Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x76c4E23622FB7c97260bF88B1d16768dC286E0e6
Balance 0 ETH
Nonce 3
Code Size 17676 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

17676 bytes
0x608060405234801561000f575f5ffd5b50600436106102d8575f3560e01c80639feee7e111610187578063ccdc828f116100dd578063e583985f11610093578063f1bc022b1161006e578063f1bc022b146106cb578063f2fde38b146106de578063f84ddf0b146106f1575f5ffd5b8063e583985f14610675578063e8a3d48514610688578063e985e9c514610690575f5ffd5b8063d7b7259a116100c3578063d7b7259a14610637578063e3684e391461064a578063e508a22c1461066d575f5ffd5b8063ccdc828f14610611578063d0b6b6db14610624575f5ffd5b8063b7faef4a1161013d578063c38ca41911610118578063c38ca419146105d8578063c87b56dd146105eb578063cc050bc3146105fe575f5ffd5b8063b7faef4a1461059f578063b88d4fde146105b2578063bba15dcb146105c5575f5ffd5b8063a8970ab91161016d578063a8970ab914610512578063aa75d99b14610525578063b189c7e814610538575f5ffd5b80639feee7e1146104ec578063a22cb465146104ff575f5ffd5b80635fb64a6a1161023c578063715018a6116101f257806390e46443116101cd57806390e46443146104a3578063938e3d7b146104d157806395d89b41146104e4575f5ffd5b8063715018a61461046957806378e5f963146104715780638da5cb5b14610492575f5ffd5b80636352211e116102225780636352211e146104225780636a6278421461043557806370a0823114610448575f5ffd5b80635fb64a6a146103ea57806360316801146103fd575f5ffd5b806323b872dd116102915780632f14e2fb116102775780632f14e2fb146103b157806342842e0e146103c457806342966c68146103d7575f5ffd5b806323b872dd1461036c5780632a55205a1461037f575f5ffd5b806306fdde03116102c157806306fdde0314610319578063081812fc1461032e578063095ea7b314610359575f5ffd5b80630137b622146102dc57806301ffc9a7146102f1575b5f5ffd5b6102ef6102ea3660046134aa565b6106fa565b005b6103046102ff3660046134f1565b610958565b60405190151581526020015b60405180910390f35b610321610a04565b6040516103109190613559565b61034161033c36600461356b565b610a93565b6040516001600160a01b039091168152602001610310565b6102ef610367366004613598565b610aba565b6102ef61037a3660046135c0565b610ac9565b61039261038d3660046135fa565b610b70565b604080516001600160a01b039093168352602083019190915201610310565b6102ef6103bf366004613658565b610bcc565b6102ef6103d23660046135c0565b610e09565b6102ef6103e536600461356b565b610e28565b6102ef6103f83660046136b2565b610e56565b61041061040b36600461356b565b610e8d565b60405161031096959493929190613776565b61034161043036600461356b565b611222565b6102ef6104433660046136b2565b61122c565b61045b6104563660046136b2565b6112ae565b604051908152602001610310565b6102ef61130c565b61048461047f36600461356b565b61131f565b6040516103109291906137dd565b6006546001600160a01b0316610341565b6103046104b136600461388c565b8051602081830181018051600c8252928201919093012091525460ff1681565b6102ef6104df3660046138d1565b611570565b6103216115b2565b600b54610341906001600160a01b031681565b6102ef61050d366004613910565b6115c1565b6102ef6105203660046136b2565b6115cc565b6102ef6105333660046136b2565b61163a565b600e54610573906001600160a01b038116907401000000000000000000000000000000000000000090046bffffffffffffffffffffffff1682565b604080516001600160a01b0390931683526bffffffffffffffffffffffff909116602083015201610310565b6102ef6105ad3660046135fa565b611671565b6102ef6105c0366004613949565b611798565b600854610341906001600160a01b031681565b600954610341906001600160a01b031681565b6103216105f936600461356b565b6117b0565b6102ef61060c3660046138d1565b611e40565b6102ef61061f3660046139c0565b611ebb565b600d54610341906001600160a01b031681565b6102ef61064536600461356b565b611f5c565b61065d61065836600461356b565b61201a565b60405161031094939291906139fa565b6102ef612157565b6102ef6106833660046138d1565b612167565b610321612214565b61030461069e366004613a2c565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b6102ef6106d9366004613a5d565b6122a0565b6102ef6106ec3660046136b2565b61264f565b61045b60075481565b5f610704846126a2565b5f858152600a6020526040812091925080846001811115610727576107276136cb565b146107355781600101610737565b815b90505f851180156107485750805485105b801561076357505f82600201805461075f90613b66565b9050115b61077f576040516282b42960e81b815260040160405180910390fd5b6001836001811115610793576107936136cb565b036107f05760018186815481106107ac576107ac613b9e565b5f9182526020909120600160029092020181015460ff16908111156107d3576107d36136cb565b146107f0576040516282b42960e81b815260040160405180910390fd5b8054819061080090600190613bc6565b8154811061081057610810613b9e565b905f5260205f20906002020181868154811061082e5761082e613b9e565b5f9182526020909120600290910201806108488382613c1d565b50600182810154828201805460ff90921692909160ff1916908381811115610872576108726136cb565b02179055509050508080548061088a5761088a613cf5565b5f828152602081205f19909201916002830201906108a8828261344d565b506001908101805460ff1916905591558201545f906108c757826108cc565b826001015b80546003850154919250116108e2575f60038401555b867f110c6df9007765cac11d55e6129cae8bfadbef154c9a94354aa69f88f2d47fda8787604051610914929190613d09565b60405180910390a26040518781527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a150505050505050565b5f61096282612703565b8061099657506001600160e01b031982167f2a55205a00000000000000000000000000000000000000000000000000000000145b806109ca57506001600160e01b031982167f4906490600000000000000000000000000000000000000000000000000000000145b806109fe57506001600160e01b031982167fe8a3d48500000000000000000000000000000000000000000000000000000000145b92915050565b60605f8054610a1290613b66565b80601f0160208091040260200160405190810160405280929190818152602001828054610a3e90613b66565b8015610a895780601f10610a6057610100808354040283529160200191610a89565b820191905f5260205f20905b815481529060010190602001808311610a6c57829003601f168201915b5050505050905090565b5f610a9d8261279d565b505f828152600460205260409020546001600160a01b03166109fe565b610ac58282336127d5565b5050565b6001600160a01b038216610af757604051633250574960e11b81525f60048201526024015b60405180910390fd5b5f610b038383336127e2565b9050836001600160a01b0316816001600160a01b031614610b6a576040517f64283d7b0000000000000000000000000000000000000000000000000000000081526001600160a01b0380861660048301526024820184905282166044820152606401610aee565b50505050565b600e545f9081906001600160a01b0381169061271090610bb6907401000000000000000000000000000000000000000090046bffffffffffffffffffffffff1686613d26565b610bc09190613d3d565b915091505b9250929050565b5f610bd6856126a2565b5f868152600a602052604081206002810180549394509092610bf790613b66565b9050118015610c0557508315155b610c21576040516282b42960e81b815260040160405180910390fd5b5f836001811115610c3457610c346136cb565b03610ce6576040805160606020601f880181900402820181018352918101868152839282919089908990819085018382808284375f92019190915250505090825250602001846001811115610c8b57610c8b6136cb565b905281546001810183555f92835260209092208151919260020201908190610cb39082613d5c565b50602082015160018083018054909160ff19909116908381811115610cda57610cda6136cb565b02179055505050610d92565b6040805160606020601f880181900402820181018352918101868152600184019282919089908990819085018382808284375f92019190915250505090825250602001846001811115610d3b57610d3b6136cb565b905281546001810183555f92835260209092208151919260020201908190610d639082613d5c565b50602082015160018083018054909160ff19909116908381811115610d8a57610d8a6136cb565b021790555050505b857fa535a3cadf97ccc47012bfd86efd59eeb4c1ccb9c390490bff2f15e25ffa8ba9868686604051610dc693929190613e38565b60405180910390a26040518681527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a1505050505050565b610e2383838360405180602001604052805f815250611798565b505050565b5f81815260026020526040902054610e4a906001600160a01b031633836128e1565b610e538161295e565b50565b610e5e612996565b600d805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055565b5f818152600a602052604081206003810154600482015460028301805460609594859487948594859490929160ff16906005850190859060018201908690610ed490613b66565b80601f0160208091040260200160405190810160405280929190818152602001828054610f0090613b66565b8015610f4b5780601f10610f2257610100808354040283529160200191610f4b565b820191905f5260205f20905b815481529060010190602001808311610f2e57829003601f168201915b50505050509550828054610f5e90613b66565b80601f0160208091040260200160405190810160405280929190818152602001828054610f8a90613b66565b8015610fd55780601f10610fac57610100808354040283529160200191610fd5565b820191905f5260205f20905b815481529060010190602001808311610fb857829003601f168201915b5050505050925081805480602002602001604051908101604052809291908181526020015f905b828210156110ee578382905f5260205f2090600202016040518060400160405290815f8201805461102c90613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461105890613b66565b80156110a35780601f1061107a576101008083540402835291602001916110a3565b820191905f5260205f20905b81548152906001019060200180831161108657829003601f168201915b505050918352505060018281015460209092019160ff16908111156110ca576110ca6136cb565b60018111156110db576110db6136cb565b8152505081526020019060010190610ffc565b50505050915080805480602002602001604051908101604052809291908181526020015f905b82821015611206578382905f5260205f2090600202016040518060400160405290815f8201805461114490613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461117090613b66565b80156111bb5780601f10611192576101008083540402835291602001916111bb565b820191905f5260205f20905b81548152906001019060200180831161119e57829003601f168201915b505050918352505060018281015460209092019160ff16908111156111e2576111e26136cb565b60018111156111f3576111f36136cb565b8152505081526020019060010190611114565b5050505090509650965096509650965096505091939550919395565b5f6109fe8261279d565b6101d66007541061124f576040516282b42960e81b815260040160405180910390fd5b600d546001600160a01b031633148061127257506006546001600160a01b031633145b61128e576040516282b42960e81b815260040160405180910390fd5b60078054905f61129d83613e64565b9190505550610e53816007546129dc565b5f6001600160a01b0382166112f1576040517f89c62b640000000000000000000000000000000000000000000000000000000081525f6004820152602401610aee565b506001600160a01b03165f9081526003602052604090205490565b611314612996565b61131d5f612a56565b565b5f818152600a6020908152604080832080548251818502810185019093528083526060948594929384936001850193919285929184015b82821015611448578382905f5260205f2090600202016040518060400160405290815f8201805461138690613b66565b80601f01602080910402602001604051908101604052809291908181526020018280546113b290613b66565b80156113fd5780601f106113d4576101008083540402835291602001916113fd565b820191905f5260205f20905b8154815290600101906020018083116113e057829003601f168201915b505050918352505060018281015460209092019160ff1690811115611424576114246136cb565b6001811115611435576114356136cb565b8152505081526020019060010190611356565b50505050915080805480602002602001604051908101604052809291908181526020015f905b82821015611560578382905f5260205f2090600202016040518060400160405290815f8201805461149e90613b66565b80601f01602080910402602001604051908101604052809291908181526020018280546114ca90613b66565b80156115155780601f106114ec57610100808354040283529160200191611515565b820191905f5260205f20905b8154815290600101906020018083116114f857829003601f168201915b505050918352505060018281015460209092019160ff169081111561153c5761153c6136cb565b600181111561154d5761154d6136cb565b815250508152602001906001019061146e565b5050505090509250925050915091565b611578612996565b600f611585828483613e7c565b506040517fa5d4097edda6d87cb9329af83fb3712ef77eeb13738ffe43cc35a4ce305ad962905f90a15050565b606060018054610a1290613b66565b610ac5338383612ab4565b6115d4612996565b6009805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0383169081179091556040519081527fa2392631089398bce11b2f5dbae74a58b8b33e22e242ee962e6727f961ce8c879060200160405180910390a1610e53612b6b565b611642612996565b600b805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055565b5f828152600260205260409020546001600160a01b031633146116a6576040516282b42960e81b815260040160405180910390fd5b5f828152600a6020526040812060018101549091906116c557816116ca565b816001015b805490915060011080156116de5750805483105b80156116f957505f8260020180546116f590613b66565b9050115b801561173c57505f81848154811061171357611713613b9e565b5f9182526020909120600160029092020181015460ff169081111561173a5761173a6136cb565b145b611758576040516282b42960e81b815260040160405180910390fd5b600382018390556040518481527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a150505050565b6117a3848484610ac9565b610b6a3385858585612bf3565b60606117bb8261279d565b505f828152600a602052604081208054600182015460038301549293919290918215159083851490856117fc5760405180602001604052805f8152506118c7565b86838015611808575082155b61181f57868510611819575f611821565b84611821565b5f5b8154811061183157611831613b9e565b905f5260205f2090600202015f01805461184a90613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461187690613b66565b80156118c15780601f10611898576101008083540402835291602001916118c1565b820191905f5260205f20905b8154815290600101906020018083116118a457829003601f168201915b50505050505b600488015490915060609060ff1680156118eb575060018711806118eb5750600186115b801561190157506009546001600160a01b031615155b15611b42575f846119125788611917565b886001015b905060605f5b8254811015611a6257611a5861198f835f841161195357604051806040016040528060018152602001601160f91b815250612d4d565b6040518060400160405280600281526020017f2c220000000000000000000000000000000000000000000000000000000000008152505b612d4d565b61198a8584815481106119a4576119a4613b9e565b905f5260205f2090600202015f0180546119bd90613b66565b80601f01602080910402602001604051908101604052809291908181526020018280546119e990613b66565b8015611a345780601f10611a0b57610100808354040283529160200191611a34565b820191905f5260205f20905b815481529060010190602001808311611a1757829003601f168201915b5050505050604051806040016040528060018152602001601160f91b815250612d4d565b915060010161191d565b505f611a9f611a748c60030154612d60565b8c60020184604051602001611a8b93929190613f51565b604051602081830303815290604052612da2565b60408051808201909152601681527f646174613a746578742f68746d6c3b6261736536342c000000000000000000006020820152600954919250611b389161198a90611b3390611af7906001600160a01b0316612daf565b6040518060400160405280600881526020017f7b7b444154417d7d00000000000000000000000000000000000000000000000081525086612ddb565b612da2565b9350505050611c03565b8315611c035787600101868610611b59575f611b5b565b855b81548110611b6b57611b6b613b9e565b905f5260205f2090600202015f018054611b8490613b66565b80601f0160208091040260200160405190810160405280929190818152602001828054611bb090613b66565b8015611bfb5780601f10611bd257610100808354040283529160200191611bfb565b820191905f5260205f20905b815481529060010190602001808311611bde57829003601f168201915b505050505090505b5f886005018054611c1390613b66565b80601f0160208091040260200160405190810160405280929190818152602001828054611c3f90613b66565b8015611c8a5780601f10611c6157610100808354040283529160200191611c8a565b820191905f5260205f20905b815481529060010190602001808311611c6d57829003601f168201915b50506008549394505050506001600160a01b031615611d3057805f825111611cc05760405180602001604052805f815250611cf7565b6040518060400160405280600481526020017f5c6e5c6e000000000000000000000000000000000000000000000000000000008152505b600854611d0c906001600160a01b0316612daf565b604051602001611d1e93929190614092565b60405160208183030381529060405290505b611e316040518060400160405280601d81526020017f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525061198a600a8e10611d885760405180602001604052805f815250611dbf565b6040518060400160405280600181526020017f30000000000000000000000000000000000000000000000000000000000000008152505b611dc88f612d60565b855f895111611dde57611dd9612df0565b611de0565b885b5f895111611dfc5760405180602001604052805f815250611e1d565b88604051602001611e0d91906140d4565b6040516020818303038152906040525b604051602001611a8b959493929190614123565b9b9a5050505050505050505050565b611e48612996565b611e8682828080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250612e1392505050565b6008805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055610ac5612b6b565b611ec3612996565b6103e8816bffffffffffffffffffffffff161115611f0d576040517f25a2827a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b604080518082019091526001600160a01b039092168083526bffffffffffffffffffffffff90911660209092018290527401000000000000000000000000000000000000000090910217600e55565b5f818152600260205260409020546001600160a01b03163314611f91576040516282b42960e81b815260040160405180910390fd5b5f818152600a60205260408120600281018054919291611fb090613b66565b905011611fcf576040516282b42960e81b815260040160405180910390fd5b60048101805460ff81161560ff199091161790556040518281527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a15050565b600a6020525f9081526040902060028101805461203690613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461206290613b66565b80156120ad5780601f10612084576101008083540402835291602001916120ad565b820191905f5260205f20905b81548152906001019060200180831161209057829003601f168201915b50505050600383015460048401546005850180549495929460ff9092169350906120d690613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461210290613b66565b801561214d5780601f106121245761010080835404028352916020019161214d565b820191905f5260205f20905b81548152906001019060200180831161213057829003601f168201915b5050505050905084565b61215f612996565b61131d612b6b565b61216f612996565b6121ad82828080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250612e1392505050565b6009805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b039290921691821790556040519081527fa2392631089398bce11b2f5dbae74a58b8b33e22e242ee962e6727f961ce8c879060200160405180910390a1610ac5612b6b565b600f805461222190613b66565b80601f016020809104026020016040519081016040528092919081815260200182805461224d90613b66565b80156122985780601f1061226f57610100808354040283529160200191612298565b820191905f5260205f20905b81548152906001019060200180831161227b57829003601f168201915b505050505081565b5f6122aa8c61279d565b90506122be6006546001600160a01b031690565b6001600160a01b0316336001600160a01b0316146123db57336001600160a01b0382161480156122f85750600b546001600160a01b031615155b80156123265750600c8b8b604051612311929190614269565b9081526040519081900360200190205460ff16155b612342576040516282b42960e81b815260040160405180910390fd5b5f46308d8d8d8d8d8d8d8d6040516020016123669a99989796959493929190614278565b604051602081830303815290604052805190602001209050612389818585612e54565b6123a5576040516282b42960e81b815260040160405180910390fd5b6001600c8d8d6040516123b9929190614269565b908152604051908190036020019020805491151560ff19909216919091179055505b5f8c8152600a602052604090206002810180546123f790613b66565b159050612416576040516282b42960e81b815260040160405180910390fd5b8a612433576040516282b42960e81b815260040160405180910390fd5b8615158061244057508415155b61245c576040516282b42960e81b815260040160405180910390fd5b6002810161246b8c8e83613e7c565b506005810161247b8a8c83613e7c565b508615612516576040805160606020601f8b018190040282018101835291810189815283928291908c908c90819085018382808284375f920182905250938552505050602091820181905283546001810185559381522081519192600202019081906124e79082613d5c565b50602082015160018083018054909160ff1990911690838181111561250e5761250e6136cb565b021790555050505b84156125b3576040805160606020601f89018190040282018101835291810187815260018401928291908a908a90819085018382808284375f920182905250938552505050602091820181905283546001810185559381522081519192600202019081906125849082613d5c565b50602082015160018083018054909160ff199091169083818111156125ab576125ab6136cb565b021790555050505b8b8b6040516125c3929190614269565b60405180910390208d7f76508e685116a06b948610b8e2765123ece2a4774d02e9bf29092a9be652eab88c8c8c8c8c8c604051612605969594939291906142ee565b60405180910390a36040518d81527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a150505050505050505050505050565b612657612996565b6001600160a01b038116612699576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f6004820152602401610aee565b610e5381612a56565b5f818152600260205260408120546006546001600160a01b0391821691339116811490821480806126d05750815b6126ec576040516282b42960e81b815260040160405180910390fd5b816126f85760016126fa565b5f5b95945050505050565b5f6001600160e01b031982167f80ac58cd00000000000000000000000000000000000000000000000000000000148061276557506001600160e01b031982167f5b5e139f00000000000000000000000000000000000000000000000000000000145b806109fe57507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316146109fe565b5f818152600260205260408120546001600160a01b0316806109fe57604051637e27328960e01b815260048101849052602401610aee565b610e238383836001612f02565b5f828152600260205260408120546001600160a01b039081169083161561280e5761280e8184866128e1565b6001600160a01b03811615612848576128295f855f5f612f02565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b03851615612876576001600160a01b0385165f908152600360205260409020805460010190555b5f84815260026020526040808220805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b6128ec83838361304a565b610e23576001600160a01b03831661291a57604051637e27328960e01b815260048101829052602401610aee565b6040517f177e802f0000000000000000000000000000000000000000000000000000000081526001600160a01b038316600482015260248101829052604401610aee565b5f61296a5f835f6127e2565b90506001600160a01b038116610ac557604051637e27328960e01b815260048101839052602401610aee565b6006546001600160a01b0316331461131d576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610aee565b6001600160a01b038216612a0557604051633250574960e11b81525f6004820152602401610aee565b5f612a1183835f6127e2565b90506001600160a01b03811615610e23576040517f73c6ac6e0000000000000000000000000000000000000000000000000000000081525f6004820152602401610aee565b600680546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff19831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b038216612aff576040517f5b08ba180000000000000000000000000000000000000000000000000000000081526001600160a01b0383166004820152602401610aee565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6007545f03612b7657565b60016007541115612bc257600754604080516001815260208101929092527f6bd5c950a8d8df17f772f5af37cb3655737899cbf903264b9795592da439661c91015b60405180910390a1565b604051600181527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce790602001612bb8565b6001600160a01b0383163b15612d46576040517f150b7a020000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063150b7a0290612c4e908890889087908790600401614329565b6020604051808303815f875af1925050508015612c88575060408051601f3d908101601f19168201909252612c8591810190614369565b60015b612cef573d808015612cb5576040519150601f19603f3d011682016040523d82523d5f602084013e612cba565b606091505b5080515f03612ce757604051633250574960e11b81526001600160a01b0385166004820152602401610aee565b805160208201fd5b6001600160e01b031981167f150b7a020000000000000000000000000000000000000000000000000000000014612d4457604051633250574960e11b81526001600160a01b0385166004820152602401610aee565b505b5050505050565b6060612d5983836130ca565b9392505050565b60606080604051019050602081016040525f8152805f19835b928101926030600a8206018453600a900480612d79575050819003601f19909101908152919050565b60606109fe825f5f613125565b60405164ffffffffff5f19833b0116602181015f601f8401853c80825260408201810160405250919050565b6060612de8848484613232565b949350505050565b606060405180610180016040528061015281526020016143856101529139905090565b5f81518060401b6bfe61000180600a3d393df3000161fffe8211840152600b8101601584015ff0915081612e4e5763301164255f526004601cfd5b90915290565b5f5f7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f5284601c52603c5f2090505f5f612ec48387878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061333c92505050565b5090925090505f816003811115612edd57612edd6136cb565b148015612ef75750600b546001600160a01b038381169116145b979650505050505050565b8080612f1657506001600160a01b03821615155b1561300e575f612f258461279d565b90506001600160a01b03831615801590612f515750826001600160a01b0316816001600160a01b031614155b8015612f8257506001600160a01b038082165f9081526005602090815260408083209387168352929052205460ff16155b15612fc4576040517fa9fbf51f0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602401610aee565b811561300c5783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f908152600460205260409020805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055565b5f6001600160a01b03831615801590612de85750826001600160a01b0316846001600160a01b031614806130a257506001600160a01b038085165f9081526005602090815260408083209387168352929052205460ff165b80612de85750505f908152600460205260409020546001600160a01b03908116911614919050565b6040518251601f19906020810182165b85810151848201528201806130da575083518184018360208301165b86810151828201528401806130f65750505f910183810160208101929092528352604090810190525092915050565b60608351801561322a576003600282010460021b60405192507f4142434445464748494a4b4c4d4e4f505152535455565758595a616263646566601f526106708515027f6768696a6b6c6d6e6f707172737475767778797a303132333435363738392d5f18603f526020830181810183886020010180515f82525b60038a0199508951603f8160121c16515f53603f81600c1c1651600153603f8160061c1651600253603f811651600353505f5184526004840193508284106131a05790526020016040527f3d3d00000000000000000000000000000000000000000000000000000000000060038406600204808303919091525f8615159091029182900352900382525b509392505050565b606060405190508251825185830360208701875181015f5287518411613301576001845f5103015f6020861061326b578560208a012090505b6020890151601f871660200360031b5b8451828118821c6132ea5783156132b35783898720146132b35780878701526001860195508486106132ad57506132fc565b5061327b565b5f5b6020818d01810151898901830152018881106132b557508888880103965088156132ea57948801948486106132ad57506132fc565b8587015260019094019383851061327b575b505050505b5f519350836020860183030192505b8381101561332657805182820152602001613310565b5f91019081526020016040528252509392505050565b5f5f5f8351604103613373576020840151604085015160608601515f1a61336588828585613385565b95509550955050505061337e565b505081515f91506002905b9250925092565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156133be57505f91506003905082613443565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561340f573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661343a57505f925060019150829050613443565b92505f91508190505b9450945094915050565b50805461345990613b66565b5f825580601f10613468575050565b601f0160209004905f5260205f2090810190610e5391905b80821115613493575f8155600101613480565b5090565b8035600281106134a5575f5ffd5b919050565b5f5f5f606084860312156134bc575f5ffd5b83359250602084013591506134d360408501613497565b90509250925092565b6001600160e01b031981168114610e53575f5ffd5b5f60208284031215613501575f5ffd5b8135612d59816134dc565b5f5b8381101561352657818101518382015260200161350e565b50505f910152565b5f815180845261354581602086016020860161350c565b601f01601f19169290920160200192915050565b602081525f612d59602083018461352e565b5f6020828403121561357b575f5ffd5b5035919050565b80356001600160a01b03811681146134a5575f5ffd5b5f5f604083850312156135a9575f5ffd5b6135b283613582565b946020939093013593505050565b5f5f5f606084860312156135d2575f5ffd5b6135db84613582565b92506135e960208501613582565b929592945050506040919091013590565b5f5f6040838503121561360b575f5ffd5b50508035926020909101359150565b5f5f83601f84011261362a575f5ffd5b50813567ffffffffffffffff811115613641575f5ffd5b602083019150836020828501011115610bc5575f5ffd5b5f5f5f5f6060858703121561366b575f5ffd5b84359350602085013567ffffffffffffffff811115613688575f5ffd5b6136948782880161361a565b90945092506136a7905060408601613497565b905092959194509250565b5f602082840312156136c2575f5ffd5b612d5982613582565b634e487b7160e01b5f52602160045260245ffd5b60028110610e5357634e487b7160e01b5f52602160045260245ffd5b5f82825180855260208501945060208160051b830101602085015f5b8381101561376a57601f19858403018852815180516040855261373d604086018261352e565b90506020820151915061374f826136df565b60209485019190915297830197929190910190600101613717565b50909695505050505050565b60c081525f61378860c083018961352e565b876020840152861515604084015282810360608401526137a8818761352e565b905082810360808401526137bc81866136fb565b905082810360a08401526137d081856136fb565b9998505050505050505050565b604081525f6137ef60408301856136fb565b82810360208401526126fa81856136fb565b634e487b7160e01b5f52604160045260245ffd5b5f5f67ffffffffffffffff84111561382f5761382f613801565b50604051601f19601f85018116603f0116810181811067ffffffffffffffff8211171561385e5761385e613801565b604052838152905080828401851015613875575f5ffd5b838360208301375f60208583010152509392505050565b5f6020828403121561389c575f5ffd5b813567ffffffffffffffff8111156138b2575f5ffd5b8201601f810184136138c2575f5ffd5b612de884823560208401613815565b5f5f602083850312156138e2575f5ffd5b823567ffffffffffffffff8111156138f8575f5ffd5b6139048582860161361a565b90969095509350505050565b5f5f60408385031215613921575f5ffd5b61392a83613582565b91506020830135801515811461393e575f5ffd5b809150509250929050565b5f5f5f5f6080858703121561395c575f5ffd5b61396585613582565b935061397360208601613582565b925060408501359150606085013567ffffffffffffffff811115613995575f5ffd5b8501601f810187136139a5575f5ffd5b6139b487823560208401613815565b91505092959194509250565b5f5f604083850312156139d1575f5ffd5b6139da83613582565b915060208301356bffffffffffffffffffffffff8116811461393e575f5ffd5b608081525f613a0c608083018761352e565b85602084015284151560408401528281036060840152612ef7818561352e565b5f5f60408385031215613a3d575f5ffd5b613a4683613582565b9150613a5460208401613582565b90509250929050565b5f5f5f5f5f5f5f5f5f5f5f60c08c8e031215613a77575f5ffd5b8b359a5060208c013567ffffffffffffffff811115613a94575f5ffd5b613aa08e828f0161361a565b909b5099505060408c013567ffffffffffffffff811115613abf575f5ffd5b613acb8e828f0161361a565b90995097505060608c013567ffffffffffffffff811115613aea575f5ffd5b613af68e828f0161361a565b90975095505060808c013567ffffffffffffffff811115613b15575f5ffd5b613b218e828f0161361a565b90955093505060a08c013567ffffffffffffffff811115613b40575f5ffd5b613b4c8e828f0161361a565b915080935050809150509295989b509295989b9093969950565b600181811c90821680613b7a57607f821691505b602082108103613b9857634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b818103818111156109fe576109fe613bb2565b601f821115610e2357805f5260205f20601f840160051c81016020851015613bfe5750805b601f840160051c820191505b81811015612d46575f8155600101613c0a565b818103613c28575050565b613c328254613b66565b67ffffffffffffffff811115613c4a57613c4a613801565b613c5e81613c588454613b66565b84613bd9565b5f601f821160018114613c92575f8315613c785750848201545b600184901b5f19600386901b1c198216175b855550612d46565b5f8581526020808220868352908220601f198616925b83811015613cc85782860154825560019586019590910190602001613ca8565b5085831015613ce557818501545f19600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b5f52603160045260245ffd5b82815260408101613d19836136df565b8260208301529392505050565b80820281158282048414176109fe576109fe613bb2565b5f82613d5757634e487b7160e01b5f52601260045260245ffd5b500490565b815167ffffffffffffffff811115613d7657613d76613801565b613d8481613c588454613b66565b6020601f821160018114613db4575f8315613c78575081850151600184901b5f19600386901b1c19821617613c8a565b5f84815260208120601f198516915b82811015613de35787850151825560209485019460019092019101613dc3565b5084821015613e0057868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b81835281816020850137505f602082840101525f6020601f19601f840116840101905092915050565b604081525f613e4b604083018587613e0f565b9050613e56836136df565b826020830152949350505050565b5f60018201613e7557613e75613bb2565b5060010190565b67ffffffffffffffff831115613e9457613e94613801565b613ea883613ea28354613b66565b83613bd9565b5f601f841160018114613ed9575f8515613ec25750838201355b5f19600387901b1c1916600186901b178355612d46565b5f83815260208120601f198716915b82811015613f085786850135825560209485019460019092019101613ee8565b5086821015613f24575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b5f8151613f4781856020860161350c565b9290920192915050565b7f5b0000000000000000000000000000000000000000000000000000000000000081525f8451613f8881600185016020890161350c565b80830190507f2c2200000000000000000000000000000000000000000000000000000000000060018201525f8554613fbf81613b66565b600182168015613fd65760018114613ff457614027565b60ff1983166003860152600260018315158402870101019350614027565b885f5260205f205f5b8381101561401c57815460038883010152600190910190602001613ffd565b505060038583010193505b50507f222c5b000000000000000000000000000000000000000000000000000000000082525061405a6003820186613f36565b915050614086817f5d5d0000000000000000000000000000000000000000000000000000000000009052565b60020195945050505050565b5f84516140a381846020890161350c565b8451908301906140b781836020890161350c565b84519101906140ca81836020880161350c565b0195945050505050565b7f2c22616e696d6174696f6e5f75726c223a22000000000000000000000000000081525f825161410b81601285016020870161350c565b601160f91b6012939091019283015250601301919050565b7f7b226e616d65223a22556e7469746c656420000000000000000000000000000081525f865161415a816012850160208b0161350c565b865190830190614171816012840160208b0161350c565b6012818301019150507f222c22637265617465645f6279223a22307847222c226465736372697074696f81527f6e223a2200000000000000000000000000000000000000000000000000000000602082015285516141d6816024840160208a0161350c565b7f222c22696d616765223a2200000000000000000000000000000000000000000060249290910191820152845161421481602f84016020890161350c565b01602481019061422a90602f01601160f91b9052565b614237600c820185613f36565b7f7d00000000000000000000000000000000000000000000000000000000000000815260010198975050505050505050565b818382375f9101908152919050565b8a81526001600160a01b038a16602082015260c060408201525f6142a060c083018a8c613e0f565b82810360608401526142b381898b613e0f565b905082810360808401526142c8818789613e0f565b905082810360a08401526142dd818587613e0f565b9d9c50505050505050505050505050565b606081525f61430160608301888a613e0f565b8281036020840152614314818789613e0f565b905082810360408401526137d0818587613e0f565b6001600160a01b03851681526001600160a01b0384166020820152826040820152608060608201525f61435f608083018461352e565b9695505050505050565b5f60208284031215614379575f5ffd5b8151612d59816134dc56fe646174613a696d6167652f706e673b6261736536342c6956424f5277304b47676f414141414e5355684555674141424141414141514141514d414141424630376e41414141414131424d564555414141436e656a33614141414141585253546c4d41514f62595a674141414a5a4a52454655654e727477514542414141416771442b723236497741414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141434176414d454867414241435636427741414141424a52553545726b4a6767673d3da26469706673582212209e535ef2f932be72da1442b8de297c4a2ced58bd6f37b58e776447e66d5d21b464736f6c634300081e0033

Verified Source Code Full Match

Compiler: v0.8.30+commit.73712a01 EVM: shanghai Optimization: Yes (2000 runs)
Untitled.sol 450 lines
// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.8.30;

import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {SSTORE2} from "solady/src/utils/SSTORE2.sol";
import {Base64} from "solady/src/utils/Base64.sol";
import {LibString} from "solady/src/utils/LibString.sol";
import {IUntitled} from "./IUntitled.sol";

/**
 * @title  Untitled
 * @author 0xG
 *
 * @notice “Untitled” is a conceptual collection of blank non-fungible tokens.
 *
 *         Those who embrace the concept hold a complete work as-is. Those who value
 *         visual art over concept may select a visual work by the artist—past or
 *         future, but never previously minted—and have it permanently linked to
 *         their token.
 */
contract Untitled is
  IUntitled,
  ERC721,
  Ownable
{
  uint256 public lastTokenId;

  address public descriptionAt;

  struct TokenMetadata {
    Media[]  images;
    Media[]  animation_urls;
    string   mediaHash;
    uint256  selectedUriIndex;
    bool     fallbackEnabled;
    string   description;
  }

  address public fallbackTemplateAt;

  mapping(uint256 tokenId => TokenMetadata meta) public metadata;

  /************************************************
   * Rendering
   ************************************************/

  /**
   * @notice Returns the token metadata.
   *         When no urls are associated with it returns a blank visual,
   *         otherwise the visual linked to the token.
   *         When fallback is enabled, generates an HTML page that cycles through fallback URLs,
   *         seeking for a URL content that matches the artwork hash.
   * @param tokenId The token ID.
   * @return Base64-encoded JSON metadata URI.
   */
  function tokenURI(uint256 tokenId) public view override returns (string memory) {
    _requireOwned(tokenId);

    TokenMetadata storage meta = metadata[tokenId];

    uint256 imagesLen = meta.images.length;
    uint256 animation_urlsLen = meta.animation_urls.length;
    uint256 selectedIdx = meta.selectedUriIndex;

    // selectedUriIndex indexes into the primary array (animation_urls if present, else images)
    // For the secondary array, use matching index only if lengths are equal, else 0
    bool hasAnimations = animation_urlsLen > 0;
    bool lengthsMatch = imagesLen == animation_urlsLen;

    string memory image = imagesLen > 0
      ? meta.images[
          (hasAnimations && !lengthsMatch) ? 0 : (selectedIdx < imagesLen ? selectedIdx : 0)
        ].url
      : "";
    string memory animation_url;

    if (meta.fallbackEnabled && (imagesLen > 1 || animation_urlsLen > 1) && fallbackTemplateAt != address(0)) {
      Media[] storage media = hasAnimations ? meta.animation_urls : meta.images;
      string memory urls;

      for (uint256 i;i < media.length;i++) {
        urls = LibString.concat(
          LibString.concat(urls, (i > 0 ? ',"' : '"')), LibString.concat(media[i].url, '"')
        );
      }

      // Base64 encode the JSON payload to prevent JS injection from malformed URLs
      string memory dataPayload = Base64.encode(
        bytes(string.concat(
          '[',LibString.toString(meta.selectedUriIndex),
          ',"',meta.mediaHash,
          '",[',urls,']]'
        ))
      );

      animation_url = LibString.concat(
        'data:text/html;base64,',
        Base64.encode(
          bytes(LibString.replace(
            string(SSTORE2.read(fallbackTemplateAt)),
            "{{DATA}}",
            dataPayload
          ))
        )
      );
    } else if (hasAnimations) {
      animation_url = meta.animation_urls[selectedIdx < animation_urlsLen ? selectedIdx : 0].url;
    }

    string memory description = meta.description;
    if (descriptionAt != address(0)) {
      description = string.concat(description, (bytes(description).length > 0 ? "\\n\\n" : ""),string(SSTORE2.read(descriptionAt)));
    }

    return LibString.concat(
      'data:application/json;base64,',
      Base64.encode(
        bytes(string.concat(
          '{'
            '"name":"Untitled ',(tokenId < 10 ? '0':''),LibString.toString(tokenId),'",'
            '"created_by":"0xG",'
            '"description":"',description,'",'
            '"image":"',(bytes(image).length > 0 ? image : _untitled()),'"',
            (bytes(animation_url).length > 0 ? string.concat(',"animation_url":"',animation_url,'"') : ''),
          '}'
        ))
      )
    );
  }

  /**
   * @notice Returns the default "Untitled" artwork image.
   * @return Base64-encoded PNG data URI.
   */
  function _untitled() internal pure returns (string memory) {
    return "";
  }


  /************************************************
   * Collector area, token management
   ************************************************/

  /**
   * @notice Determines the media author based on caller.
   * @dev Reverts if caller is neither token owner nor contract owner.
   * @param tokenId The token ID.
   * @return ARTIST if caller is contract owner, COLLECTOR if caller is token owner.
   */
  function _getMediaAuthor(uint256 tokenId) internal view returns (MediaAuthor) {
    address _tokenOwner = _ownerOf(tokenId);
    bool isContractOwner = msg.sender == owner();
    bool isTokenOwner = msg.sender == _tokenOwner;
    require(isTokenOwner || isContractOwner, Unauthorized());
    return isContractOwner ? MediaAuthor.ARTIST : MediaAuthor.COLLECTOR;
  }

  /// @inheritdoc IUntitled
  function addUrl(uint256 tokenId, string calldata url, MediaType mediaType) external {
    MediaAuthor author = _getMediaAuthor(tokenId);

    TokenMetadata storage meta = metadata[tokenId];
    require(bytes(meta.mediaHash).length > 0 && bytes(url).length > 0, Unauthorized());

    if (mediaType == MediaType.IMAGE) {
      meta.images.push(Media(url, author));
    } else {
      meta.animation_urls.push(Media(url, author));
    }

    emit AddUrl(tokenId, url, mediaType);
    emit MetadataUpdate(tokenId);
  }

  /// @inheritdoc IUntitled
  function removeUrl(uint256 tokenId, uint256 urlIndex, MediaType mediaType) external {
    MediaAuthor author = _getMediaAuthor(tokenId);

    TokenMetadata storage meta = metadata[tokenId];
    Media[] storage media = mediaType == MediaType.IMAGE ? meta.images : meta.animation_urls;

    require(
      urlIndex > 0 &&
      urlIndex < media.length &&
      bytes(meta.mediaHash).length > 0,
      Unauthorized()
    );

    if (author == MediaAuthor.COLLECTOR) {
      require(media[urlIndex].author == MediaAuthor.COLLECTOR, Unauthorized());
    }

    media[urlIndex] = media[media.length - 1];
    media.pop();

    // Reset selectedUriIndex if removal affects the primary array and index is now invalid
    Media[] storage primaryMedia = meta.animation_urls.length > 0 ? meta.animation_urls : meta.images;
    if (meta.selectedUriIndex >= primaryMedia.length) {
      meta.selectedUriIndex = 0;
    }

    emit RemoveUrl(tokenId, urlIndex, mediaType);
    emit MetadataUpdate(tokenId);
  }

  /// @inheritdoc IUntitled
  function setSelectedUriIndex(uint256 tokenId, uint256 urlIndex) external {
    require(msg.sender == _ownerOf(tokenId), Unauthorized());

    TokenMetadata storage meta = metadata[tokenId];

    // selectedUriIndex indexes into the primary array (animation_urls if present, else images)
    Media[] storage primaryMedia = meta.animation_urls.length > 0 ? meta.animation_urls : meta.images;

    require(
      primaryMedia.length > 1 &&
      urlIndex < primaryMedia.length &&
      bytes(meta.mediaHash).length > 0 &&
      // for security reasons can select only artist urls
      primaryMedia[urlIndex].author == MediaAuthor.ARTIST,
      Unauthorized()
    );

    meta.selectedUriIndex = urlIndex;

    emit MetadataUpdate(tokenId);
  }

  /// @inheritdoc IUntitled
  function toggleFallback(uint256 tokenId) external {
    require(msg.sender == _ownerOf(tokenId), Unauthorized());

    TokenMetadata storage meta = metadata[tokenId];

    require(
      bytes(meta.mediaHash).length > 0,
      Unauthorized()
    );

    meta.fallbackEnabled = !meta.fallbackEnabled;

    emit MetadataUpdate(tokenId);
  }

  /// @inheritdoc IUntitled
  function burn(uint256 tokenId) external {
    _checkAuthorized(_ownerOf(tokenId), msg.sender, tokenId);
    _burn(tokenId);
  }

  /// @inheritdoc IUntitled
  function getTokenMedia(uint256 tokenId) external view returns (
    Media[] memory images,
    Media[] memory animation_urls
  ) {
    TokenMetadata storage meta = metadata[tokenId];
    return (meta.images, meta.animation_urls);
  }

  /// @inheritdoc IUntitled
  function getTokenMetadata(uint256 tokenId) external view returns (
    string memory mediaHash,
    uint256 selectedUriIndex,
    bool fallbackEnabled,
    string memory description,
    Media[] memory images,
    Media[] memory animation_urls
  ) {
    TokenMetadata storage meta = metadata[tokenId];
    return (
      meta.mediaHash,
      meta.selectedUriIndex,
      meta.fallbackEnabled,
      meta.description,
      meta.images,
      meta.animation_urls
    );
  }


  /************************************************
   * Admin area
   ************************************************/

  /// @inheritdoc IUntitled
  function setFallbackTemplate(string calldata _fallbackTemplate) external onlyOwner {
    fallbackTemplateAt = SSTORE2.write(bytes(_fallbackTemplate));
    emit FallbackTemplateUpdate(fallbackTemplateAt);
    _refreshTokenMetadata();
  }

  /// @inheritdoc IUntitled
  function setFallbackTemplateAt(address _fallbackTemplateAt) external onlyOwner {
    fallbackTemplateAt = _fallbackTemplateAt;
    emit FallbackTemplateUpdate(fallbackTemplateAt);
    _refreshTokenMetadata();
  }

  /// @inheritdoc IUntitled
  function setDescriptionAt(string calldata _description) external onlyOwner {
    descriptionAt = SSTORE2.write(bytes(_description));
    _refreshTokenMetadata();
  }

  address public configureTokenSigner;
  mapping(string mediaHash => bool claimed) public collectorClaim;

  /// @inheritdoc IUntitled
  function configureToken(
    uint256 tokenId,
    string calldata mediaHash,
    string calldata description,
    string calldata image,
    string calldata animation_url,
    bytes  calldata signature
  ) external {
    address tokenOwner = _requireOwned(tokenId);

    if (msg.sender != owner()) {
      require(msg.sender == tokenOwner && configureTokenSigner != address(0) && !collectorClaim[mediaHash], Unauthorized());

      bytes32 messageHash =
        keccak256(abi.encode(block.chainid,address(this),mediaHash,description,image,animation_url));
      require(_validateSignature(messageHash, signature), Unauthorized());
      collectorClaim[mediaHash] = true;
    }

    TokenMetadata storage meta = metadata[tokenId];
    require(bytes(meta.mediaHash).length == 0, Unauthorized()); // can only configure once
    require(bytes(mediaHash).length > 0, Unauthorized());
    require(bytes(image).length > 0 || bytes(animation_url).length > 0, Unauthorized());

    meta.mediaHash = mediaHash;
    meta.description = description;

    if (bytes(image).length > 0) {
      meta.images.push(Media(image, MediaAuthor.ARTIST));
    }

    if (bytes(animation_url).length > 0) {
      meta.animation_urls.push(Media(animation_url, MediaAuthor.ARTIST));
    }

    emit ConfiguredToken(tokenId, mediaHash, description, image, animation_url);
    emit MetadataUpdate(tokenId);
  }

  function setConfigureTokenSigner(address _signer) external onlyOwner {
    configureTokenSigner = _signer;
  }

  function _validateSignature(
    bytes32 messageHash,
    bytes calldata signature
  ) internal view returns (bool success) {
    bytes32 digest;
    assembly ("memory-safe") {
      // (c) OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
      mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
      mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
      digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
    }

    (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(digest, signature);
    return err == ECDSA.RecoverError.NoError && recovered == configureTokenSigner;
  }

  address public mintContract;

  /// @inheritdoc IUntitled
  function mint(address to) external {
    require(lastTokenId < 470, Unauthorized());
    require(msg.sender == mintContract || msg.sender == owner(), Unauthorized());
    lastTokenId++;
    _mint(to, lastTokenId);
  }

  /// @inheritdoc IUntitled
  function setMintContract(address _mintContract) external onlyOwner {
    mintContract = _mintContract;
  }

  /**
   * @notice Emits metadata update events for all minted tokens.
   * @dev Internal function called after global metadata changes.
   */
  function _refreshTokenMetadata() internal {
    if (lastTokenId == 0) {
      return;
    } else if (lastTokenId > 1) {
      emit BatchMetadataUpdate(1, lastTokenId);
    } else {
      emit MetadataUpdate(1);
    }
  }

  /// @inheritdoc IUntitled
  function refreshTokenMetadata() external onlyOwner {
    _refreshTokenMetadata();
  }

  RoyaltyConfig public royaltyConfig;

  /// @inheritdoc IUntitled
  function royaltyInfo(
    uint256,
    uint256 salePrice
  ) external view returns (address receiver, uint256 royaltyAmount) {
    return (royaltyConfig.receiver, (salePrice * royaltyConfig.percentageBasisPoints) / 10000);
  }

  /// @inheritdoc IUntitled
  function configureRoyalties(address receiver, uint96 amount) external onlyOwner {
    if (amount > 1000) revert InvalidRoyaltiesPBP();
    royaltyConfig = RoyaltyConfig(receiver, amount);
  }


  /************************************************
   * Contract initialization and info
   ************************************************/

  constructor() ERC721("Untitled", "UNTITLED") Ownable(msg.sender) {}

  function supportsInterface(bytes4 interfaceId)
    public
    view
    override
    returns (bool)
  {
    return (
      ERC721.supportsInterface(interfaceId)
        || interfaceId == bytes4(0x2a55205a) // IERC2981 - Royalties
        || interfaceId == bytes4(0x49064906) // IERC4906 - MetadataUpdate
        || interfaceId == bytes4(0xe8a3d485) // IERC7572 - contractURI
    );
  }

  string public contractURI;

  /// @inheritdoc IUntitled
  function setContractURI(string calldata uri) external onlyOwner {
    contractURI = uri;
    emit ContractURIUpdated();
  }

}
IUntitled.sol 378 lines
// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.8.30;

/**
 * @title  IUntitled
 * @author 0xG
 * @dev    Interface for the Untitled NFT artwork contract.
 * @notice “Untitled” is a conceptual collection of blank non-fungible tokens.
 *
 *         Those who embrace the concept hold a complete work as-is. Those who value
 *         visual art over concept may select a visual work by the artist—past or
 *         future, but never previously minted—and have it permanently linked to
 *         their token.
 */
interface IUntitled {
  /************************************************
   * Events
   ************************************************/

  /**
   * @notice Emitted when a visual is permanently linked to a blank token for the first time.
   * @param tokenId The token ID being configured.
   * @param mediaHash The hash of the original media for verification.
   * @param description The token-specific description.
   * @param image The image URL to associate with the token.
   * @param animation_url The animation URL to associate with the token.
   */
  event ConfiguredToken(uint256 indexed tokenId, string indexed mediaHash, string description, string image, string animation_url);

  /**
   * @notice Emitted when a fallback URL is added to a token.
   * @param tokenId The token ID.
   * @param url The URL that was added.
   * @param mediaType The type of media (IMAGE or ANIMATION).
   */
  event AddUrl(uint256 indexed tokenId, string url, MediaType mediaType);

  /**
   * @notice Emitted when a fallback URL is removed from a token.
   * @param tokenId The token ID.
   * @param urlIndex The index of the URL that was removed.
   * @param mediaType The type of media (IMAGE or ANIMATION).
   */
  event RemoveUrl(uint256 indexed tokenId, uint256 urlIndex, MediaType mediaType);

  /**
   * @notice Emitted when the fallback HTML template is updated.
   * @param templateAt The SSTORE2 address where the template is stored.
   */
  event FallbackTemplateUpdate(address templateAt);

  /**
   * @notice Emitted when metadata is updated for a token.
   * @param _tokenId The token ID that had its metadata updated.
   */
  event MetadataUpdate(uint256 _tokenId);

  /**
   * @notice Emitted when the metadata of a range of tokens is changed.
   * @dev Allows third-party platforms to timely update NFT images and attributes.
   * @param _fromTokenId The starting token ID that had its metadata updated.
   * @param _toTokenId The ending token ID that had its metadata updated.
   */
  event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);

  /**
   * @notice Emitted when the contract URI is updated.
   */
  event ContractURIUpdated();

  /************************************************
   * Errors
   ************************************************/

  /**
   * @notice Indicates an unauthorized operation or access attempt.
   */
  error Unauthorized();

  /**
   * @notice Indicates an attempt to set royalties above the maximum allowed (10%).
   */
  error InvalidRoyaltiesPBP();

  /************************************************
   * Structs
   ************************************************/

  /**
   * @notice Media entry with URL and author information.
   * @param url The media URL.
   * @param author The author type (0 = ARTIST, 1 = COLLECTOR).
   */
  struct Media {
    string url;
    MediaAuthor author;
  }

  /**
   * @notice Identifies who added a media URL.
   */
  enum MediaAuthor { ARTIST, COLLECTOR }

  /**
   * @notice Media type for add/remove operations.
   * @dev Pass 0 for IMAGE, 1 for ANIMATION when calling addUrl/removeUrl.
   */
  enum MediaType { IMAGE, ANIMATION }

  struct RoyaltyConfig {
    address receiver;
    uint96  percentageBasisPoints; // 10000 = 100%
  }

  /************************************************
   * State Variables (public getters)
   ************************************************/

  /**
   * @notice Returns the ID of the last minted token.
   * @return The last token ID.
   */
  function lastTokenId() external view returns (uint256);

  /**
   * @notice Returns the SSTORE2 pointer for the global description.
   * @return The address where the description is stored.
   */
  function descriptionAt() external view returns (address);

  /**
   * @notice Returns the SSTORE2 pointer for the fallback HTML template.
   * @return The address where the fallback template is stored.
   */
  function fallbackTemplateAt() external view returns (address);

  /**
   * @notice Returns the royalty configuration.
   * @return receiver The address to receive royalties.
   * @return percentageBasisPoints The royalty percentage in basis points.
   */
  function royaltyConfig() external view returns (address receiver, uint96 percentageBasisPoints);

  /**
   * @notice Returns the contract-level metadata URI.
   * @return The contract metadata URI.
   */
  function contractURI() external view returns (string memory);

  /**
   * @notice Returns the address authorized to mint tokens.
   * @return The mint contract address.
   */
  function mintContract() external view returns (address);

  /************************************************
   * Rendering
   ************************************************/

  /**
   * @notice Emits metadata update events for all minted tokens.
   * @dev Only callable by owner. Useful after updating global description or fallback template.
   */
  function refreshTokenMetadata() external;

  /************************************************
   * Token Metadata Management
   ************************************************/

  /**
   * @notice Adds a fallback URL for the token's media.
   * @dev Only callable by token owner or contract owner (artist).
   *      The first URL is added by the artist during configuration;
   *      both artist and collectors can add additional fallbacks to ensure
   *      the artwork remains accessible if the original URL becomes unavailable.
   * @param tokenId The token ID.
   * @param url The URL to add.
   * @param mediaType The type of media: IMAGE (0) for thumbnail/preview, ANIMATION (1) for primary media.
   */
  function addUrl(uint256 tokenId, string calldata url, MediaType mediaType) external;

  /**
   * @notice Removes a fallback URL from the token's media.
   * @dev Only callable by token owner or contract owner (artist).
   *      Index 0 (the original artist URL) cannot be removed to preserve
   *      the permanent link between token and artwork.
   *      Collectors can only remove URLs they added themselves.
   *      Uses swap-and-pop, so array order may change.
   * @param tokenId The token ID.
   * @param urlIndex The index of the URL to remove (must be > 0).
   * @param mediaType The type of media: IMAGE (0) or ANIMATION (1).
   */
  function removeUrl(uint256 tokenId, uint256 urlIndex, MediaType mediaType) external;

  /**
   * @notice Sets which URL index to use for rendering the token.
   * @dev Only callable by token owner. Can only select URLs added by the artist,
   *      but the fallback will cycle through all of them validating by hash.
   *      The index refers to the primary media array (animation_urls if present, else images).
   * @param tokenId The token ID.
   * @param urlIndex The index of the URL to select.
   */
  function setSelectedUriIndex(uint256 tokenId, uint256 urlIndex) external;

  /**
   * @notice Toggles the fallback rendering mode for a token.
   * @dev Only callable by token owner. When enabled, renders an HTML page that
   *      cycles through fallback URLs checking media hash integrity.
   * @param tokenId The token ID.
   */
  function toggleFallback(uint256 tokenId) external;

  /**
   * @notice Returns the media arrays for a token.
   * @param tokenId The token ID.
   * @return images Array of image media entries.
   * @return animation_urls Array of animation media entries.
   */
  function getTokenMedia(uint256 tokenId) external view returns (
    Media[] memory images,
    Media[] memory animation_urls
  );

  /**
   * @notice Returns the full metadata for a token.
   * @param tokenId The token ID.
   * @return mediaHash The hash of the original media for verification.
   * @return selectedUriIndex The currently selected URL index.
   * @return fallbackEnabled Whether fallback rendering is enabled.
   * @return description The token-specific description.
   * @return images Array of image media entries.
   * @return animation_urls Array of animation media entries.
   */
  function getTokenMetadata(uint256 tokenId) external view returns (
    string memory mediaHash,
    uint256 selectedUriIndex,
    bool fallbackEnabled,
    string memory description,
    Media[] memory images,
    Media[] memory animation_urls
  );

  /************************************************
   * Token Lifecycle
   ************************************************/

  /**
   * @notice Burns a token, permanently destroying it.
   * @dev The caller must be the owner or approved for the token.
   * @param tokenId The ID of the token to burn.
   */
  function burn(uint256 tokenId) external;

  /**
   * @notice Mints a new token to the specified address.
   * @dev Only callable by the mint contract or owner. Maximum 470 tokens.
   * @param to The address to mint the token to.
   */
  function mint(address to) external;

  /************************************************
   * Admin - Token Configuration
   ************************************************/

  /**
   * @notice Permanently links a visual work to a blank token.
   * @dev Tokens start as blank conceptual pieces titled "Untitled [tokenId]".
   *      Collectors who value visual art over concept may request the artist
   *      to assign a visual work—past or future, but never previously minted.
   *      This function performs that one-time, irreversible transformation.
   *
   *      Can be called in two ways:
   *      - By the artist (contract owner) directly, without a signature.
   *      - By the token owner with a valid signature from the artist,
   *        allowing collectors to submit the transaction themselves.
   *
   *      At least one URL (image or animation_url) is required.
   * @param tokenId The token ID.
   * @param mediaHash The hash of the original media for fallback verification.
   * @param description The token-specific description.
   * @param image The initial image URL (can be empty if animation_url is provided).
   * @param animation_url The initial animation URL (can be empty if image is provided).
   * @param signature Required when called by the collector; the artist's signature
   *        authorizing this specific configuration. Empty when called by the artist.
   */
  function configureToken(
    uint256 tokenId,
    string calldata mediaHash,
    string calldata description,
    string calldata image,
    string calldata animation_url,
    bytes  calldata signature
  ) external;

  /************************************************
   * Admin - Contract Configuration
   ************************************************/

  /**
   * @notice Sets the fallback HTML template for rendering tokens with multiple URLs.
   * @dev Only callable by owner. Template is stored via SSTORE2.
   *      Use "{{DATA}}" placeholder for the base64-encoded URL data.
   * @param _fallbackTemplate The HTML template string.
   */
  function setFallbackTemplate(string calldata _fallbackTemplate) external;

  /**
   * @notice Sets the fallback HTML template to an existing SSTORE2 pointer.
   * @dev Only callable by owner. Useful for reusing an already-deployed template.
   * @param _fallbackTemplateAt The SSTORE2 address where the template is stored.
   */
  function setFallbackTemplateAt(address _fallbackTemplateAt) external;

  /**
   * @notice Sets the global description appended to all token descriptions.
   * @dev Only callable by owner. Description is stored via SSTORE2.
   * @param _description The global description string.
   */
  function setDescriptionAt(string calldata _description) external;

  /**
   * @notice Sets the authorized mint contract address.
   * @dev Only callable by owner.
   * @param _mintContract The address authorized to call mint().
   */
  function setMintContract(address _mintContract) external;

  /**
   * @notice Sets the contract-level metadata URI.
   * @dev Only callable by owner. Emits ContractURIUpdated event.
   * @param uri The new contract metadata URI.
   */
  function setContractURI(string calldata uri) external;

  /**
   * @notice Returns the address authorized to sign configureToken messages.
   * @return The signer address.
   */
  function configureTokenSigner() external view returns (address);

  /**
   * @notice Returns whether a media hash has been claimed by a collector.
   * @param mediaHash The media hash to check.
   * @return True if the media hash has been claimed.
   */
  function collectorClaim(string calldata mediaHash) external view returns (bool);

  /**
   * @notice Sets the signer address for collector configureToken signatures.
   * @dev Only callable by owner.
   * @param _signer The address authorized to sign configureToken messages.
   */
  function setConfigureTokenSigner(address _signer) external;

  /************************************************
   * Royalties (ERC2981)
   ************************************************/

  /**
   * @notice Returns royalty information for a sale.
   * @dev Implements ERC2981. The tokenId parameter is ignored as royalties are collection-wide.
   * @param salePrice The sale price of the token.
   * @return receiver The address to receive royalties.
   * @return royaltyAmount The royalty amount based on configured percentage.
   */
  function royaltyInfo(uint256, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount);

  /**
   * @notice Configures collection-wide royalties.
   * @dev Only callable by owner. Maximum royalty is 10% (1000 basis points).
   * @param receiver The address to receive royalties.
   * @param amount The royalty amount in basis points (up to 1000 = 10%).
   */
  function configureRoyalties(address receiver, uint96 amount) external;

}

LibString.sol 977 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {LibBytes} from "./LibBytes.sol";

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Goated string storage struct that totally MOGs, no cap, fr.
    /// Uses less gas and bytecode than Solidity's native string storage. It's meta af.
    /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight.
    struct StringStorage {
        bytes32 _spacer;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The length of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /// @dev The length of the string is more than 32 bytes.
    error TooBigForSmallString();

    /// @dev The input string must be a 7-bit ASCII.
    error StringNot7BitASCII();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;

    /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;

    /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
    uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;

    /// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;

    /// @dev Lookup for '0123456789'.
    uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;

    /// @dev Lookup for '0123456789abcdefABCDEF'.
    uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;

    /// @dev Lookup for '01234567'.
    uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;

    /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
    uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;

    /// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
    uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;

    /// @dev Lookup for ' \t\n\r\x0b\x0c'.
    uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                 STRING STORAGE OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sets the value of the string storage `$` to `s`.
    function set(StringStorage storage $, string memory s) internal {
        LibBytes.set(bytesStorage($), bytes(s));
    }

    /// @dev Sets the value of the string storage `$` to `s`.
    function setCalldata(StringStorage storage $, string calldata s) internal {
        LibBytes.setCalldata(bytesStorage($), bytes(s));
    }

    /// @dev Sets the value of the string storage `$` to the empty string.
    function clear(StringStorage storage $) internal {
        delete $._spacer;
    }

    /// @dev Returns whether the value stored is `$` is the empty string "".
    function isEmpty(StringStorage storage $) internal view returns (bool) {
        return uint256($._spacer) & 0xff == uint256(0);
    }

    /// @dev Returns the length of the value stored in `$`.
    function length(StringStorage storage $) internal view returns (uint256) {
        return LibBytes.length(bytesStorage($));
    }

    /// @dev Returns the value stored in `$`.
    function get(StringStorage storage $) internal view returns (string memory) {
        return string(LibBytes.get(bytesStorage($)));
    }

    /// @dev Returns the uint8 at index `i`. If out-of-bounds, returns 0.
    function uint8At(StringStorage storage $, uint256 i) internal view returns (uint8) {
        return LibBytes.uint8At(bytesStorage($), i);
    }

    /// @dev Helper to cast `$` to a `BytesStorage`.
    function bytesStorage(StringStorage storage $)
        internal
        pure
        returns (LibBytes.BytesStorage storage casted)
    {
        /// @solidity memory-safe-assembly
        assembly {
            casted.slot := $.slot
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits.
            result := add(mload(0x40), 0x80)
            mstore(0x40, add(result, 0x20)) // Allocate memory.
            mstore(result, 0) // Zeroize the slot after the string.

            let end := result // Cache the end of the memory to calculate the length later.
            let w := not(0) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                result := add(result, w) // `sub(result, 1)`.
                // Store the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(result, add(48, mod(temp, 10)))
                temp := div(temp, 10) // Keep dividing `temp` until zero.
                if iszero(temp) { break }
            }
            let n := sub(end, result)
            result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(int256 value) internal pure returns (string memory result) {
        if (value >= 0) return toString(uint256(value));
        unchecked {
            result = toString(~uint256(value) + 1);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // We still have some spare memory space on the left,
            // as we have allocated 3 words (96 bytes) for up to 78 digits.
            let n := mload(result) // Load the string length.
            mstore(result, 0x2d) // Store the '-' character.
            result := sub(result, 1) // Move back the string pointer by a byte.
            mstore(result, add(n, 1)) // Update the string length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `byteCount` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `byteCount * 2 + 2` bytes.
    /// Reverts if `byteCount` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 byteCount)
        internal
        pure
        returns (string memory result)
    {
        result = toHexStringNoPrefix(value, byteCount);
        /// @solidity memory-safe-assembly
        assembly {
            let n := add(mload(result), 2) // Compute the length.
            mstore(result, 0x3078) // Store the "0x" prefix.
            result := sub(result, 2) // Move the pointer.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `byteCount` bytes.
    /// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `byteCount * 2` bytes.
    /// Reverts if `byteCount` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 byteCount)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, `byteCount * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            result := add(mload(0x40), and(add(shl(1, byteCount), 0x42), not(0x1f)))
            mstore(0x40, add(result, 0x20)) // Allocate memory.
            mstore(result, 0) // Zeroize the slot after the string.

            let end := result // Cache the end to calculate the length later.
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let start := sub(result, add(byteCount, byteCount))
            let w := not(1) // Tsk.
            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                result := add(result, w) // `sub(result, 2)`.
                mstore8(add(result, 1), mload(and(temp, 15)))
                mstore8(result, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(xor(result, start)) { break }
            }
            if temp {
                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                revert(0x1c, 0x04)
            }
            let n := sub(end, result)
            result := sub(result, 0x20)
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory result) {
        result = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let n := add(mload(result), 2) // Compute the length.
            mstore(result, 0x3078) // Store the "0x" prefix.
            result := sub(result, 2) // Move the pointer.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x".
    /// The output excludes leading "0" from the `toHexString` output.
    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
    function toMinimalHexString(uint256 value) internal pure returns (string memory result) {
        result = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
            let n := add(mload(result), 2) // Compute the length.
            mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero.
            result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero.
            mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
    function toMinimalHexStringNoPrefix(uint256 value)
        internal
        pure
        returns (string memory result)
    {
        result = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
            let n := mload(result) // Get the length.
            result := add(result, o) // Move the pointer, accounting for leading zero.
            mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            result := add(mload(0x40), 0x80)
            mstore(0x40, add(result, 0x20)) // Allocate memory.
            mstore(result, 0) // Zeroize the slot after the string.

            let end := result // Cache the end to calculate the length later.
            mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.

            let w := not(1) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                result := add(result, w) // `sub(result, 2)`.
                mstore8(add(result, 1), mload(and(temp, 15)))
                mstore8(result, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }
            let n := sub(end, result)
            result := sub(result, 0x20)
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksummed(address value) internal pure returns (string memory result) {
        result = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(result, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory result) {
        result = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let n := add(mload(result), 2) // Compute the length.
            mstore(result, 0x3078) // Store the "0x" prefix.
            result := sub(result, 2) // Move the pointer.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            // Allocate memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(result, 0x80))
            mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.

            result := add(result, 2)
            mstore(result, 40) // Store the length.
            let o := add(result, 0x20)
            mstore(add(o, 40), 0) // Zeroize the slot after the string.
            value := shl(96, value)
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexString(bytes memory raw) internal pure returns (string memory result) {
        result = toHexStringNoPrefix(raw);
        /// @solidity memory-safe-assembly
        assembly {
            let n := add(mload(result), 2) // Compute the length.
            mstore(result, 0x3078) // Store the "0x" prefix.
            result := sub(result, 2) // Move the pointer.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(raw)
            result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
            mstore(result, add(n, n)) // Store the length of the output.

            mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
            let o := add(result, 0x20)
            let end := add(raw, n)
            for {} iszero(eq(raw, end)) {} {
                raw := add(raw, 1)
                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                o := add(o, 2)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string.
    /// (i.e. all characters codes are in [0..127])
    function is7BitASCII(string memory s) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            let mask := shl(7, div(not(0), 255))
            let n := mload(s)
            if n {
                let o := add(s, 0x20)
                let end := add(o, n)
                let last := mload(end)
                mstore(end, 0)
                for {} 1 {} {
                    if and(mask, mload(o)) {
                        result := 0
                        break
                    }
                    o := add(o, 0x20)
                    if iszero(lt(o, end)) { break }
                }
                mstore(end, last)
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string,
    /// AND all characters are in the `allowed` lookup.
    /// Note: If `s` is empty, returns true regardless of `allowed`.
    function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if mload(s) {
                let allowed_ := shr(128, shl(128, allowed))
                let o := add(s, 0x20)
                for { let end := add(o, mload(s)) } 1 {} {
                    result := and(result, shr(byte(0, mload(o)), allowed_))
                    o := add(o, 1)
                    if iszero(and(result, lt(o, end))) { break }
                }
            }
        }
    }

    /// @dev Converts the bytes in the 7-bit ASCII string `s` to
    /// an allowed lookup for use in `is7BitASCII(s, allowed)`.
    /// To save runtime gas, you can cache the result in an immutable variable.
    function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                let o := add(s, 0x20)
                for { let end := add(o, mload(s)) } 1 {} {
                    result := or(result, shl(byte(0, mload(o)), 1))
                    o := add(o, 1)
                    if iszero(lt(o, end)) { break }
                }
                if shr(128, result) {
                    mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, byte string operations are restricted
    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
    // Usage of byte string operations on charsets with runes spanning two or more bytes
    // can lead to undefined behavior.

    /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
    function replace(string memory subject, string memory needle, string memory replacement)
        internal
        pure
        returns (string memory)
    {
        return string(LibBytes.replace(bytes(subject), bytes(needle), bytes(replacement)));
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOf(string memory subject, string memory needle, uint256 from)
        internal
        pure
        returns (uint256)
    {
        return LibBytes.indexOf(bytes(subject), bytes(needle), from);
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOf(string memory subject, string memory needle) internal pure returns (uint256) {
        return LibBytes.indexOf(bytes(subject), bytes(needle), 0);
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function lastIndexOf(string memory subject, string memory needle, uint256 from)
        internal
        pure
        returns (uint256)
    {
        return LibBytes.lastIndexOf(bytes(subject), bytes(needle), from);
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function lastIndexOf(string memory subject, string memory needle)
        internal
        pure
        returns (uint256)
    {
        return LibBytes.lastIndexOf(bytes(subject), bytes(needle), type(uint256).max);
    }

    /// @dev Returns true if `needle` is found in `subject`, false otherwise.
    function contains(string memory subject, string memory needle) internal pure returns (bool) {
        return LibBytes.contains(bytes(subject), bytes(needle));
    }

    /// @dev Returns whether `subject` starts with `needle`.
    function startsWith(string memory subject, string memory needle) internal pure returns (bool) {
        return LibBytes.startsWith(bytes(subject), bytes(needle));
    }

    /// @dev Returns whether `subject` ends with `needle`.
    function endsWith(string memory subject, string memory needle) internal pure returns (bool) {
        return LibBytes.endsWith(bytes(subject), bytes(needle));
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times) internal pure returns (string memory) {
        return string(LibBytes.repeat(bytes(subject), times));
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory)
    {
        return string(LibBytes.slice(bytes(subject), start, end));
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start) internal pure returns (string memory) {
        return string(LibBytes.slice(bytes(subject), start, type(uint256).max));
    }

    /// @dev Returns all the indices of `needle` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory needle)
        internal
        pure
        returns (uint256[] memory)
    {
        return LibBytes.indicesOf(bytes(subject), bytes(needle));
    }

    /// @dev Returns an arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        bytes[] memory a = LibBytes.split(bytes(subject), bytes(delimiter));
        /// @solidity memory-safe-assembly
        assembly {
            result := a
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b) internal pure returns (string memory) {
        return string(LibBytes.concat(bytes(a), bytes(b)));
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(subject)
            if n {
                result := mload(0x40)
                let o := add(result, 0x20)
                let d := sub(subject, result)
                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                for { let end := add(o, n) } 1 {} {
                    let b := byte(0, mload(add(d, o)))
                    mstore8(o, xor(and(shr(b, flags), 0x20), b))
                    o := add(o, 1)
                    if eq(o, end) { break }
                }
                mstore(result, n) // Store the length.
                mstore(o, 0) // Zeroize the slot after the string.
                mstore(0x40, add(o, 0x20)) // Allocate memory.
            }
        }
    }

    /// @dev Returns a string from a small bytes32 string.
    /// `s` must be null-terminated, or behavior will be undefined.
    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let n := 0
            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
            mstore(result, n) // Store the length.
            let o := add(result, 0x20)
            mstore(o, s) // Store the bytes of the string.
            mstore(add(o, n), 0) // Zeroize the slot after the string.
            mstore(0x40, add(result, 0x40)) // Allocate memory.
        }
    }

    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
            mstore(0x00, s)
            mstore(result, 0x00)
            result := mload(0x00)
        }
    }

    /// @dev Returns the string as a normalized null-terminated small string.
    function toSmallString(string memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(s)
            if iszero(lt(result, 33)) {
                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                revert(0x1c, 0x04)
            }
            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
        }
    }

    /// @dev Returns a lowercased copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let end := add(s, mload(s))
            let o := add(result, 0x20)
            // Store the bytes of the packed offsets and strides into the scratch space.
            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
            mstore(0x1f, 0x900094)
            mstore(0x08, 0xc0000000a6ab)
            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(o, c)
                    o := add(o, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(o, mload(and(t, 0x1f)))
                o := add(o, shr(5, t))
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(result, sub(o, add(result, 0x20))) // Store the length.
            mstore(0x40, add(o, 0x20)) // Allocate memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
    function escapeJSON(string memory s, bool addDoubleQuotes)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let o := add(result, 0x20)
            if addDoubleQuotes {
                mstore8(o, 34)
                o := add(1, o)
            }
            // Store "\\u0000" in scratch space.
            // Store "0123456789abcdef" in scratch space.
            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
            // into the scratch space.
            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
            // Bitmask for detecting `["\"","\\"]`.
            let e := or(shl(0x22, 1), shl(0x5c, 1))
            for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(o, c)
                        o := add(o, 1)
                        continue
                    }
                    mstore8(o, 0x5c) // "\\".
                    mstore8(add(o, 1), c)
                    o := add(o, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(o, mload(0x19)) // "\\u00XX".
                    o := add(o, 6)
                    continue
                }
                mstore8(o, 0x5c) // "\\".
                mstore8(add(o, 1), mload(add(c, 8)))
                o := add(o, 2)
            }
            if addDoubleQuotes {
                mstore8(o, 34)
                o := add(1, o)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(result, sub(o, add(result, 0x20))) // Store the length.
            mstore(0x40, add(o, 0x20)) // Allocate memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        result = escapeJSON(s, false);
    }

    /// @dev Encodes `s` so that it can be safely used in a URI,
    /// just like `encodeURIComponent` in JavaScript.
    /// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
    /// See: https://datatracker.ietf.org/doc/html/rfc2396
    /// See: https://datatracker.ietf.org/doc/html/rfc3986
    function encodeURIComponent(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            // Store "0123456789ABCDEF" in scratch space.
            // Uppercased to be consistent with JavaScript's implementation.
            mstore(0x0f, 0x30313233343536373839414243444546)
            let o := add(result, 0x20)
            for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // If not in `[0-9A-Z-a-z-_.!~*'()]`.
                if iszero(and(1, shr(c, 0x47fffffe87fffffe03ff678200000000))) {
                    mstore8(o, 0x25) // '%'.
                    mstore8(add(o, 1), mload(and(shr(4, c), 15)))
                    mstore8(add(o, 2), mload(and(c, 15)))
                    o := add(o, 3)
                    continue
                }
                mstore8(o, c)
                o := add(o, 1)
            }
            mstore(result, sub(o, add(result, 0x20))) // Store the length.
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate memory.
        }
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
            let x := not(or(m, or(b, add(m, and(b, m)))))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
        }
    }

    /// @dev Returns 0 if `a == b`, -1 if `a < b`, +1 if `a > b`.
    /// If `a` == b[:a.length]`, and `a.length < b.length`, returns -1.
    function cmp(string memory a, string memory b) internal pure returns (int256) {
        return LibBytes.cmp(bytes(a), bytes(b));
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40) // Grab the free memory pointer.
            mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(result, 0) // Zeroize the length slot.
            mstore(add(result, 0x1f), packed) // Store the length and bytes.
            mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes.
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLen := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    or( // Load the length and the bytes of `a` and `b`.
                    shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))),
                    // `totalLen != 0 && totalLen < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLen, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            resultA := mload(0x40) // Grab the free memory pointer.
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retUnpaddedSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retUnpaddedSize), 0)
            mstore(retStart, 0x20) // Store the return offset.
            // End the transaction, returning the string.
            return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
        }
    }
}
Base64.sol 175 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library to encode strings in Base64.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <[email protected]>.
library Base64 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    ENCODING / DECODING                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// See: https://datatracker.ietf.org/doc/html/rfc4648
    /// @param fileSafe  Whether to replace '+' with '-' and '/' with '_'.
    /// @param noPadding Whether to strip away the padding.
    function encode(bytes memory data, bool fileSafe, bool noPadding)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let dataLength := mload(data)

            if dataLength {
                // Multiply by 4/3 rounded up.
                // The `shl(2, ...)` is equivalent to multiplying by 4.
                let encodedLength := shl(2, div(add(dataLength, 2), 3))

                // Set `result` to point to the start of the free memory.
                result := mload(0x40)

                // Store the table into the scratch space.
                // Offsetted by -1 byte so that the `mload` will load the character.
                // We will rewrite the free memory pointer at `0x40` later with
                // the allocated size.
                // The magic constant 0x0670 will turn "-_" into "+/".
                mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
                mstore(0x3f, xor("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0670)))

                // Skip the first slot, which stores the length.
                let ptr := add(result, 0x20)
                let end := add(ptr, encodedLength)

                let dataEnd := add(add(0x20, data), dataLength)
                let dataEndValue := mload(dataEnd) // Cache the value at the `dataEnd` slot.
                mstore(dataEnd, 0x00) // Zeroize the `dataEnd` slot to clear dirty bits.

                // Run over the input, 3 bytes at a time.
                for {} 1 {} {
                    data := add(data, 3) // Advance 3 bytes.
                    let input := mload(data)

                    // Write 4 bytes. Optimized for fewer stack operations.
                    mstore8(0, mload(and(shr(18, input), 0x3F)))
                    mstore8(1, mload(and(shr(12, input), 0x3F)))
                    mstore8(2, mload(and(shr(6, input), 0x3F)))
                    mstore8(3, mload(and(input, 0x3F)))
                    mstore(ptr, mload(0x00))

                    ptr := add(ptr, 4) // Advance 4 bytes.
                    if iszero(lt(ptr, end)) { break }
                }
                mstore(dataEnd, dataEndValue) // Restore the cached value at `dataEnd`.
                mstore(0x40, add(end, 0x20)) // Allocate the memory.
                // Equivalent to `o = [0, 2, 1][dataLength % 3]`.
                let o := div(2, mod(dataLength, 3))
                // Offset `ptr` and pad with '='. We can simply write over the end.
                mstore(sub(ptr, o), shl(240, 0x3d3d))
                // Set `o` to zero if there is padding.
                o := mul(iszero(iszero(noPadding)), o)
                mstore(sub(ptr, o), 0) // Zeroize the slot after the string.
                mstore(result, sub(encodedLength, o)) // Store the length.
            }
        }
    }

    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// Equivalent to `encode(data, false, false)`.
    function encode(bytes memory data) internal pure returns (string memory result) {
        result = encode(data, false, false);
    }

    /// @dev Encodes `data` using the base64 encoding described in RFC 4648.
    /// Equivalent to `encode(data, fileSafe, false)`.
    function encode(bytes memory data, bool fileSafe)
        internal
        pure
        returns (string memory result)
    {
        result = encode(data, fileSafe, false);
    }

    /// @dev Decodes base64 encoded `data`.
    ///
    /// Supports:
    /// - RFC 4648 (both standard and file-safe mode).
    /// - RFC 3501 (63: ',').
    ///
    /// Does not support:
    /// - Line breaks.
    ///
    /// Note: For performance reasons,
    /// this function will NOT revert on invalid `data` inputs.
    /// Outputs for invalid inputs will simply be undefined behaviour.
    /// It is the user's responsibility to ensure that the `data`
    /// is a valid base64 encoded string.
    function decode(string memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let dataLength := mload(data)

            if dataLength {
                let decodedLength := mul(shr(2, dataLength), 3)

                for {} 1 {} {
                    // If padded.
                    if iszero(and(dataLength, 3)) {
                        let t := xor(mload(add(data, dataLength)), 0x3d3d)
                        // forgefmt: disable-next-item
                        decodedLength := sub(
                            decodedLength,
                            add(iszero(byte(30, t)), iszero(byte(31, t)))
                        )
                        break
                    }
                    // If non-padded.
                    decodedLength := add(decodedLength, sub(and(dataLength, 3), 1))
                    break
                }
                result := mload(0x40)

                // Write the length of the bytes.
                mstore(result, decodedLength)

                // Skip the first slot, which stores the length.
                let ptr := add(result, 0x20)
                let end := add(ptr, decodedLength)

                // Load the table into the scratch space.
                // Constants are optimized for smaller bytecode with zero gas overhead.
                // `m` also doubles as the mask of the upper 6 bits.
                let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc
                mstore(0x5b, m)
                mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064)
                mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4)

                for {} 1 {} {
                    // Read 4 bytes.
                    data := add(data, 4)
                    let input := mload(data)

                    // Write 3 bytes.
                    // forgefmt: disable-next-item
                    mstore(ptr, or(
                        and(m, mload(byte(28, input))),
                        shr(6, or(
                            and(m, mload(byte(29, input))),
                            shr(6, or(
                                and(m, mload(byte(30, input))),
                                shr(6, mload(byte(31, input)))
                            ))
                        ))
                    ))
                    ptr := add(ptr, 3)
                    if iszero(lt(ptr, end)) { break }
                }
                mstore(0x40, add(end, 0x20)) // Allocate the memory.
                mstore(end, 0) // Zeroize the slot after the bytes.
                mstore(0x60, 0) // Restore the zero slot.
            }
        }
    }
}
SSTORE2.sol 259 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SSTORE2.sol)
/// @author Saw-mon-and-Natalie (https://github.com/Saw-mon-and-Natalie)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
/// @author Modified from SSTORE3 (https://github.com/Philogy/sstore3)
library SSTORE2 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The proxy initialization code.
    uint256 private constant _CREATE3_PROXY_INITCODE = 0x67363d3d37363d34f03d5260086018f3;

    /// @dev Hash of the `_CREATE3_PROXY_INITCODE`.
    /// Equivalent to `keccak256(abi.encodePacked(hex"67363d3d37363d34f03d5260086018f3"))`.
    bytes32 internal constant CREATE3_PROXY_INITCODE_HASH =
        0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Unable to deploy the storage contract.
    error DeploymentFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         WRITE LOGIC                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Writes `data` into the bytecode of a storage contract and returns its address.
    function write(bytes memory data) internal returns (address pointer) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(data) // Let `l` be `n + 1`. +1 as we prefix a STOP opcode.
            /**
             * ---------------------------------------------------+
             * Opcode | Mnemonic       | Stack     | Memory       |
             * ---------------------------------------------------|
             * 61 l   | PUSH2 l        | l         |              |
             * 80     | DUP1           | l l       |              |
             * 60 0xa | PUSH1 0xa      | 0xa l l   |              |
             * 3D     | RETURNDATASIZE | 0 0xa l l |              |
             * 39     | CODECOPY       | l         | [0..l): code |
             * 3D     | RETURNDATASIZE | 0 l       | [0..l): code |
             * F3     | RETURN         |           | [0..l): code |
             * 00     | STOP           |           |              |
             * ---------------------------------------------------+
             * @dev Prefix the bytecode with a STOP opcode to ensure it cannot be called.
             * Also PUSH2 is used since max contract size cap is 24,576 bytes which is less than 2 ** 16.
             */
            // Do a out-of-gas revert if `n + 1` is more than 2 bytes.
            mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
            // Deploy a new contract with the generated creation code.
            pointer := create(0, add(data, 0x15), add(n, 0xb))
            if iszero(pointer) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(data, n) // Restore the length of `data`.
        }
    }

    /// @dev Writes `data` into the bytecode of a storage contract with `salt`
    /// and returns its normal CREATE2 deterministic address.
    function writeCounterfactual(bytes memory data, bytes32 salt)
        internal
        returns (address pointer)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(data)
            // Do a out-of-gas revert if `n + 1` is more than 2 bytes.
            mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
            // Deploy a new contract with the generated creation code.
            pointer := create2(0, add(data, 0x15), add(n, 0xb), salt)
            if iszero(pointer) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(data, n) // Restore the length of `data`.
        }
    }

    /// @dev Writes `data` into the bytecode of a storage contract and returns its address.
    /// This uses the so-called "CREATE3" workflow,
    /// which means that `pointer` is agnostic to `data, and only depends on `salt`.
    function writeDeterministic(bytes memory data, bytes32 salt)
        internal
        returns (address pointer)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(data)
            mstore(0x00, _CREATE3_PROXY_INITCODE) // Store the `_PROXY_INITCODE`.
            let proxy := create2(0, 0x10, 0x10, salt)
            if iszero(proxy) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, proxy) // Store the proxy's address.
            // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01).
            // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex).
            mstore(0x00, 0xd694)
            mstore8(0x34, 0x01) // Nonce of the proxy contract (1).
            pointer := keccak256(0x1e, 0x17)

            // Do a out-of-gas revert if `n + 1` is more than 2 bytes.
            mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
            if iszero(
                mul( // The arguments of `mul` are evaluated last to first.
                    extcodesize(pointer),
                    call(gas(), proxy, 0, add(data, 0x15), add(n, 0xb), codesize(), 0x00)
                )
            ) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(data, n) // Restore the length of `data`.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    ADDRESS CALCULATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the initialization code hash of the storage contract for `data`.
    /// Used for mining vanity addresses with create2crunch.
    function initCodeHash(bytes memory data) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(data)
            // Do a out-of-gas revert if `n + 1` is more than 2 bytes.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xfffe))
            mstore(data, add(0x61000180600a3d393df300, shl(0x40, n)))
            hash := keccak256(add(data, 0x15), add(n, 0xb))
            mstore(data, n) // Restore the length of `data`.
        }
    }

    /// @dev Equivalent to `predictCounterfactualAddress(data, salt, address(this))`
    function predictCounterfactualAddress(bytes memory data, bytes32 salt)
        internal
        view
        returns (address pointer)
    {
        pointer = predictCounterfactualAddress(data, salt, address(this));
    }

    /// @dev Returns the CREATE2 address of the storage contract for `data`
    /// deployed with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictCounterfactualAddress(bytes memory data, bytes32 salt, address deployer)
        internal
        pure
        returns (address predicted)
    {
        bytes32 hash = initCodeHash(data);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, hash)
            mstore(0x01, shl(96, deployer))
            mstore(0x15, salt)
            predicted := keccak256(0x00, 0x55)
            // Restore the part of the free memory pointer that has been overwritten.
            mstore(0x35, 0)
        }
    }

    /// @dev Equivalent to `predictDeterministicAddress(salt, address(this))`.
    function predictDeterministicAddress(bytes32 salt) internal view returns (address pointer) {
        pointer = predictDeterministicAddress(salt, address(this));
    }

    /// @dev Returns the "CREATE3" deterministic address for `salt` with `deployer`.
    function predictDeterministicAddress(bytes32 salt, address deployer)
        internal
        pure
        returns (address pointer)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x00, deployer) // Store `deployer`.
            mstore8(0x0b, 0xff) // Store the prefix.
            mstore(0x20, salt) // Store the salt.
            mstore(0x40, CREATE3_PROXY_INITCODE_HASH) // Store the bytecode hash.

            mstore(0x14, keccak256(0x0b, 0x55)) // Store the proxy's address.
            mstore(0x40, m) // Restore the free memory pointer.
            // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01).
            // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex).
            mstore(0x00, 0xd694)
            mstore8(0x34, 0x01) // Nonce of the proxy contract (1).
            pointer := keccak256(0x1e, 0x17)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         READ LOGIC                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `read(pointer, 0, 2 ** 256 - 1)`.
    function read(address pointer) internal view returns (bytes memory data) {
        /// @solidity memory-safe-assembly
        assembly {
            data := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01))
            extcodecopy(pointer, add(data, 0x1f), 0x00, add(n, 0x21))
            mstore(data, n) // Store the length.
            mstore(0x40, add(n, add(data, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `read(pointer, start, 2 ** 256 - 1)`.
    function read(address pointer, uint256 start) internal view returns (bytes memory data) {
        /// @solidity memory-safe-assembly
        assembly {
            data := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01))
            let l := sub(n, and(0xffffff, mul(lt(start, n), start)))
            extcodecopy(pointer, add(data, 0x1f), start, add(l, 0x21))
            mstore(data, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(data, add(0x40, mload(data)))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the data on `pointer` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `pointer` MUST be deployed via the SSTORE2 write functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `pointer` does not have any code.
    function read(address pointer, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory data)
    {
        /// @solidity memory-safe-assembly
        assembly {
            data := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(pointer, add(data, 0x1f), start, add(d, 0x01))
            if iszero(and(0xff, mload(add(data, d)))) {
                let n := sub(extcodesize(pointer), 0x01)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(data, d) // Store the length.
            mstore(add(add(data, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(data, 0x40), d)) // Allocate memory.
        }
    }
}
ECDSA.sol 180 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
ERC721.sol 430 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /// @inheritdoc IERC721
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /// @inheritdoc IERC721
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /// @inheritdoc IERC721Metadata
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /// @inheritdoc IERC721Metadata
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /// @inheritdoc IERC721Metadata
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /// @inheritdoc IERC721
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /// @inheritdoc IERC721
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /// @inheritdoc IERC721
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /// @inheritdoc IERC721
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /// @inheritdoc IERC721
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /// @inheritdoc IERC721
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /// @inheritdoc IERC721
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if:
     * - `spender` does not have approval from `owner` for `tokenId`.
     * - `spender` does not have approval to manage all of `owner`'s assets.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC-721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }
}
LibBytes.sol 888 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for byte related operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBytes.sol)
library LibBytes {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Goated bytes storage struct that totally MOGs, no cap, fr.
    /// Uses less gas and bytecode than Solidity's native bytes storage. It's meta af.
    /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight.
    struct BytesStorage {
        bytes32 _spacer;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the bytes.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  BYTE STORAGE OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sets the value of the bytes storage `$` to `s`.
    function set(BytesStorage storage $, bytes memory s) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(s)
            let packed := or(0xff, shl(8, n))
            for { let i := 0 } 1 {} {
                if iszero(gt(n, 0xfe)) {
                    i := 0x1f
                    packed := or(n, shl(8, mload(add(s, i))))
                    if iszero(gt(n, i)) { break }
                }
                let o := add(s, 0x20)
                mstore(0x00, $.slot)
                for { let p := keccak256(0x00, 0x20) } 1 {} {
                    sstore(add(p, shr(5, i)), mload(add(o, i)))
                    i := add(i, 0x20)
                    if iszero(lt(i, n)) { break }
                }
                break
            }
            sstore($.slot, packed)
        }
    }

    /// @dev Sets the value of the bytes storage `$` to `s`.
    function setCalldata(BytesStorage storage $, bytes calldata s) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let packed := or(0xff, shl(8, s.length))
            for { let i := 0 } 1 {} {
                if iszero(gt(s.length, 0xfe)) {
                    i := 0x1f
                    packed := or(s.length, shl(8, shr(8, calldataload(s.offset))))
                    if iszero(gt(s.length, i)) { break }
                }
                mstore(0x00, $.slot)
                for { let p := keccak256(0x00, 0x20) } 1 {} {
                    sstore(add(p, shr(5, i)), calldataload(add(s.offset, i)))
                    i := add(i, 0x20)
                    if iszero(lt(i, s.length)) { break }
                }
                break
            }
            sstore($.slot, packed)
        }
    }

    /// @dev Sets the value of the bytes storage `$` to the empty bytes.
    function clear(BytesStorage storage $) internal {
        delete $._spacer;
    }

    /// @dev Returns whether the value stored is `$` is the empty bytes "".
    function isEmpty(BytesStorage storage $) internal view returns (bool) {
        return uint256($._spacer) & 0xff == uint256(0);
    }

    /// @dev Returns the length of the value stored in `$`.
    function length(BytesStorage storage $) internal view returns (uint256 result) {
        result = uint256($._spacer);
        /// @solidity memory-safe-assembly
        assembly {
            let n := and(0xff, result)
            result := or(mul(shr(8, result), eq(0xff, n)), mul(n, iszero(eq(0xff, n))))
        }
    }

    /// @dev Returns the value stored in `$`.
    function get(BytesStorage storage $) internal view returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let o := add(result, 0x20)
            let packed := sload($.slot)
            let n := shr(8, packed)
            for { let i := 0 } 1 {} {
                if iszero(eq(or(packed, 0xff), packed)) {
                    mstore(o, packed)
                    n := and(0xff, packed)
                    i := 0x1f
                    if iszero(gt(n, i)) { break }
                }
                mstore(0x00, $.slot)
                for { let p := keccak256(0x00, 0x20) } 1 {} {
                    mstore(add(o, i), sload(add(p, shr(5, i))))
                    i := add(i, 0x20)
                    if iszero(lt(i, n)) { break }
                }
                break
            }
            mstore(result, n) // Store the length of the memory.
            mstore(add(o, n), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(o, n), 0x20)) // Allocate memory.
        }
    }

    /// @dev Returns the uint8 at index `i`. If out-of-bounds, returns 0.
    function uint8At(BytesStorage storage $, uint256 i) internal view returns (uint8 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let packed := sload($.slot) } 1 {} {
                if iszero(eq(or(packed, 0xff), packed)) {
                    if iszero(gt(i, 0x1e)) {
                        result := byte(i, packed)
                        break
                    }
                    if iszero(gt(i, and(0xff, packed))) {
                        mstore(0x00, $.slot)
                        let j := sub(i, 0x1f)
                        result := byte(and(j, 0x1f), sload(add(keccak256(0x00, 0x20), shr(5, j))))
                    }
                    break
                }
                if iszero(gt(i, shr(8, packed))) {
                    mstore(0x00, $.slot)
                    result := byte(and(i, 0x1f), sload(add(keccak256(0x00, 0x20), shr(5, i))))
                }
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      BYTES OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
    function replace(bytes memory subject, bytes memory needle, bytes memory replacement)
        internal
        pure
        returns (bytes memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let needleLen := mload(needle)
            let replacementLen := mload(replacement)
            let d := sub(result, subject) // Memory difference.
            let i := add(subject, 0x20) // Subject bytes pointer.
            mstore(0x00, add(i, mload(subject))) // End of subject.
            if iszero(gt(needleLen, mload(subject))) {
                let subjectSearchEnd := add(sub(mload(0x00), needleLen), 1)
                let h := 0 // The hash of `needle`.
                if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) }
                let s := mload(add(needle, 0x20))
                for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} {
                    let t := mload(i)
                    // Whether the first `needleLen % 32` bytes of `subject` and `needle` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(i, needleLen), h)) {
                                mstore(add(i, d), t)
                                i := add(i, 1)
                                if iszero(lt(i, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let j := 0 } 1 {} {
                            mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j)))
                            j := add(j, 0x20)
                            if iszero(lt(j, replacementLen)) { break }
                        }
                        d := sub(add(d, replacementLen), needleLen)
                        if needleLen {
                            i := add(i, needleLen)
                            if iszero(lt(i, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(add(i, d), t)
                    i := add(i, 1)
                    if iszero(lt(i, subjectSearchEnd)) { break }
                }
            }
            let end := mload(0x00)
            let n := add(sub(d, add(result, 0x20)), end)
            // Copy the rest of the bytes one word at a time.
            for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) }
            let o := add(i, d)
            mstore(o, 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(o, 0x20)) // Allocate memory.
            mstore(result, n) // Store the length.
        }
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOf(bytes memory subject, bytes memory needle, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := not(0) // Initialize to `NOT_FOUND`.
            for { let subjectLen := mload(subject) } 1 {} {
                if iszero(mload(needle)) {
                    result := from
                    if iszero(gt(from, subjectLen)) { break }
                    result := subjectLen
                    break
                }
                let needleLen := mload(needle)
                let subjectStart := add(subject, 0x20)

                subject := add(subjectStart, from)
                let end := add(sub(add(subjectStart, subjectLen), needleLen), 1)
                let m := shl(3, sub(0x20, and(needleLen, 0x1f)))
                let s := mload(add(needle, 0x20))

                if iszero(and(lt(subject, end), lt(from, subjectLen))) { break }

                if iszero(lt(needleLen, 0x20)) {
                    for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, needleLen), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, end)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right, starting from `from`. Optimized for byte needles.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOfByte(bytes memory subject, bytes1 needle, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := not(0) // Initialize to `NOT_FOUND`.
            if gt(mload(subject), from) {
                let start := add(subject, 0x20)
                let end := add(start, mload(subject))
                let m := div(not(0), 255) // `0x0101 ... `.
                let h := mul(byte(0, needle), m) // Replicating needle mask.
                m := not(shl(7, m)) // `0x7f7f ... `.
                for { let i := add(start, from) } 1 {} {
                    let c := xor(mload(i), h) // Load 32-byte chunk and xor with mask.
                    c := not(or(or(add(and(c, m), m), c), m)) // Each needle byte will be `0x80`.
                    if c {
                        c := and(not(shr(shl(3, sub(end, i)), not(0))), c) // Truncate bytes past the end.
                        if c {
                            let r := shl(7, lt(0x8421084210842108cc6318c6db6d54be, c)) // Save bytecode.
                            r := or(shl(6, lt(0xffffffffffffffff, shr(r, c))), r)
                            // forgefmt: disable-next-item
                            result := add(sub(i, start), shr(3, xor(byte(and(0x1f, shr(byte(24,
                                mul(0x02040810204081, shr(r, c))), 0x8421084210842108cc6318c6db6d54be)),
                                0xc0c8c8d0c8e8d0d8c8e8e0e8d0d8e0f0c8d0e8d0e0e0d8f0d0d0e0d8f8f8f8f8), r)))
                            break
                        }
                    }
                    i := add(i, 0x20)
                    if iszero(lt(i, end)) { break }
                }
            }
        }
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right. Optimized for byte needles.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOfByte(bytes memory subject, bytes1 needle)
        internal
        pure
        returns (uint256 result)
    {
        return indexOfByte(subject, needle, 0);
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function indexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) {
        return indexOf(subject, needle, 0);
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function lastIndexOf(bytes memory subject, bytes memory needle, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                result := not(0) // Initialize to `NOT_FOUND`.
                let needleLen := mload(needle)
                if gt(needleLen, mload(subject)) { break }
                let w := result

                let fromMax := sub(mload(subject), needleLen)
                if iszero(gt(fromMax, from)) { from := fromMax }

                let end := add(add(subject, 0x20), w)
                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, end)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
                    if eq(keccak256(subject, needleLen), h) {
                        result := sub(subject, add(end, 1))
                        break
                    }
                    subject := add(subject, w) // `sub(subject, 1)`.
                    if iszero(gt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `needle` in `subject`,
    /// needleing from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
    function lastIndexOf(bytes memory subject, bytes memory needle)
        internal
        pure
        returns (uint256)
    {
        return lastIndexOf(subject, needle, type(uint256).max);
    }

    /// @dev Returns true if `needle` is found in `subject`, false otherwise.
    function contains(bytes memory subject, bytes memory needle) internal pure returns (bool) {
        return indexOf(subject, needle) != NOT_FOUND;
    }

    /// @dev Returns whether `subject` starts with `needle`.
    function startsWith(bytes memory subject, bytes memory needle)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(needle)
            // Just using keccak256 directly is actually cheaper.
            let t := eq(keccak256(add(subject, 0x20), n), keccak256(add(needle, 0x20), n))
            result := lt(gt(n, mload(subject)), t)
        }
    }

    /// @dev Returns whether `subject` ends with `needle`.
    function endsWith(bytes memory subject, bytes memory needle)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(needle)
            let notInRange := gt(n, mload(subject))
            // `subject + 0x20 + max(subject.length - needle.length, 0)`.
            let t := add(add(subject, 0x20), mul(iszero(notInRange), sub(mload(subject), n)))
            // Just using keccak256 directly is actually cheaper.
            result := gt(eq(keccak256(t, n), keccak256(add(needle, 0x20), n)), notInRange)
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(bytes memory subject, uint256 times)
        internal
        pure
        returns (bytes memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let l := mload(subject) // Subject length.
            if iszero(or(iszero(times), iszero(l))) {
                result := mload(0x40)
                subject := add(subject, 0x20)
                let o := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let j := 0 } 1 {} {
                        mstore(add(o, j), mload(add(subject, j)))
                        j := add(j, 0x20)
                        if iszero(lt(j, l)) { break }
                    }
                    o := add(o, l)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                mstore(o, 0) // Zeroize the slot after the bytes.
                mstore(0x40, add(o, 0x20)) // Allocate memory.
                mstore(result, sub(o, add(result, 0x20))) // Store the length.
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(bytes memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (bytes memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let l := mload(subject) // Subject length.
            if iszero(gt(l, end)) { end := l }
            if iszero(gt(l, start)) { start := l }
            if lt(start, end) {
                result := mload(0x40)
                let n := sub(end, start)
                let i := add(subject, start)
                let w := not(0x1f)
                // Copy the `subject` one word at a time, backwards.
                for { let j := and(add(n, 0x1f), w) } 1 {} {
                    mstore(add(result, j), mload(add(i, j)))
                    j := add(j, w) // `sub(j, 0x20)`.
                    if iszero(j) { break }
                }
                let o := add(add(result, 0x20), n)
                mstore(o, 0) // Zeroize the slot after the bytes.
                mstore(0x40, add(o, 0x20)) // Allocate memory.
                mstore(result, n) // Store the length.
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes.
    /// `start` is a byte offset.
    function slice(bytes memory subject, uint256 start)
        internal
        pure
        returns (bytes memory result)
    {
        result = slice(subject, start, type(uint256).max);
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets. Faster than Solidity's native slicing.
    function sliceCalldata(bytes calldata subject, uint256 start, uint256 end)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            end := xor(end, mul(xor(end, subject.length), lt(subject.length, end)))
            start := xor(start, mul(xor(start, subject.length), lt(subject.length, start)))
            result.offset := add(subject.offset, start)
            result.length := mul(lt(start, end), sub(end, start))
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes.
    /// `start` is a byte offset. Faster than Solidity's native slicing.
    function sliceCalldata(bytes calldata subject, uint256 start)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            start := xor(start, mul(xor(start, subject.length), lt(subject.length, start)))
            result.offset := add(subject.offset, start)
            result.length := mul(lt(start, subject.length), sub(subject.length, start))
        }
    }

    /// @dev Reduces the size of `subject` to `n`.
    /// If `n` is greater than the size of `subject`, this will be a no-op.
    function truncate(bytes memory subject, uint256 n)
        internal
        pure
        returns (bytes memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := subject
            mstore(mul(lt(n, mload(result)), result), n)
        }
    }

    /// @dev Returns a copy of `subject`, with the length reduced to `n`.
    /// If `n` is greater than the size of `subject`, this will be a no-op.
    function truncatedCalldata(bytes calldata subject, uint256 n)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result.offset := subject.offset
            result.length := xor(n, mul(xor(n, subject.length), lt(subject.length, n)))
        }
    }

    /// @dev Returns all the indices of `needle` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(bytes memory subject, bytes memory needle)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLen := mload(needle)
            if iszero(gt(searchLen, mload(subject))) {
                result := mload(0x40)
                let i := add(subject, 0x20)
                let o := add(result, 0x20)
                let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1)
                let h := 0 // The hash of `needle`.
                if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) }
                let s := mload(add(needle, 0x20))
                for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} {
                    let t := mload(i)
                    // Whether the first `searchLen % 32` bytes of `subject` and `needle` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(i, searchLen), h)) {
                                i := add(i, 1)
                                if iszero(lt(i, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        mstore(o, sub(i, add(subject, 0x20))) // Append to `result`.
                        o := add(o, 0x20)
                        i := add(i, searchLen) // Advance `i` by `searchLen`.
                        if searchLen {
                            if iszero(lt(i, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    i := add(i, 1)
                    if iszero(lt(i, subjectSearchEnd)) { break }
                }
                mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`.
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(o, 0x20))
            }
        }
    }

    /// @dev Returns an arrays of bytess based on the `delimiter` inside of the `subject` bytes.
    function split(bytes memory subject, bytes memory delimiter)
        internal
        pure
        returns (bytes[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            for { let prevIndex := 0 } 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let l := sub(index, prevIndex)
                    mstore(element, l) // Store the length of the element.
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(l, 0x1f), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the bytes.
                    // Allocate memory for the length and the bytes, rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(l, 0x3f), w)))
                    mstore(indexPtr, element) // Store the `element` into the array.
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated bytes of `a` and `b`.
    /// Cheaper than `bytes.concat()` and does not de-align the free memory pointer.
    function concat(bytes memory a, bytes memory b) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let w := not(0x1f)
            let aLen := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(aLen, 0x20), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLen := mload(b)
            let output := add(result, aLen)
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLen, 0x20), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLen := add(aLen, bLen)
            let last := add(add(result, 0x20), totalLen)
            mstore(last, 0) // Zeroize the slot after the bytes.
            mstore(result, totalLen) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate memory.
        }
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(bytes memory a, bytes memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small bytes.
    function eqs(bytes memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
            let x := not(or(m, or(b, add(m, and(b, m)))))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
        }
    }

    /// @dev Returns 0 if `a == b`, -1 if `a < b`, +1 if `a > b`.
    /// If `a` == b[:a.length]`, and `a.length < b.length`, returns -1.
    function cmp(bytes memory a, bytes memory b) internal pure returns (int256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLen := mload(a)
            let bLen := mload(b)
            let n := and(xor(aLen, mul(xor(aLen, bLen), lt(bLen, aLen))), not(0x1f))
            if n {
                for { let i := 0x20 } 1 {} {
                    let x := mload(add(a, i))
                    let y := mload(add(b, i))
                    if iszero(or(xor(x, y), eq(i, n))) {
                        i := add(i, 0x20)
                        continue
                    }
                    result := sub(gt(x, y), lt(x, y))
                    break
                }
            }
            // forgefmt: disable-next-item
            if iszero(result) {
                let l := 0x201f1e1d1c1b1a191817161514131211100f0e0d0c0b0a090807060504030201
                let x := and(mload(add(add(a, 0x20), n)), shl(shl(3, byte(sub(aLen, n), l)), not(0)))
                let y := and(mload(add(add(b, 0x20), n)), shl(shl(3, byte(sub(bLen, n), l)), not(0)))
                result := sub(gt(x, y), lt(x, y))
                if iszero(result) { result := sub(gt(aLen, bLen), lt(aLen, bLen)) }
            }
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(bytes memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Assumes that the bytes does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retUnpaddedSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the bytes is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retUnpaddedSize), 0)
            mstore(retStart, 0x20) // Store the return offset.
            // End the transaction, returning the bytes.
            return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
        }
    }

    /// @dev Directly returns `a` with minimal copying.
    function directReturn(bytes[] memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(a) // `a.length`.
            let o := add(a, 0x20) // Start of elements in `a`.
            let u := a // Highest memory slot.
            let w := not(0x1f)
            for { let i := 0 } iszero(eq(i, n)) { i := add(i, 1) } {
                let c := add(o, shl(5, i)) // Location of pointer to `a[i]`.
                let s := mload(c) // `a[i]`.
                let l := mload(s) // `a[i].length`.
                let r := and(l, 0x1f) // `a[i].length % 32`.
                let z := add(0x20, and(l, w)) // Offset of last word in `a[i]` from `s`.
                // If `s` comes before `o`, or `s` is not zero right padded.
                if iszero(lt(lt(s, o), or(iszero(r), iszero(shl(shl(3, r), mload(add(s, z))))))) {
                    let m := mload(0x40)
                    mstore(m, l) // Copy `a[i].length`.
                    for {} 1 {} {
                        mstore(add(m, z), mload(add(s, z))) // Copy `a[i]`, backwards.
                        z := add(z, w) // `sub(z, 0x20)`.
                        if iszero(z) { break }
                    }
                    let e := add(add(m, 0x20), l)
                    mstore(e, 0) // Zeroize the slot after the copied bytes.
                    mstore(0x40, add(e, 0x20)) // Allocate memory.
                    s := m
                }
                mstore(c, sub(s, o)) // Convert to calldata offset.
                let t := add(l, add(s, 0x20))
                if iszero(lt(t, u)) { u := t }
            }
            let retStart := add(a, w) // Assumes `a` doesn't start from scratch space.
            mstore(retStart, 0x20) // Store the return offset.
            return(retStart, add(0x40, sub(u, retStart))) // End the transaction.
        }
    }

    /// @dev Returns the word at `offset`, without any bounds checks.
    function load(bytes memory a, uint256 offset) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(add(add(a, 0x20), offset))
        }
    }

    /// @dev Returns the word at `offset`, without any bounds checks.
    function loadCalldata(bytes calldata a, uint256 offset)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := calldataload(add(a.offset, offset))
        }
    }

    /// @dev Returns a slice representing a static struct in the calldata. Performs bounds checks.
    function staticStructInCalldata(bytes calldata a, uint256 offset)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let l := sub(a.length, 0x20)
            result.offset := add(a.offset, offset)
            result.length := sub(a.length, offset)
            if or(shr(64, or(l, a.offset)), gt(offset, l)) { revert(l, 0x00) }
        }
    }

    /// @dev Returns a slice representing a dynamic struct in the calldata. Performs bounds checks.
    function dynamicStructInCalldata(bytes calldata a, uint256 offset)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let l := sub(a.length, 0x20)
            let s := calldataload(add(a.offset, offset)) // Relative offset of `result` from `a.offset`.
            result.offset := add(a.offset, s)
            result.length := sub(a.length, s)
            if or(shr(64, or(s, or(l, a.offset))), gt(offset, l)) { revert(l, 0x00) }
        }
    }

    /// @dev Returns bytes in calldata. Performs bounds checks.
    function bytesInCalldata(bytes calldata a, uint256 offset)
        internal
        pure
        returns (bytes calldata result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let l := sub(a.length, 0x20)
            let s := calldataload(add(a.offset, offset)) // Relative offset of `result` from `a.offset`.
            result.offset := add(add(a.offset, s), 0x20)
            result.length := calldataload(add(a.offset, s))
            // forgefmt: disable-next-item
            if or(shr(64, or(result.length, or(s, or(l, a.offset)))),
                or(gt(add(s, result.length), l), gt(offset, l))) { revert(l, 0x00) }
        }
    }

    /// @dev Checks if `x` is in `a`. Assumes `a` has been checked.
    function checkInCalldata(bytes calldata x, bytes calldata a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            if or(
                or(lt(x.offset, a.offset), gt(add(x.offset, x.length), add(a.length, a.offset))),
                shr(64, or(x.length, x.offset))
            ) { revert(0x00, 0x00) }
        }
    }

    /// @dev Checks if `x` is in `a`. Assumes `a` has been checked.
    function checkInCalldata(bytes[] calldata x, bytes calldata a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let e := sub(add(a.length, a.offset), 0x20)
            if or(lt(x.offset, a.offset), shr(64, x.offset)) { revert(0x00, 0x00) }
            for { let i := 0 } iszero(eq(x.length, i)) { i := add(i, 1) } {
                let o := calldataload(add(x.offset, shl(5, i)))
                let t := add(o, x.offset)
                let l := calldataload(t)
                if or(shr(64, or(l, o)), gt(add(t, l), e)) { revert(0x00, 0x00) }
            }
        }
    }

    /// @dev Returns empty calldata bytes. For silencing the compiler.
    function emptyCalldata() internal pure returns (bytes calldata result) {
        /// @solidity memory-safe-assembly
        assembly {
            result.length := 0
        }
    }

    /// @dev Returns the most significant 20 bytes as an address.
    function msbToAddress(bytes32 x) internal pure returns (address) {
        return address(bytes20(x));
    }

    /// @dev Returns the least significant 20 bytes as an address.
    function lsbToAddress(bytes32 x) internal pure returns (address) {
        return address(uint160(uint256(x)));
    }
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
ERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
Strings.sol 490 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
ERC721Utils.sol 50 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/utils/ERC721Utils.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-721 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
 *
 * _Available since v5.1._
 */
library ERC721Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC721Receiver-onERC721Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC721Received(
        address operator,
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    // Token rejected
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC721Receiver implementer
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(reason, 0x20), mload(reason))
                    }
                }
            }
        }
    }
}
IERC721Metadata.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity >=0.6.2;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}
IERC721.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)

pragma solidity >=0.6.2;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
SignedMath.sol 68 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
Math.sol 749 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
IERC721Receiver.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity >=0.5.0;

/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
Panic.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Read Contract

balanceOf 0x70a08231 → uint256
collectorClaim 0x90e46443 → bool
configureTokenSigner 0x9feee7e1 → address
contractURI 0xe8a3d485 → string
descriptionAt 0xbba15dcb → address
fallbackTemplateAt 0xc38ca419 → address
getApproved 0x081812fc → address
getTokenMedia 0x78e5f963 → tuple[], tuple[]
getTokenMetadata 0x60316801 → string, uint256, bool, string, tuple[], tuple[]
isApprovedForAll 0xe985e9c5 → bool
lastTokenId 0xf84ddf0b → uint256
metadata 0xe3684e39 → string, uint256, bool, string
mintContract 0xd0b6b6db → address
name 0x06fdde03 → string
owner 0x8da5cb5b → address
ownerOf 0x6352211e → address
royaltyConfig 0xb189c7e8 → address, uint96
royaltyInfo 0x2a55205a → address, uint256
supportsInterface 0x01ffc9a7 → bool
symbol 0x95d89b41 → string
tokenURI 0xc87b56dd → string

Write Contract 22 functions

These functions modify contract state and require a wallet transaction to execute.

addUrl 0x2f14e2fb
uint256 tokenId
string url
uint8 mediaType
approve 0x095ea7b3
address to
uint256 tokenId
burn 0x42966c68
uint256 tokenId
configureRoyalties 0xccdc828f
address receiver
uint96 amount
configureToken 0xf1bc022b
uint256 tokenId
string mediaHash
string description
string image
string animation_url
bytes signature
mint 0x6a627842
address to
refreshTokenMetadata 0xe508a22c
No parameters
removeUrl 0x0137b622
uint256 tokenId
uint256 urlIndex
uint8 mediaType
renounceOwnership 0x715018a6
No parameters
safeTransferFrom 0x42842e0e
address from
address to
uint256 tokenId
safeTransferFrom 0xb88d4fde
address from
address to
uint256 tokenId
bytes data
setApprovalForAll 0xa22cb465
address operator
bool approved
setConfigureTokenSigner 0xaa75d99b
address _signer
setContractURI 0x938e3d7b
string uri
setDescriptionAt 0xcc050bc3
string _description
setFallbackTemplate 0xe583985f
string _fallbackTemplate
setFallbackTemplateAt 0xa8970ab9
address _fallbackTemplateAt
setMintContract 0x5fb64a6a
address _mintContract
setSelectedUriIndex 0xb7faef4a
uint256 tokenId
uint256 urlIndex
toggleFallback 0xd7b7259a
uint256 tokenId
transferFrom 0x23b872dd
address from
address to
uint256 tokenId
transferOwnership 0xf2fde38b
address newOwner

Recent Transactions

No transactions found for this address