Address Contract Partially Verified
Address
0x769916A66fDAC0E3D57363129caac59386ea622B
Balance
0 ETH
Nonce
1
Code Size
3115 bytes
Creator
0x27ca963C...68e7 at tx 0x02a27519...6066b7
Indexed Transactions
0
Contract Bytecode
3115 bytes
0x60806040526004361015610011575f80fd5b5f5f3560e01c806306fdde03146109b9578063095ea7b314610918578063116191b6146108c857806318160ddd146108ab57806323b872dd146107de578063313ce567146107a15780633644e515146106fd57806340c10f19146105db57806370a08231146105965780637ecebe001461055157806395d89b41146104115780639dc29fac14610307578063a9059cbb14610237578063d505accf1461012d5763dd62ed3e146100bf575f80fd5b3461012a57604060031936011261012a5760406020916100dd610b97565b73ffffffffffffffffffffffffffffffffffffffff6100fa610bba565b911682526003845273ffffffffffffffffffffffffffffffffffffffff8383209116825283522054604051908152f35b80fd5b503461012a5760e060031936011261012a5780610148610b97565b610150610bba565b9060843560ff811680910361023257734ebf91f140ca186dd49cbb5f25f157d74178254a90813b1561022e57849273ffffffffffffffffffffffffffffffffffffffff92610124928460405197889687957f19a79b4800000000000000000000000000000000000000000000000000000000875260026004880152896024880152166044860152166064840152604435608484015260643560a484015260c483015260a43560e483015260c4356101048301525af48015610223576102125750f35b8161021c91610ae1565b61012a5780f35b6040513d84823e3d90fd5b8480fd5b505050fd5b503461012a57604060031936011261012a57610251610b97565b73ffffffffffffffffffffffffffffffffffffffff604051917f6f378c06000000000000000000000000000000000000000000000000000000008352600260048401521660248201526024356044820152602081606481734ebf91f140ca186dd49cbb5f25f157d74178254a5af490811561022357602092916102da575b506040519015158152f35b6102fa9150823d8411610300575b6102f28183610ae1565b810190610bdd565b5f6102cf565b503d6102e8565b503461012a57604060031936011261012a57610321610b97565b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000027ca963c279c93801941e1eb8799c23f407d68e71633036103e9578190734ebf91f140ca186dd49cbb5f25f157d74178254a90813b156103e55773ffffffffffffffffffffffffffffffffffffffff6064849260405194859384927fc7f623870000000000000000000000000000000000000000000000000000000084526002600485015216602483015260243560448301525af48015610223576102125750f35b5050fd5b6004827f82b42900000000000000000000000000000000000000000000000000000000008152fd5b503461012a578060031936011261012a576040519080600154908160011c91600181168015610547575b60208410811461051a578386529081156104d55750600114610478575b6104748461046881860382610ae1565b60405191829182610b4f565b0390f35b600181527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6939250905b8082106104bb5750909150810160200161046882610458565b9192600181602092548385880101520191019092916104a2565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660208087019190915292151560051b850190920192506104689150839050610458565b6024837f4e487b710000000000000000000000000000000000000000000000000000000081526022600452fd5b92607f169261043b565b503461012a57602060031936011261012a57604060209173ffffffffffffffffffffffffffffffffffffffff610585610b97565b168152600483522054604051908152f35b503461012a57602060031936011261012a57604060209173ffffffffffffffffffffffffffffffffffffffff6105ca610b97565b168152600283522054604051908152f35b50346106d15760406003193601126106d1576105f5610b97565b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000027ca963c279c93801941e1eb8799c23f407d68e71633036106d557734ebf91f140ca186dd49cbb5f25f157d74178254a90813b156106d15773ffffffffffffffffffffffffffffffffffffffff60645f9260405194859384927f480ff0650000000000000000000000000000000000000000000000000000000084526002600485015216602483015260243560448301525af480156106c6576106b8575080f35b6106c491505f90610ae1565b005b6040513d5f823e3d90fd5b5f80fd5b7f82b42900000000000000000000000000000000000000000000000000000000005f5260045ffd5b346106d1575f6003193601126106d1576040517f957cae980000000000000000000000000000000000000000000000000000000081525f6004820152602081602481734ebf91f140ca186dd49cbb5f25f157d74178254a5af480156106c6575f9061076e575b602090604051908152f35b506020813d602011610799575b8161078860209383610ae1565b810103126106d15760209051610763565b3d915061077b565b346106d1575f6003193601126106d157602060405160ff7f000000000000000000000000000000000000000000000000000000000000000c168152f35b346106d15760606003193601126106d1576107f7610b97565b73ffffffffffffffffffffffffffffffffffffffff610814610bba565b81604051937f1b8d43b0000000000000000000000000000000000000000000000000000000008552600260048601521660248401521660448201526044356064820152602081608481734ebf91f140ca186dd49cbb5f25f157d74178254a5af480156106c6576020915f9161088e57506040519015158152f35b6108a59150823d8411610300576102f28183610ae1565b826102cf565b346106d1575f6003193601126106d1576020600554604051908152f35b346106d1575f6003193601126106d157602060405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000027ca963c279c93801941e1eb8799c23f407d68e7168152f35b346106d15760406003193601126106d157610931610b97565b73ffffffffffffffffffffffffffffffffffffffff604051917f38412ce5000000000000000000000000000000000000000000000000000000008352600260048401521660248201526024356044820152602081606481734ebf91f140ca186dd49cbb5f25f157d74178254a5af480156106c6576020915f9161088e57506040519015158152f35b346106d1575f6003193601126106d1576040515f5f548060011c90600181168015610ad7575b602083108114610aaa57828552908115610a685750600114610a0c575b6104748361046881850382610ae1565b5f8080527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563939250905b808210610a4e575090915081016020016104686109fc565b919260018160209254838588010152019101909291610a36565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660208086019190915291151560051b8401909101915061046890506109fc565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b91607f16916109df565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610b2257604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f602060409481855280519182918282880152018686015e5f8582860101520116010190565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036106d157565b6024359073ffffffffffffffffffffffffffffffffffffffff821682036106d157565b908160209103126106d1575180151581036106d1579056fea2646970667358221220a054647df66bec62ef4eb04211edf278bd118d913fba42b2bd7c32c8d23fb99664736f6c634300081c0033
Verified Source Code Partial Match
Compiler: v0.8.28+commit.7893614a
EVM: cancun
Optimization: Yes (20000 runs)
Token.sol 91 lines
// SPDX-License-Identifier: Apache-2.0 // SPDX-FileCopyrightText: 2025 Snowfork <[email protected]> pragma solidity 0.8.28; import {IERC20} from "./interfaces/IERC20.sol"; import {IERC20Metadata} from "./interfaces/IERC20Metadata.sol"; import {IERC20Permit} from "./interfaces/IERC20Permit.sol"; import {TokenLib} from "./TokenLib.sol"; /** * @dev Implementation of the {IERC20} interface. */ contract Token is IERC20, IERC20Metadata, IERC20Permit { using TokenLib for TokenLib.Token; address public immutable gateway; uint8 public immutable decimals; string public name; string public symbol; TokenLib.Token internal token; error Unauthorized(); /** * @dev Sets the values for {name}, {symbol}, and {decimals}. */ constructor(string memory _name, string memory _symbol, uint8 _decimals) { name = _name; symbol = _symbol; decimals = _decimals; gateway = msg.sender; } modifier onlyGateway() { if (msg.sender != gateway) { revert Unauthorized(); } _; } function mint(address account, uint256 amount) external onlyGateway { token.mint(account, amount); } function burn(address account, uint256 amount) external onlyGateway { token.burn(account, amount); } function transfer(address recipient, uint256 amount) external returns (bool) { return token.transfer(recipient, amount); } function approve(address spender, uint256 amount) external returns (bool) { return token.approve(spender, amount); } function transferFrom(address sender, address recipient, uint256 amount) external returns (bool) { return token.transferFrom(sender, recipient, amount); } function balanceOf(address account) external view returns (uint256) { return token.balance[account]; } function totalSupply() external view returns (uint256) { return token.totalSupply; } function allowance(address _owner, address spender) external view returns (uint256) { return token.allowance[_owner][spender]; } // IERC20Permit function DOMAIN_SEPARATOR() external view returns (bytes32) { return TokenLib.domainSeparator(name); } function permit(address issuer, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external { token.permit(name, issuer, spender, value, deadline, v, r, s); } function nonces(address account) external view returns (uint256) { return token.nonces[account]; } }
IERC20.sol 86 lines
// SPDX-License-Identifier: Apache-2.0 // SPDX-FileCopyrightText: 2023 Axelar Network // SPDX-FileCopyrightText: 2025 Snowfork <[email protected]> pragma solidity 0.8.28; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { error InvalidSender(address); error InvalidReceiver(address); error InvalidSpender(address); error InvalidApprover(address); error InsufficientBalance(address sender, uint256 balance, uint256 needed); error InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
IERC20Metadata.sol 27 lines
// SPDX-License-Identifier: Apache-2.0 // SPDX-FileCopyrightText: 2023 OpenZeppelin // SPDX-FileCopyrightText: 2024 Snowfork <[email protected]> pragma solidity 0.8.28; import "./IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
IERC20Permit.sol 24 lines
// SPDX-License-Identifier: Apache-2.0 // SPDX-FileCopyrightText: 2023 Axelar Network // SPDX-FileCopyrightText: 2023 Snowfork <[email protected]> pragma solidity 0.8.28; interface IERC20Permit { error PermitExpired(); error InvalidSignature(); function DOMAIN_SEPARATOR() external view returns (bytes32); function nonces(address account) external view returns (uint256); function permit( address issuer, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; }
TokenLib.sol 164 lines
// SPDX-License-Identifier: Apache-2.0 // SPDX-FileCopyrightText: 2025 Snowfork <[email protected]> pragma solidity 0.8.28; import {IERC20} from "./interfaces/IERC20.sol"; import {IERC20Permit} from "./interfaces/IERC20Permit.sol"; import {ECDSA} from "openzeppelin/utils/cryptography/ECDSA.sol"; library TokenLib { /// The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// The EIP-712 typehash for the permit struct used by the contract bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); struct Token { mapping(address account => uint256) balance; mapping(address account => mapping(address spender => uint256)) allowance; mapping(address token => uint256) nonces; uint256 totalSupply; } function mint(Token storage token, address account, uint256 amount) external { require(account != address(0), IERC20.InvalidReceiver(address(0))); _update(token, address(0), account, amount); } function burn(Token storage token, address account, uint256 amount) external { require(account != address(0), IERC20.InvalidSender(address(0))); _update(token, account, address(0), amount); } function approve(Token storage token, address spender, uint256 amount) external returns (bool) { _approve(token, msg.sender, spender, amount, true); return true; } function transfer(Token storage token, address recipient, uint256 amount) external returns (bool) { _transfer(token, msg.sender, recipient, amount); return true; } function transferFrom(Token storage token, address owner, address recipient, uint256 amount) external returns (bool) { _spendAllowance(token, owner, msg.sender, amount); _transfer(token, owner, recipient, amount); return true; } function permit( Token storage token, string storage tokenName, address issuer, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(block.timestamp <= deadline, IERC20Permit.PermitExpired()); bytes32 digest = keccak256( abi.encodePacked( hex"1901", _domainSeparator(tokenName), keccak256( abi.encode( PERMIT_TYPEHASH, issuer, spender, value, token.nonces[issuer]++, deadline ) ) ) ); address signatory = ECDSA.recover(digest, v, r, s); require(signatory == issuer, IERC20Permit.InvalidSignature()); _approve(token, issuer, spender, value, true); } function domainSeparator(string storage name) external view returns (bytes32) { return _domainSeparator(name); } function _domainSeparator(string storage name) internal view returns (bytes32) { return keccak256( abi.encode( DOMAIN_TYPEHASH, keccak256(bytes(name)), keccak256(bytes("1")), block.chainid, address(this) ) ); } function _transfer(Token storage token, address sender, address recipient, uint256 amount) internal { require(sender != address(0), IERC20.InvalidSender(address(0))); require(recipient != address(0), IERC20.InvalidReceiver(address(0))); _update(token, sender, recipient, amount); } function _spendAllowance(Token storage token, address owner, address spender, uint256 value) internal returns (bool) { uint256 allowance = token.allowance[owner][spender]; if (allowance != type(uint256).max) { require(allowance >= value, IERC20.InsufficientAllowance(spender, allowance, value)); unchecked { _approve(token, owner, spender, allowance - value, false); } } return true; } function _approve(Token storage token, address owner, address spender, uint256 amount, bool emitEvent) internal { require(owner != address(0), IERC20.InvalidApprover(address(0))); require(spender != address(0), IERC20.InvalidSpender(address(0))); token.allowance[owner][spender] = amount; if (emitEvent) { emit IERC20.Approval(owner, spender, amount); } } function _update(Token storage token, address from, address to, uint256 value) internal { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows token.totalSupply += value; } else { uint256 fromBalance = token.balance[from]; require(fromBalance >= value, IERC20.InsufficientBalance(from, fromBalance, value)); unchecked { // Overflow not possible: value <= fromBalance <= totalSupply token.balance[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply token.totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256 token.balance[to] += value; } } emit IERC20.Transfer(from, to, value); } }
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
Read Contract
DOMAIN_SEPARATOR 0x3644e515 → bytes32
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
decimals 0x313ce567 → uint8
gateway 0x116191b6 → address
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256
Write Contract 6 functions
These functions modify contract state and require a wallet transaction to execute.
approve 0x095ea7b3
address spender
uint256 amount
returns: bool
burn 0x9dc29fac
address account
uint256 amount
mint 0x40c10f19
address account
uint256 amount
permit 0xd505accf
address issuer
address spender
uint256 value
uint256 deadline
uint8 v
bytes32 r
bytes32 s
transfer 0xa9059cbb
address recipient
uint256 amount
returns: bool
transferFrom 0x23b872dd
address sender
address recipient
uint256 amount
returns: bool
Recent Transactions
No transactions found for this address