed to withdraw from
* your account.
* This function is implemented to avoid the race condition in standard
* ERC20 contracts surrounding the `approve` method.
*
* @dev Will fire the `Approval` event. This function should be used instead of
* `approve`.
*
* @return success true if approval completes.
*/
function increaseApproval(address _spender, uint256 _addedValue) public returns (bool success) {
return erc20Impl.increaseApprovalWithSender(msg.sender, _spender, _addedValue);
}
/** @notice Decreases the amount `_spender` is allowed to withdraw from
* your account. This function is implemented to avoid the race
* condition in standard ERC20 contracts surrounding the `approve` method.
*
* @dev Will fire the `Approval` event. This function should be used
* instead of `approve`.
*
* @return success true if approval completes.
*/
function decreaseApproval(address _spender, uint256 _subtractedValue) public returns (bool success) {
return erc20Impl.decreaseApprovalWithSender(msg.sender, _spender, _subtractedValue);
}
/** @notice Returns how much `_spender` is currently allowed to spend from
* `_owner`'s balance.
*
* @return remaining the remaining allowance.
*/
function allowance(address _owner, address _spender) public view returns (uint256 remaining) {
return erc20Impl.allowance(_owner, _spender);
}
}
/** @title ERC20 compliant token intermediary contract holding core logic.
*
* @notice This contract serves as an intermediary between the exposed ERC20
* interface in ERC20Proxy and the store of balances in ERC20Store. This
* contract contains core logic that the proxy can delegate to
* and that the store is called by.
*
* @dev This contract contains the core logic to implement the
* ERC20 specification as well as several extensions.
* 1. Changes to the token supply.
* 2. Batched transfers.
* 3. Relative changes to spending approvals.
* 4. Delegated transfer control ('sweeping').
*
* @author Gemini Trust Company, LLC
*/
contract ERC20Impl is CustodianUpgradeable {
// TYPES
/// @dev The struct type for pending increases to the token supply (print).
struct PendingPrint {
address receiver;
uint256 value;
}
// MEMBERS
/// @dev The reference to the proxy.
ERC20Proxy public erc20Proxy;
/// @dev The reference to the store.
ERC20Store public erc20Store;
/// @dev The sole authorized caller of delegated transfer control ('sweeping').
address public sweeper;
/** @dev The static message to be signed by an external account that
* signifies their permission to forward their balance to any arbitrary
* address. This is used to consolidate the control of all accounts
* backed by a shared keychain into the control of a single key.
* Initialized as the concatenation of the address of this contract
* and the word "sweep". This concatenation is done to prevent a replay
* attack in a subsequent contract, where the sweep message could
* potentially be replayed to re-enable sweeping ability.
*/
bytes32 public sweepMsg;
/** @dev The mapping that stores whether the address in question has
* enabled sweeping its contents to another account or not.
* If an address maps to "true", it has already enabled sweeping,
* and thus does not need to re-sign the `sweepMsg` to enact the sweep.
*/
mapping (address => bool) public sweptSet;
/// @dev The map of lock ids to pending token increases.
mapping (bytes32 => PendingPrint) public pendingPrintMap;
// CONSTRUCTOR
function ERC20Impl(
address _erc20Proxy,
address _erc20Store,
address _custodian,
address _sweeper
)
CustodianUpgradeable(_custodian)
public
{
require(_sweeper != 0);
erc20Proxy = ERC20Proxy(_erc20Proxy);
erc20Store = ERC20Store(_erc20Store);
sweeper = _sweeper;
sweepMsg = keccak256(address(this), "sweep");
}
// MODIFIERS
modifier onlyProxy {
require(msg.sender == address(erc20Proxy));
_;
}
modifier onlySweeper {
require(msg.sender == sweeper);
_;
}
/** @notice Core logic of the ERC20 `approve` function.
*
* @dev This function can only be called by the referenced proxy,
* which has an `approve` function.
* Every argument passed to that function as well as the original
* `msg.sender` gets passed to this function.
* NOTE: approvals for the zero address (unspendable) are disallowed.
*
* @param _sender The address initiating the approval in proxy.
*/
function approveWithSender(
address _sender,
address _spender,
uint256 _value
)
public
onlyProxy
returns (bool success)
{
require(_spender != address(0)); // disallow unspendable approvals
erc20Store.setAllowance(_sender, _spender, _value);
erc20Proxy.emitApproval(_sender, _spender, _value);
return true;
}
/** @notice Core logic of the `increaseApproval` function.
*
* @dev This function can only be called by the referenced proxy,
* which has an `increaseApproval` function.
* Every argument passed to that function as well as the original
* `msg.sender` gets passed to this function.
* NOTE: approvals for the zero address (unspendable) are disallowed.
*
* @param _sender The address initiating the approval.
*/
function increaseApprovalWithSender(
address _sender,
address _spender,
uint256 _addedValue
)
public
onlyProxy
returns (bool success)
{
require(_spender != address(0)); // disallow unspendable approvals
uint256 currentAllowance = erc20Store.allowed(_sender, _spender);
uint256 newAllowance = currentAllowance + _addedValue;
require(newAllowance >= currentAllowance);
erc20Store.setAllowance(_sender, _spender, newAllowance);
erc20Proxy.emitApproval(_sender, _spender, newAllowance);
return true;
}
/** @notice Core logic of the `decreaseApproval` function.
*
* @dev This function can only be called by the referenced proxy,
* which has a `decreaseApproval` function.
* Every argument passed to that function as well as the original
* `msg.sender` gets passed to this function.
* NOTE: approvals for the zero address (unspendable) are disallowed.
*
* @param _sender The address initiating the approval.
*/
function decreaseApprovalWithSender(
address _sender,
address _spender,
uint256 _subtractedValue
)
public
onlyProxy
returns (bool success)
{
require(_spender != address(0)); // disallow unspendable approvals
uint256 currentAllowance = erc20Store.allowed(_sender, _spender);
uint256 newAllowance = currentAllowance - _subtractedValue;
require(newAllowance <= currentAllowance);
erc20Store.setAllowance(_sender, _spender, newAllowance);
erc20Proxy.emitApproval(_sender, _spender, newAllowance);
return true;
}
/** @notice Requests an increase in the token supply, with the newly created
* tokens to be added to the balance of the specified account.
*
* @dev Returns a unique lock id associated with the request.
* Anyone can call this function, but confirming the request is authorized
* by the custodian.
* NOTE: printing to the zero address is disallowed.
*
* @param _receiver The receiving address of the print, if confirmed.
* @param _value The number of tokens to add to the total supply and the
* balance of the receiving address, if confirmed.
*
* @return lockId A unique identifier for this request.
*/
function requestPrint(address _receiver, uint256 _value) public returns (bytes32 lockId) {
require(_receiver != address(0));
lockId = generateLockId();
pendingPrintMap[lockId] = PendingPrint({
receiver: _receiver,
value: _value
});
emit PrintingLocked(lockId, _receiver, _value);
}
/** @notice Confirms a pending increase in the token supply.
*
* @dev When called by the custodian with a lock id associated with a
* pending increase, the amount requested to be printed in the print request
* is printed to the receiving address specified in that same request.
* NOTE: this function will not execute any print that would overflow the
* total supply, but it will not revert either.
*
* @param _lockId The identifier of a pending print request.
*/
function confirmPrint(bytes32 _lockId) public onlyCustodian {
PendingPrint storage print = pendingPrintMap[_lockId];
// reject ‘null’ results from the map lookup
// this can only be the case if an unknown `_lockId` is received
address receiver = print.receiver;
require (receiver != address(0));
uint256 value = print.value;
delete pendingPrintMap[_lockId];
uint256 supply = erc20Store.totalSupply();
uint256 newSupply = supply + value;
if (newSupply >= supply) {
erc20Store.setTotalSupply(newSupply);
erc20Store.addBalance(receiver, value);
emit PrintingConfirmed(_lockId, receiver, value);
erc20Proxy.emitTransfer(address(0), receiver, value);
}
}
/** @notice Burns the specified value from the sender's balance.
*
* @dev Sender's balanced is subtracted by the amount they wish to burn.
*
* @param _value The amount to burn.
*
* @return success true if the burn succeeded.
*/
function burn(uint256 _value) public returns (bool success) {
uint256 balanceOfSender = erc20Store.balances(msg.sender);
require(_value <= balanceOfSender);
erc20Store.setBalance(msg.sender, balanceOfSender - _value);
erc20Store.setTotalSupply(erc20Store.totalSupply() - _value);
erc20Proxy.emitTransfer(msg.sender, address(0), _value);
return true;
}
/** @notice A function for a sender to issue multiple transfers to multiple
* different addresses at once. This function is implemented for gas
* considerations when someone wishes to transfer, as one transaction is
* cheaper than issuing several distinct individual `transfer` transactions.
*
* @dev By specifying a set of destination addresses and values, the
* sender can issue one transaction to transfer multiple amounts to
* distinct addresses, rather than issuing each as a separate
* transaction. The `_tos` and `_values` arrays must be equal length, and
* an index in one array corresponds to the same index in the other array
* (e.g. `_tos[0]` will receive `_values[0]`, `_tos[1]` will receive
* `_values[1]`, and so on.)
* NOTE: transfers to the zero address are disallowed.
*
* @param _tos The destination addresses to receive the transfers.
* @param _values The values for each destination address.
* @return success If transfers succeeded.
*/
function batchTransfer(address[] _tos, uint256[] _values) public returns (bool success) {
require(_tos.length == _values.length);
uint256 numTransfers = _tos.length;
uint256 senderBalance = erc20Store.balances(msg.sender);
for (uint256 i = 0; i < numTransfers; i++) {
address to = _tos[i];
require(to != address(0));
uint256 v = _values[i];
require(senderBalance >= v);
if (msg.sender != to) {
senderBalance -= v;
erc20Store.addBalance(to, v);
}
erc20Proxy.emitTransfer(msg.sender, to, v);
}
erc20Store.setBalance(msg.sender, senderBalance);
return true;
}
/** @notice Enables the delegation of transfer control for many
* accounts to the sweeper account, transferring any balances
* as well to the given destination.
*
* @dev An account delegates transfer control by signing the
* value of `sweepMsg`. The sweeper account is the only authorized
* caller of this function, so it must relay signatures on behalf
* of accounts that delegate transfer control to it. Enabling
* delegation is idempotent and permanent. If the account has a
* balance at the time of enabling delegation, its balance is
* also transfered to the given destination account `_to`.
* NOTE: transfers to the zero address are disallowed.
*
* @param _vs The array of recovery byte components of the ECDSA signatures.
* @param _rs The array of 'R' components of the ECDSA signatures.
* @param _ss The array of 'S' components of the ECDSA signatures.
* @param _to The destination for swept balances.
*/
function enableSweep(uint8[] _vs, bytes32[] _rs, bytes32[] _ss, address _to) public onlySweeper {
require(_to != address(0));
require((_vs.length == _rs.length) && (_vs.length == _ss.length));
uint256 numSignatures = _vs.length;
uint256 sweptBalance = 0;
for (uint256 i=0; i<numSignatures; ++i) {
address from = ecrecover(sweepMsg, _vs[i], _rs[i], _ss[i]);
// ecrecover returns 0 on malformed input
if (from != address(0)) {
sweptSet[from] = true;
uint256 fromBalance = erc20Store.balances(from);
if (fromBalance > 0) {
sweptBalance += fromBalance;
erc20Store.setBalance(from, 0);
erc20Proxy.emitTransfer(from, _to, fromBalance);
}
}
}
if (sweptBalance > 0) {
erc20Store.addBalance(_to, sweptBalance);
}
}
/** @notice For accounts that have delegated, transfer control
* to the sweeper, this function transfers their balances to the given
* destination.
*
* @dev The sweeper account is the only authorized caller of
* this function. This function accepts an array of addresses to have their
* balances transferred for gas efficiency purposes.
* NOTE: any address for an account that has not been previously enabled
* will be ignored.
* NOTE: transfers to the zero address are disallowed.
*
* @param _froms The addresses to have their balances swept.
* @param _to The destination address of all these transfers.
*/
function replaySweep(address[] _froms, address _to) public onlySweeper {
require(_to != address(0));
uint256 lenFroms = _froms.length;
uint256 sweptBalance = 0;
for (uint256 i=0; i<lenFroms; ++i) {
address from = _froms[i];
if (sweptSet[from]) {
uint256 fromBalance = erc20Store.balances(from);
if (fromBalance > 0) {
sweptBalance += fromBalance;
erc20Store.setBalance(from, 0);
erc20Proxy.emitTransfer(from, _to, fromBalance);
}
}
}
if (sweptBalance > 0) {
erc20Store.addBalance(_to, sweptBalance);
}
}
/** @notice Core logic of the ERC20 `transferFrom` function.
*
* @dev This function can only be called by the referenced proxy,
* which has a `transferFrom` function.
* Every argument passed to that function as well as the original
* `msg.sender` gets passed to this function.
* NOTE: transfers to the zero address are disallowed.
*
* @param _sender The address initiating the transfer in proxy.
*/
function transferFromWithSender(
address _sender,
address _from,
address _to,
uint256 _value
)
public
onlyProxy
returns (bool success)
{
require(_to != address(0)); // ensure burn is the cannonical transfer to 0x0
uint256 balanceOfFrom = erc20Store.balances(_from);
require(_value <= balanceOfFrom);
uint256 senderAllowance = erc20Store.allowed(_from, _sender);
require(_value <= senderAllowance);
erc20Store.setBalance(_from, balanceOfFrom - _value);
erc20Store.addBalance(_to, _value);
erc20Store.setAllowance(_from, _sender, senderAllowance - _value);
erc20Proxy.emitTransfer(_from, _to, _value);
return true;
}
/** @notice Core logic of the ERC20 `transfer` function.
*
* @dev This function can only be called by the referenced proxy,
* which has a `transfer` function.
* Every argument passed to that function as well as the original
* `msg.sender` gets passed to this function.
* NOTE: transfers to the zero address are disallowed.
*
* @param _sender The address initiating the transfer in proxy.
*/
function transferWithSender(
address _sender,
address _to,
uint256 _value
)
public
onlyProxy
returns (bool success)
{
require(_to != address(0)); // ensure burn is the cannonical transfer to 0x0
uint256 balanceOfSender = erc20Store.balances(_sender);
require(_value <= balanceOfSender);
erc20Store.setBalance(_sender, balanceOfSender - _value);
erc20Store.addBalance(_to, _value);
erc20Proxy.emitTransfer(_sender, _to, _value);
return true;
}
// METHODS (ERC20 sub interface impl.)
/// @notice Core logic of the ERC20 `totalSupply` function.
function totalSupply() public view returns (uint256) {
return erc20Store.totalSupply();
}
/// @notice Core logic of the ERC20 `balanceOf` function.
function balanceOf(address _owner) public view returns (uint256 balance) {
return erc20Store.balances(_owner);
}
/// @notice Core logic of the ERC20 `allowance` function.
function allowance(address _owner, address _spender) public view returns (uint256 remaining) {
return erc20Store.allowed(_owner, _spender);
}
// EVENTS
/// @dev Emitted by successful `requestPrint` calls.
event PrintingLocked(bytes32 _lockId, address _receiver, uint256 _value);
/// @dev Emitted by successful `confirmPrint` calls.
event PrintingConfirmed(bytes32 _lockId, address _receiver, uint256 _value);
}
/** @title ERC20 compliant token balance store.
*
* @notice This contract serves as the store of balances, allowances, and
* supply for the ERC20 compliant token. No business logic exists here.
*
* @dev This contract contains no business logic and instead
* is the final destination for any change in balances, allowances, or token
* supply. This contract is upgradeable in the sense that its custodian can
* update the `erc20Impl` address, thus redirecting the source of logic that
* determines how the balances will be updated.
*
* @author Gemini Trust Company, LLC
*/
contract ERC20Store is ERC20ImplUpgradeable {
// MEMBERS
/// @dev The total token supply.
uint256 public totalSupply;
/// @dev The mapping of balances.
mapping (address => uint256) public balances;
/// @dev The mapping of allowances.
mapping (address => mapping (address => uint256)) public allowed;
// CONSTRUCTOR
function ERC20Store(address _custodian) ERC20ImplUpgradeable(_custodian) public {
totalSupply = 0;
}
// PUBLIC FUNCTIONS
// (ERC20 Ledger)
/** @notice The function to set the total supply of tokens.
*
* @dev Intended for use by token implementation functions
* that update the total supply. The only authorized caller
* is the active implementation.
*
* @param _newTotalSupply the value to set as the new total supply
*/
function setTotalSupply(
uint256 _newTotalSupply
)
public
onlyImpl
{
totalSupply = _newTotalSupply;
}
/** @notice Sets how much `_owner` allows `_spender` to transfer on behalf
* of `_owner`.
*
* @dev Intended for use by token implementation functions
* that update spending allowances. The only authorized caller
* is the active implementation.
*
* @param _owner The account that will allow an on-behalf-of spend.
* @param _spender The account that will spend on behalf of the owner.
* @param _value The limit of what can be spent.
*/
function setAllowance(
address _owner,
address _spender,
uint256 _value
)
public
onlyImpl
{
allowed[_owner][_spender] = _value;
}
/** @notice Sets the balance of `_owner` to `_newBalance`.
*
* @dev Intended for use by token implementation functions
* that update balances. The only authorized caller
* is the active implementation.
*
* @param _owner The account that will hold a new balance.
* @param _newBalance The balance to set.
*/
function setBalance(
address _owner,
uint256 _newBalance
)
public
onlyImpl
{
balances[_owner] = _newBalance;
}
/** @notice Adds `_balanceIncrease` to `_owner`'s balance.
*
* @dev Intended for use by token implementation functions
* that update balances. The only authorized caller
* is the active implementation.
* WARNING: the caller is responsible for preventing overflow.
*
* @param _owner The account that will hold a new balance.
* @param _balanceIncrease The balance to add.
*/
function addBalance(
address _owner,
uint256 _balanceIncrease
)
public
onlyImpl
{
balances[_owner] = balances[_owner] + _balanceIncrease;
}
}
/** @title A contact to govern hybrid control over increases to the token supply.
*
* @notice A contract that acts as a custodian of the active token
* implementation, and an intermediary between it and the ‘true’ custodian.
* It preserves the functionality of direct custodianship as well as granting
* limited control of token supply increases to an additional key.
*
* @dev This contract is a layer of indirection between an instance of
* ERC20Impl and a custodian. The functionality of the custodianship over
* the token implementation is preserved (printing and custodian changes),
* but this contract adds the ability for an additional key
* (the 'limited printer') to increase the token supply up to a ceiling,
* and this supply ceiling can only be raised by the custodian.
*
* @author Gemini Trust Company, LLC
*/
contract PrintLimiter is LockRequestable {
// TYPES
/// @dev The struct type for pending ceiling raises.
struct PendingCeilingRaise {
uint256 raiseBy;
}
// MEMBERS
/// @dev The reference to the active token implementation.
ERC20Impl public erc20Impl;
/// @dev The address of the account or contract that acts as the custodian.
address public custodian;
/** @dev The sole authorized caller of limited printing.
* This account is also authorized to lower the supply ceiling.
*/
address public limitedPrinter;
/** @dev The maximum that the token supply can be increased to
* through use of the limited printing feature.
* The difference between the current total supply and the supply
* ceiling is what is available to the 'limited printer' account.
* The value of the ceiling can only be increased by the custodian.
*/
uint256 public totalSupplyCeiling;
/// @dev The map of lock ids to pending ceiling raises.
mapping (bytes32 => PendingCeilingRaise) public pendingRaiseMap;
// CONSTRUCTOR
function PrintLimiter(
address _erc20Impl,
address _custodian,
address _limitedPrinter,
uint256 _initialCeiling
)
public
{
erc20Impl = ERC20Impl(_erc20Impl);
custodian = _custodian;
limitedPrinter = _limitedPrinter;
totalSupplyCeiling = _initialCeiling;
}
// MODIFIERS
modifier onlyCustodian {
require(msg.sender == custodian);
_;
}
modifier onlyLimitedPrinter {
require(msg.sender == limitedPrinter);
_;
}
/** @notice Increases the token supply, with the newly created tokens
* being added to the balance of the specified account.
*
* @dev The function checks that the value to print does not
* exceed the supply ceiling when added to the current total supply.
* NOTE: printing to the zero address is disallowed.
*
* @param _receiver The receiving address of the print.
* @param _value The number of tokens to add to the total supply and the
* balance of the receiving address.
*/
function limitedPrint(address _receiver, uint256 _value) public onlyLimitedPrinter {
uint256 totalSupply = erc20Impl.totalSupply();
uint256 newTotalSupply = totalSupply + _value;
require(newTotalSupply >= totalSupply);
require(newTotalSupply <= totalSupplyCeiling);
erc20Impl.confirmPrint(erc20Impl.requestPrint(_receiver, _value));
}
/** @notice Requests an increase to the supply ceiling.
*
* @dev Returns a unique lock id associated with the request.
* Anyone can call this function, but confirming the request is authorized
* by the custodian.
*
* @param _raiseBy The amount by which to raise the ceiling.
*
* @return lockId A unique identifier for this request.
*/
function requestCeilingRaise(uint256 _raiseBy) public returns (bytes32 lockId) {
require(_raiseBy != 0);
lockId = generateLockId();
pendingRaiseMap[lockId] = PendingCeilingRaise({
raiseBy: _raiseBy
});
emit CeilingRaiseLocked(lockId, _raiseBy);
}
/** @notice Confirms a pending increase in the token supply.
*
* @dev When called by the custodian with a lock id associated with a
* pending ceiling increase, the amount requested is added to the
* current supply ceiling.
* NOTE: this function will not execute any raise that would overflow the
* supply ceiling, but it will not revert either.
*
* @param _lockId The identifier of a pending ceiling raise request.
*/
function confirmCeilingRaise(bytes32 _lockId) public onlyCustodian {
PendingCeilingRaise storage pendingRaise = pendingRaiseMap[_lockId];
// copy locals of references to struct members
uint256 raiseBy = pendingRaise.raiseBy;
// accounts for a gibberish _lockId
require(raiseBy != 0);
delete pendingRaiseMap[_lockId];
uint256 newCeiling = totalSupplyCeiling + raiseBy;
// overflow check
if (newCeiling >= totalSupplyCeiling) {
totalSupplyCeiling = newCeiling;
emit CeilingRaiseConfirmed(_lockId, raiseBy, newCeiling);
}
}
/** @notice Lowers the supply ceiling, further constraining the bound of
* what can be printed by the limited printer.
*
* @dev The limited printer is the sole authorized caller of this function,
* so it is the only account that can elect to lower its limit to increase
* the token supply.
*
* @param _lowerBy The amount by which to lower the supply ceiling.
*/
function lowerCeiling(uint256 _lowerBy) public onlyLimitedPrinter {
uint256 newCeiling = totalSupplyCeiling - _lowerBy;
// overflow check
require(newCeiling <= totalSupplyCeiling);
totalSupplyCeiling = newCeiling;
emit CeilingLowered(_lowerBy, newCeiling);
}
/** @notice Pass-through control of print confirmation, allowing this
* contract's custodian to act as the custodian of the associated
* active token implementation.
*
* @dev This contract is the direct custodian of the active token
* implementation, but this function allows this contract's custodian
* to act as though it were the direct custodian of the active
* token implementation. Therefore the custodian retains control of
* unlimited printing.
*
* @param _lockId The identifier of a pending print request in
* the associated active token implementation.
*/
function confirmPrintProxy(bytes32 _lockId) public onlyCustodian {
erc20Impl.confirmPrint(_lockId);
}
/** @notice Pass-through control of custodian change confirmation,
* allowing this contract's custodian to act as the custodian of
* the associated active token implementation.
*
* @dev This contract is the direct custodian of the active token
* implementation, but this function allows this contract's custodian
* to act as though it were the direct custodian of the active
* token implementation. Therefore the custodian retains control of
* custodian changes.
*
* @param _lockId The identifier of a pending custodian change request
* in the associated active token implementation.
*/
function confirmCustodianChangeProxy(bytes32 _lockId) public onlyCustodian {
erc20Impl.confirmCustodianChange(_lockId);
}
// EVENTS
/// @dev Emitted by successful `requestCeilingRaise` calls.
event CeilingRaiseLocked(bytes32 _lockId, uint256 _raiseBy);
/// @dev Emitted by successful `confirmCeilingRaise` calls.
event CeilingRaiseConfirmed(bytes32 _lockId, uint256 _raiseBy, uint256 _newCeiling);
/// @dev Emitted by successful `lowerCeiling` calls.
event CeilingLowered(uint256 _lowerBy, uint256 _newCeiling);
}
Read Contract
custodian 0x375b74c3 → address
erc20Impl 0x3c389cc4 → address
limitedPrinter 0x42569ff3 → address
lockRequestCount 0xcb81fecf → uint256
pendingRaiseMap 0x264da19e → uint256
totalSupplyCeiling 0x95a51233 → uint256
Write Contract 6 functions
These functions modify contract state and require a wallet transaction to execute.
confirmCeilingRaise 0x12460fdd
bytes32 _lockId
confirmCustodianChangeProxy 0x051d9955
bytes32 _lockId
confirmPrintProxy 0x8cbf4145
bytes32 _lockId
limitedPrint 0xa94c7c65
address _receiver
uint256 _value
lowerCeiling 0x33513739
uint256 _lowerBy
requestCeilingRaise 0xc9bc5dbd
uint256 _raiseBy
returns: bytes32
Recent Transactions
No transactions found for this address