Cryo Explorer Ethereum Mainnet

Address Contract Partially Verified

Address 0x81F0329Ec7E635337a223B3C9F375EE615C1Cc02
Balance 0 ETH
Nonce 1
Code Size 14050 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

14050 bytes
0x608060405234801561001057600080fd5b506004361061021c5760003560e01c806370a0823111610125578063a8e9d528116100ad578063caa6fea41161007c578063caa6fea414610551578063d828bb8814610563578063dd62ed3e14610576578063e5cf8a5c146105af578063f2fde38b146105c257600080fd5b8063a8e9d52814610505578063a9059cbb14610518578063c0046e391461052b578063c912ff7a1461053e57600080fd5b80637e932d32116100f45780637e932d32146104b15780638334278d146104c4578063838e6a22146104d75780638da5cb5b146104ea57806395d89b41146104fd57600080fd5b806370a08231146103f25780637165485d1461041b57806372b4129a1461048b57806379a390a51461049e57600080fd5b806323b872dd116101a8578063490e6cbc11610177578063490e6cbc14610376578063525d0da7146103895780635872278a1461039c578063595520c7146103af5780636f2ef95b146103df57600080fd5b806323b872dd146102f2578063313ce567146103055780633cae77f71461031f578063441a3e701461036357600080fd5b8063095ea7b3116101ef578063095ea7b3146102805780630b2583c81461029357806318160ddd146102b45780631a686502146102bc5780631f276b6e146102d257600080fd5b806301ffc9a7146102215780630501d55614610249578063054f7d9c1461025e57806306fdde031461026b575b600080fd5b61023461022f366004612e2c565b6105d5565b60405190151581526020015b60405180910390f35b61025c610257366004612e67565b610627565b005b6010546102349060ff1681565b6102736106a9565b6040516102409190612ea8565b61023461028e366004612ef2565b610737565b6102a66102a1366004612f1c565b610819565b604051908152602001610240565b6007546102a6565b6102c4610a7a565b604051610240929190612fa4565b6102e56102e0366004612fbd565b610b00565b6040516102409190612fdf565b610234610300366004612ff2565b610c1f565b61030d601281565b60405160ff9091168152602001610240565b61034b61032d36600461302e565b6001600160a01b039081166000908152600560205260409020541690565b6040516001600160a01b039091168152602001610240565b6102e5610371366004612fbd565b610d31565b61025c610384366004613049565b610db7565b6102a6610397366004612ff2565b611644565b6102c46103aa3660046130dd565b611798565b6103b7611dbc565b604080519586526020860194909452928401919091526060830152608082015260a001610240565b6102c46103ed366004613120565b611e50565b6102a661040036600461302e565b6001600160a01b031660009081526008602052604090205490565b60005460015460025460075461044e93600f81810b94600160801b92839004820b9481830b9493909104820b92910b9086565b60408051600f97880b815295870b602087015293860b9385019390935290840b606084015290920b608082015260a081019190915260c001610240565b6102a6610499366004612f1c565b611f93565b61025c6104ac366004613139565b6121d8565b61025c6104bf366004612e67565b612292565b61034b6104d2366004613120565b612304565b6102a66104e5366004612ff2565b61232e565b600a5461034b906001600160a01b031681565b61027361243d565b61034b610513366004613120565b61244a565b610234610526366004612ef2565b61245a565b61034b610539366004613120565b61250f565b61025c61054c36600461302e565b61251f565b60105461023490610100900460ff1681565b61025c61057136600461318d565b612684565b6102a66105843660046131c8565b6001600160a01b03918216600090815260096020908152604080832093909416825291909152205490565b6102e56105bd366004613120565b61273b565b61025c6105d036600461302e565b612878565b60006301ffc9a760e01b6001600160e01b03198316148061060657506307f5828d60e41b6001600160e01b03198316145b8061062157506336372b0760e01b6001600160e01b03198316145b92915050565b600a546001600160a01b0316331461065a5760405162461bcd60e51b8152600401610651906131fb565b60405180910390fd5b60405181151581527fa44450e52bea871e50cfee059fbe027c26ff43fd7534c06b7de61d90b58ab3c19060200160405180910390a1601080549115156101000261ff0019909216919091179055565b600b80546106b690613232565b80601f01602080910402602001604051908101604052809291908181526020018280546106e290613232565b801561072f5780601f106107045761010080835404028352916020019161072f565b820191906000526020600020905b81548152906001019060200180831161071257829003601f168201915b505050505081565b60105460009062010000900460ff166107625760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055610776612965565b60405163e60ac42960e01b8152600060048201526001600160a01b038416602482015260448101839052730ec3d999351ff8856dc6b644cca315255a21005f9063e60ac429906064015b602060405180830381865af41580156107dd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108019190613296565b6010805462ff00001916620100001790559392505050565b60008180421061083b5760405162461bcd60e51b8152600401610651906132b3565b601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa15801561088e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108b29190613296565b156108cf5760405162461bcd60e51b8152600401610651906132ea565b60105460ff16156108f25760405162461bcd60e51b815260040161065190613347565b6108fa612965565b601054610100900460ff16156109225760405162461bcd60e51b815260040161065190613397565b60105462010000900460ff1661094a5760405162461bcd60e51b81526004016106519061326c565b6010805462ff00001916908190556040805160a0810182526001600160a01b038a8116825289811660208301528183018990523360608301526301000000909304909216608083015251630d44e8a560e11b815273265acce2886bc7980b5e95122079221234d0a8f090631a89d14a906109cb9060009085906004016133f4565b602060405180830381865af41580156109e8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a0c9190613440565b925084831015610a5e5760405162461bcd60e51b815260206004820152601d60248201527f43757276652f62656c6f772d6d696e2d7461726765742d616d6f756e740000006044820152606401610651565b50506010805462ff000019166201000017905595945050505050565b604051633745793960e11b815260006004820181905290606090734c206ec81e92579cf0e7cbcd66c861da441df34a90636e8af27290602401600060405180830381865af4158015610ad0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610af891908101906134ff565b915091509091565b601054606090610100900460ff16610b2a5760405162461bcd60e51b815260040161065190613397565b81804210610b4a5760405162461bcd60e51b8152600401610651906132b3565b60105462010000900460ff16610b725760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055610b86612965565b60405163044fd3db60e41b815260006004820152602481018590527359c69888ebbc0623ff1502ffcb4bdf3fee843e7c906344fd3db090604401600060405180830381865af4158015610bdd573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610c059190810190613546565b9150506010805462ff000019166201000017905592915050565b60105460009062010000900460ff16610c4a5760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055610c5e612965565b601054610100900460ff1615610c865760405162461bcd60e51b815260040161065190613397565b6040516303a90f6960e31b8152600060048201526001600160a01b0380861660248301528416604482015260648101839052730ec3d999351ff8856dc6b644cca315255a21005f90631d487b4890608401602060405180830381865af4158015610cf4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d189190613296565b6010805462ff0000191662010000179055949350505050565b606081804210610d535760405162461bcd60e51b8152600401610651906132b3565b60105462010000900460ff16610d7b5760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055610d8f612965565b601054610100900460ff1615610b865760405162461bcd60e51b815260040161065190613397565b601060039054906101000a90046001600160a01b03166001600160a01b031663d94abcee6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e0a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e2e9190613296565b610e7a5760405162461bcd60e51b815260206004820152601760248201527f43757276652f666c6173686c6f616e732d7061757365640000000000000000006044820152606401610651565b601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ecd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef19190613296565b15610f0e5760405162461bcd60e51b8152600401610651906132ea565b60105462010000900460ff16610f365760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055610f4a612965565b60105460ff1615610f6d5760405162461bcd60e51b815260040161065190613347565b601054610100900460ff1615610f955760405162461bcd60e51b815260040161065190613397565b600154600090610fb790600160801b9004600f0b670de0b6b3a764000061299c565b90506000600d600081548110610fcf57610fcf61357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015611020573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110449190613440565b1161109b5760405162461bcd60e51b815260206004820152602160248201527f43757276652f746f6b656e302d7a65726f2d6c69717569646974792d646570746044820152600d60fb1b6064820152608401610651565b6000600d6001815481106110b1576110b161357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015611102573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111269190613440565b1161117d5760405162461bcd60e51b815260206004820152602160248201527f43757276652f746f6b656e312d7a65726f2d6c69717569646974792d646570746044820152600d60fb1b6064820152608401610651565b60006111928683670de0b6b3a7640000612a10565b905060006111a98684670de0b6b3a7640000612a10565b90506000600d6000815481106111c1576111c161357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015611212573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112369190613440565b90506000600d60018154811061124e5761124e61357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa15801561129f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112c39190613440565b90508815611300576113008a8a600d6000815481106112e4576112e461357b565b6000918252602090912001546001600160a01b03169190612a5b565b871561131f5761131f8a89600d6001815481106112e4576112e461357b565b6040516361c9276b60e11b8152339063c3924ed69061134890879087908c908c90600401613591565b600060405180830381600087803b15801561136257600080fd5b505af1158015611376573d6000803e3d6000fd5b505050506000600d6000815481106113905761139061357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa1580156113e1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114059190613440565b90506000600d60018154811061141d5761141d61357b565b6000918252602090912001546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa15801561146e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114929190613440565b90508161149f8588612ab2565b11156114f85760405162461bcd60e51b815260206004820152602260248201527f43757276652f696e73756666696369656e742d746f6b656e302d72657475726e604482015261195960f21b6064820152608401610651565b806115038487612ab2565b111561155c5760405162461bcd60e51b815260206004820152602260248201527f43757276652f696e73756666696369656e742d746f6b656e312d72657475726e604482015261195960f21b6064820152608401610651565b600061156885846135e4565b9050600061157685846135e4565b90506115a6600a60009054906101000a90046001600160a01b031683600d6000815481106112e4576112e461357b565b600a54600d80546115ce926001600160a01b031691849160019081106112e4576112e461357b565b604080518e8152602081018e9052908101839052606081018290526001600160a01b038f169033907fbdbdb71d7860376ba52b25a5028beea23581364a40522f6bcfb86bb1f2dca6339060800160405180910390a350506010805462ff0000191662010000179055505050505050505050505050565b6000601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015611699573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116bd9190613296565b156116da5760405162461bcd60e51b8152600401610651906132ea565b60105460ff16156116fd5760405162461bcd60e51b815260040161065190613347565b6040516315be82e960e21b8152600060048201526001600160a01b038086166024830152841660448201526064810183905273265acce2886bc7980b5e95122079221234d0a8f0906356fa0ba4906084015b602060405180830381865af415801561176c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117909190613440565b949350505050565b60006060828042106117bc5760405162461bcd60e51b8152600401610651906132b3565b601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa15801561180f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118339190613296565b156118505760405162461bcd60e51b8152600401610651906132ea565b60105460ff16156118735760405162461bcd60e51b815260040161065190613347565b60105462010000900460ff1661189b5760405162461bcd60e51b81526004016106519061326c565b6010805462ff0000191690556118af612965565b601054610100900460ff16156118d75760405162461bcd60e51b815260040161065190613397565b60105460405163128be30760e31b81523060048201819052918b91600091630100000090046001600160a01b03169063945f183890602401602060405180830381865afa15801561192c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119509190613440565b9050600061195d60075490565b90508115806119755750816119728285612ab2565b11155b6119ba5760405162461bcd60e51b8152602060048201526016602482015275063757276652f6578636565647320706f6f6c206361760541b6044820152606401610651565b505060105460405163772a650160e01b81526001600160a01b03848116600483015263010000009092049091169063772a650190602401602060405180830381865afa158015611a0e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a329190613296565b611b7d5760008b11611a815760405162461bcd60e51b815260206004820152601860248201527743757276652f6465706f7369745f62656c6f775f7a65726f60401b6044820152606401610651565b611ab36040518060a0016040528060008152602001600081526020016000815260200160008152602001600081525090565b8b8152602081018b815260408083018c8152606084018c8152608085018c81529251629d2ea960e41b8152600060048201819052865160248301529451604482015291516064830152516084820152905160a482015281907359c69888ebbc0623ff1502ffcb4bdf3fee843e7c906309d2ea909060c401600060405180830381865af4158015611b47573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611b6f91908101906134ff565b9098509650611d9b92505050565b60008b11611bc85760405162461bcd60e51b815260206004820152601860248201527743757276652f6465706f7369745f62656c6f775f7a65726f60401b6044820152606401610651565b611bfa6040518060a0016040528060008152602001600081526020016000815260200160008152602001600081525090565b8b8152602081018b815260408083018c8152606084018c8152608085018c81529251629d2ea960e41b8152600060048201819052865160248301529451604482015291516064830152516084820152905160a482015281907359c69888ebbc0623ff1502ffcb4bdf3fee843e7c906309d2ea909060c401600060405180830381865af4158015611c8e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611cb691908101906134ff565b60105460405163914dbfc160e01b81526001600160a01b038981166004830152939b509199506000955063010000009004909116925063914dbfc19150602401602060405180830381865afa158015611d13573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d379190613440565b33600090815260086020526040902054909150811015611d995760405162461bcd60e51b815260206004820152601f60248201527f63757276652f6465706f7369742d657863656564732d67756172642d616d74006044820152606401610651565b505b50506010805462ff0000191662010000179055509097909650945050505050565b6000806000806000737e5e1c23c820496da64311a571b8ccc0bc00c26a63faa50b5d60006040518263ffffffff1660e01b8152600401611dfe91815260200190565b60a060405180830381865af4158015611e1b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e3f91906135f7565b945094509450945094509091929394565b60006060601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015611ea7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ecb9190613296565b15611ee85760405162461bcd60e51b8152600401610651906132ea565b60105460ff1615611f0b5760405162461bcd60e51b815260040161065190613347565b60405163822f39d560e01b815260006004820152602481018490527359c69888ebbc0623ff1502ffcb4bdf3fee843e7c9063822f39d590604401600060405180830381865af4158015611f62573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611f8a91908101906134ff565b91509150915091565b600081804210611fb55760405162461bcd60e51b8152600401610651906132b3565b601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015612008573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061202c9190613296565b156120495760405162461bcd60e51b8152600401610651906132ea565b60105460ff161561206c5760405162461bcd60e51b815260040161065190613347565b612074612965565b601054610100900460ff161561209c5760405162461bcd60e51b815260040161065190613397565b60105462010000900460ff166120c45760405162461bcd60e51b81526004016106519061326c565b6010805462ff00001916908190556040805160a0810182526001600160a01b038a811682528981166020830152818301889052336060830152630100000090930490921660808301525163498e2a2560e11b815273265acce2886bc7980b5e95122079221234d0a8f09063931c544a906121459060009085906004016133f4565b602060405180830381865af4158015612162573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906121869190613440565b925085831115610a5e5760405162461bcd60e51b815260206004820152601d60248201527f43757276652f61626f76652d6d61782d6f726967696e2d616d6f756e740000006044820152606401610651565b600a546001600160a01b031633146122025760405162461bcd60e51b8152600401610651906131fb565b604051632e6ce08560e11b8152600060048201526001600160a01b0380861660248301528085166044830152808416606483015282166084820152737e5e1c23c820496da64311a571b8ccc0bc00c26a90635cd9c10a9060a40160006040518083038186803b15801561227457600080fd5b505af4158015612288573d6000803e3d6000fd5b5050505050505050565b600a546001600160a01b031633146122bc5760405162461bcd60e51b8152600401610651906131fb565b60405181151581527f7c029deaca9b6c66abb68e5f874a812822f0fcaa52a890f980a7ab1afb5edba69060200160405180910390a16010805460ff1916911515919091179055565b600f818154811061231457600080fd5b6000918252602090912001546001600160a01b0316905081565b6000601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015612383573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123a79190613296565b156123c45760405162461bcd60e51b8152600401610651906132ea565b60105460ff16156123e75760405162461bcd60e51b815260040161065190613347565b604051637dba2aed60e11b8152600060048201526001600160a01b038086166024830152841660448201526064810183905273265acce2886bc7980b5e95122079221234d0a8f09063fb7455da9060840161174f565b600c80546106b690613232565b600e818154811061231457600080fd5b60105460009062010000900460ff166124855760405162461bcd60e51b81526004016106519061326c565b6010805462ff000019169055612499612965565b601054610100900460ff16156124c15760405162461bcd60e51b815260040161065190613397565b60405163a4bcd45960e01b8152600060048201526001600160a01b038416602482015260448101839052730ec3d999351ff8856dc6b644cca315255a21005f9063a4bcd459906064016107c0565b600d818154811061231457600080fd5b600a546001600160a01b031633146125495760405162461bcd60e51b8152600401610651906131fb565b60005b600e5481101561265c57600e81815481106125695761256961357b565b6000918252602090912001546001600160a01b03908116908316036125d05760405162461bcd60e51b815260206004820152601d60248201527f43757276652f63616e6e6f742d64656c6574652d6e756d6572616972650000006044820152606401610651565b600f81815481106125e3576125e361357b565b6000918252602090912001546001600160a01b039081169083160361264a5760405162461bcd60e51b815260206004820152601b60248201527f43757276652f63616e6e6f742d64656c6574652d7265736572766500000000006044820152606401610651565b8061265481613637565b91505061254c565b506001600160a01b0316600090815260056020526040902080546001600160a81b0319169055565b600a546001600160a01b031633146126ae5760405162461bcd60e51b8152600401610651906131fb565b60405163231888b760e01b8152600060048201526024810186905260448101859052606481018490526084810183905260a48101829052737e5e1c23c820496da64311a571b8ccc0bc00c26a9063231888b79060c40160006040518083038186803b15801561271c57600080fd5b505af4158015612730573d6000803e3d6000fd5b505050505050505050565b6060601060039054906101000a90046001600160a01b03166001600160a01b0316636a8e1cd06040518163ffffffff1660e01b8152600401602060405180830381865afa158015612790573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906127b49190613296565b156127d15760405162461bcd60e51b8152600401610651906132ea565b60105460ff16156127f45760405162461bcd60e51b815260040161065190613347565b6040516330771ac760e11b815260006004820152602481018390527359c69888ebbc0623ff1502ffcb4bdf3fee843e7c906360ee358e90604401600060405180830381865af415801561284b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526106219190810190613546565b919050565b600a546001600160a01b031633146128a25760405162461bcd60e51b8152600401610651906131fb565b6001600160a01b0381166129095760405162461bcd60e51b815260206004820152602860248201527f43757276652f6e65772d6f776e65722d63616e6e6f742d62652d7a65726f74686044820152672d6164647265737360c01b6064820152608401610651565b600a546040516001600160a01b038084169216907f0d18b5fd22306e373229b9439188228edca81207d1667f604daf6cef8aa3ee6790600090a3600a80546001600160a01b0319166001600160a01b0392909216919091179055565b306001600160a01b037f00000000000000000000000081f0329ec7e635337a223b3c9f375ee615c1cc02161461299a57600080fd5b565b6000816000036129ae57506000610621565b600083600f0b12156129bf57600080fd5b600f83900b6fffffffffffffffffffffffffffffffff8316810260401c90608084901c026001600160c01b038111156129f757600080fd5b60401b8119811115612a0857600080fd5b019392505050565b6000612a1d848484612abe565b905060008280612a2f57612a2f613650565b8486091115612a54576000198110612a4657600080fd5b80612a5081613637565b9150505b9392505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052612aad908490612c37565b505050565b6000612a548284613666565b6000808060001985870985870292508281108382030391505080600003612af75760008411612aec57600080fd5b508290049050612a54565b808411612b0357600080fd5b6000848688098084039381119092039190506000612b2386196001613666565b8616958690049593849004936000819003046001019050612b448184613679565b909317926000612b55876003613679565b6002189050612b648188613679565b612b6f9060026135e4565b612b799082613679565b9050612b858188613679565b612b909060026135e4565b612b9a9082613679565b9050612ba68188613679565b612bb19060026135e4565b612bbb9082613679565b9050612bc78188613679565b612bd29060026135e4565b612bdc9082613679565b9050612be88188613679565b612bf39060026135e4565b612bfd9082613679565b9050612c098188613679565b612c149060026135e4565b612c1e9082613679565b9050612c2a8186613679565b9998505050505050505050565b6000612c8c826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316612d099092919063ffffffff16565b805190915015612aad5780806020019051810190612caa9190613296565b612aad5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610651565b6060611790848460008585600080866001600160a01b03168587604051612d309190613690565b60006040518083038185875af1925050503d8060008114612d6d576040519150601f19603f3d011682016040523d82523d6000602084013e612d72565b606091505b5091509150612d8387838387612d8e565b979650505050505050565b60608315612dfd578251600003612df6576001600160a01b0385163b612df65760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610651565b5081611790565b6117908383815115612e125781518083602001fd5b8060405162461bcd60e51b81526004016106519190612ea8565b600060208284031215612e3e57600080fd5b81356001600160e01b031981168114612a5457600080fd5b8015158114612e6457600080fd5b50565b600060208284031215612e7957600080fd5b8135612a5481612e56565b60005b83811015612e9f578181015183820152602001612e87565b50506000910152565b6020815260008251806020840152612ec7816040850160208701612e84565b601f01601f19169190910160400192915050565b80356001600160a01b038116811461287357600080fd5b60008060408385031215612f0557600080fd5b612f0e83612edb565b946020939093013593505050565b600080600080600060a08688031215612f3457600080fd5b612f3d86612edb565b9450612f4b60208701612edb565b94979496505050506040830135926060810135926080909101359150565b600081518084526020808501945080840160005b83811015612f9957815187529582019590820190600101612f7d565b509495945050505050565b8281526040602082015260006117906040830184612f69565b60008060408385031215612fd057600080fd5b50508035926020909101359150565b602081526000612a546020830184612f69565b60008060006060848603121561300757600080fd5b61301084612edb565b925061301e60208501612edb565b9150604084013590509250925092565b60006020828403121561304057600080fd5b612a5482612edb565b60008060008060006080868803121561306157600080fd5b61306a86612edb565b94506020860135935060408601359250606086013567ffffffffffffffff8082111561309557600080fd5b818801915088601f8301126130a957600080fd5b8135818111156130b857600080fd5b8960208285010111156130ca57600080fd5b9699959850939650602001949392505050565b60008060008060008060c087890312156130f657600080fd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b60006020828403121561313257600080fd5b5035919050565b6000806000806080858703121561314f57600080fd5b61315885612edb565b935061316660208601612edb565b925061317460408601612edb565b915061318260608601612edb565b905092959194509250565b600080600080600060a086880312156131a557600080fd5b505083359560208501359550604085013594606081013594506080013592509050565b600080604083850312156131db57600080fd5b6131e483612edb565b91506131f260208401612edb565b90509250929050565b60208082526019908201527f43757276652f63616c6c65722d69732d6e6f742d6f776e657200000000000000604082015260600190565b600181811c9082168061324657607f821691505b60208210810361326657634e487b7160e01b600052602260045260246000fd5b50919050565b60208082526010908201526f10dd5c9d994bdc994b595b9d195c995960821b604082015260600190565b6000602082840312156132a857600080fd5b8151612a5481612e56565b60208082526018908201527f43757276652f74782d646561646c696e652d7061737365640000000000000000604082015260600190565b60208082526039908201527f43757276652f66726f7a656e2d676c6f62616c6c792d6f6e6c792d616c6c6f7760408201527f696e672d70726f706f7274696f6e616c2d776974686472617700000000000000606082015260800190565b60208082526030908201527f43757276652f66726f7a656e2d6f6e6c792d616c6c6f77696e672d70726f706f60408201526f7274696f6e616c2d776974686472617760801b606082015260800190565b6020808252603d908201527f43757276652f656d657267656e63792d6f6e6c792d616c6c6f77696e672d656d60408201527f657267656e63792d70726f706f7274696f6e616c2d7769746864726177000000606082015260800190565b82815260c08101612a54602083018480516001600160a01b0390811683526020808301518216908401526040808301519084015260608083015182169084015260809182015116910152565b60006020828403121561345257600080fd5b5051919050565b634e487b7160e01b600052604160045260246000fd5b600082601f83011261348057600080fd5b8151602067ffffffffffffffff8083111561349d5761349d613459565b8260051b604051601f19603f830116810181811084821117156134c2576134c2613459565b6040529384528581018301938381019250878511156134e057600080fd5b83870191505b84821015612d83578151835291830191908301906134e6565b6000806040838503121561351257600080fd5b82519150602083015167ffffffffffffffff81111561353057600080fd5b61353c8582860161346f565b9150509250929050565b60006020828403121561355857600080fd5b815167ffffffffffffffff81111561356f57600080fd5b6117908482850161346f565b634e487b7160e01b600052603260045260246000fd5b84815283602082015260606040820152816060820152818360808301376000818301608090810191909152601f909201601f191601019392505050565b634e487b7160e01b600052601160045260246000fd5b81810381811115610621576106216135ce565b600080600080600060a0868803121561360f57600080fd5b5050835160208501516040860151606087015160809097015192989197509594509092509050565b600060018201613649576136496135ce565b5060010190565b634e487b7160e01b600052601260045260246000fd5b80820180821115610621576106216135ce565b8082028115828204841417610621576106216135ce565b600082516136a2818460208701612e84565b919091019291505056fea2646970667358221220dfe1ac8915fc76ca922e1a24637c1b1442addadc6c901c20b1416c09bc77491b64736f6c63430008130033

Verified Source Code Partial Match

Compiler: v0.8.19+commit.7dd6d404 EVM: paris Optimization: Yes (200 runs)
Curve.sol 927 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "./interfaces/IFlashCallback.sol";

import "./lib/ABDKMath64x64.sol";

import "./lib/FullMath.sol";

import "./lib/NoDelegateCall.sol";

import "./Orchestrator.sol";

import "./ProportionalLiquidity.sol";

import "./Swaps.sol";

import "./ViewLiquidity.sol";

import "./Storage.sol";

import "./interfaces/IFreeFromUpTo.sol";

import "./interfaces/ICurveFactory.sol";

import "./Structs.sol";

library Curves {
	using ABDKMath64x64 for int128;

	event Approval(
		address indexed _owner,
		address indexed spender,
		uint256 value
	);
	event Transfer(address indexed from, address indexed to, uint256 value);

	function add(
		uint256 x,
		uint256 y,
		string memory errorMessage
	) private pure returns (uint256 z) {
		require((z = x + y) >= x, errorMessage);
	}

	function sub(
		uint256 x,
		uint256 y,
		string memory errorMessage
	) private pure returns (uint256 z) {
		require((z = x - y) <= x, errorMessage);
	}

	/**
	 * @dev See {IERC20-transfer}.
	 *
	 * Requirements:
	 *
	 * - `recipient` cannot be the zero address.
	 * - the caller must have a balance of at least `amount`.
	 */
	function transfer(
		Storage.Curve storage curve,
		address recipient,
		uint256 amount
	) external returns (bool) {
		_transfer(curve, msg.sender, recipient, amount);
		return true;
	}

	/**
	 * @dev See {IERC20-approve}.
	 *
	 * Requirements:
	 *
	 * - `spender` cannot be the zero address.
	 */
	function approve(
		Storage.Curve storage curve,
		address spender,
		uint256 amount
	) external returns (bool) {
		_approve(curve, msg.sender, spender, amount);
		return true;
	}

	/**
	 * @dev See {IERC20-transferFrom}.
	 *
	 * Emits an {Approval} event indicating the updated allowance. This is not
	 * required by the EIP. See the note at the beginning of {ERC20};
	 *
	 * Requirements:
	 * - `sender` and `recipient` cannot be the zero address.
	 * - `sender` must have a balance of at least `amount`.
	 * - the caller must have allowance for `sender`'s tokens of at least
	 * `amount`
	 */
	function transferFrom(
		Storage.Curve storage curve,
		address sender,
		address recipient,
		uint256 amount
	) external returns (bool) {
		_transfer(curve, sender, recipient, amount);
		_approve(
			curve,
			sender,
			msg.sender,
			sub(
				curve.allowances[sender][msg.sender],
				amount,
				"Curve/insufficient-allowance"
			)
		);
		return true;
	}

	/**
	 * @dev Atomically increases the allowance granted to `spender` by the caller.
	 *
	 * This is an alternative to {approve} that can be used as a mitigation for
	 * problems described in {IERC20-approve}.
	 *
	 * Emits an {Approval} event indicating the updated allowance.
	 *
	 * Requirements:
	 *
	 * - `spender` cannot be the zero address.
	 */
	function increaseAllowance(
		Storage.Curve storage curve,
		address spender,
		uint256 addedValue
	) external returns (bool) {
		_approve(
			curve,
			msg.sender,
			spender,
			add(
				curve.allowances[msg.sender][spender],
				addedValue,
				"Curve/approval-overflow"
			)
		);
		return true;
	}

	/**
	 * @dev Atomically decreases the allowance granted to `spender` by the caller.
	 *
	 * This is an alternative to {approve} that can be used as a mitigation for
	 * problems described in {IERC20-approve}.
	 *
	 * Emits an {Approval} event indicating the updated allowance.
	 *
	 * Requirements:
	 *
	 * - `spender` cannot be the zero address.
	 * - `spender` must have allowance for the caller of at least
	 * `subtractedValue`.
	 */
	function decreaseAllowance(
		Storage.Curve storage curve,
		address spender,
		uint256 subtractedValue
	) external returns (bool) {
		_approve(
			curve,
			msg.sender,
			spender,
			sub(
				curve.allowances[msg.sender][spender],
				subtractedValue,
				"Curve/allowance-decrease-underflow"
			)
		);
		return true;
	}

	/**
	 * @dev Moves tokens `amount` from `sender` to `recipient`.
	 *
	 * This is public function is equivalent to {transfer}, and can be used to
	 * e.g. implement automatic token fees, slashing mechanisms, etc.
	 *
	 * Emits a {Transfer} event.
	 *
	 * Requirements:
	 *
	 * - `sender` cannot be the zero address.
	 * - `recipient` cannot be the zero address.
	 * - `sender` must have a balance of at least `amount`.
	 */
	function _transfer(
		Storage.Curve storage curve,
		address sender,
		address recipient,
		uint256 amount
	) private {
		require(sender != address(0), "ERC20: transfer from the zero address");
		require(recipient != address(0), "ERC20: transfer to the zero address");

		curve.balances[sender] = sub(
			curve.balances[sender],
			amount,
			"Curve/insufficient-balance"
		);
		curve.balances[recipient] = add(
			curve.balances[recipient],
			amount,
			"Curve/transfer-overflow"
		);
		emit Transfer(sender, recipient, amount);
	}

	/**
	 * @dev Sets `amount` as the allowance of `spender` over the `_owner`s tokens.
	 *
	 * This is public function is equivalent to `approve`, and can be used to
	 * e.g. set automatic allowances for certain subsystems, etc.
	 *
	 * Emits an {Approval} event.
	 *
	 * Requirements:
	 *
	 * - `_owner` cannot be the zero address.
	 * - `spender` cannot be the zero address.
	 */
	function _approve(
		Storage.Curve storage curve,
		address _owner,
		address spender,
		uint256 amount
	) private {
		require(_owner != address(0), "ERC20: approve from the zero address");
		require(spender != address(0), "ERC20: approve to the zero address");

		curve.allowances[_owner][spender] = amount;
		emit Approval(_owner, spender, amount);
	}
}

contract Curve is Storage, NoDelegateCall {
	using SafeMath for uint256;
	using ABDKMath64x64 for int128;
	using SafeERC20 for IERC20;

	address private curveFactory;

	event Approval(
		address indexed _owner,
		address indexed spender,
		uint256 value
	);

	event ParametersSet(
		uint256 alpha,
		uint256 beta,
		uint256 delta,
		uint256 epsilon,
		uint256 lambda
	);

	event AssetIncluded(
		address indexed numeraire,
		address indexed reserve,
		uint256 weight
	);

	event AssimilatorIncluded(
		address indexed derivative,
		address indexed numeraire,
		address indexed reserve,
		address assimilator
	);

	event PartitionRedeemed(
		address indexed token,
		address indexed redeemer,
		uint256 value
	);

	event OwnershipTransfered(
		address indexed previousOwner,
		address indexed newOwner
	);

	event FrozenSet(bool isFrozen);

	event EmergencyAlarm(bool isEmergency);

	event Trade(
		address indexed trader,
		address indexed origin,
		address indexed target,
		uint256 originAmount,
		uint256 targetAmount,
		int128 rawProtocolFee
	);

	event Transfer(address indexed from, address indexed to, uint256 value);

	event Flash(
		address indexed from,
		address indexed to,
		uint256 value0,
		uint256 value1,
		uint256 paid0,
		uint256 paid1
	);

	modifier onlyOwner() {
		require(msg.sender == owner, "Curve/caller-is-not-owner");
		_;
	}

	modifier nonReentrant() {
		require(notEntered, "Curve/re-entered");
		notEntered = false;
		_;
		notEntered = true;
	}

	modifier transactable() {
		require(!frozen, "Curve/frozen-only-allowing-proportional-withdraw");
		_;
	}

	modifier isEmergency() {
		require(
			emergency,
			"Curve/emergency-only-allowing-emergency-proportional-withdraw"
		);
		_;
	}

	modifier isNotEmergency() {
		require(
			!emergency,
			"Curve/emergency-only-allowing-emergency-proportional-withdraw"
		);
		_;
	}

	modifier deadline(uint256 _deadline) {
		require(block.timestamp < _deadline, "Curve/tx-deadline-passed");
		_;
	}

	modifier globallyTransactable() {
		require(
			!ICurveFactory(address(curveFactory)).getGlobalFrozenState(),
			"Curve/frozen-globally-only-allowing-proportional-withdraw"
		);
		_;
	}

	modifier isFlashable() {
		require(
			ICurveFactory(address(curveFactory)).getFlashableState(),
			"Curve/flashloans-paused"
		);
		_;
	}

	modifier isDepositable(address pool, uint256 deposits) {
		{
			uint256 poolCap = ICurveFactory(curveFactory).getPoolCap(pool);
			uint256 supply = totalSupply();
			require(
				poolCap == 0 || supply.add(deposits) <= poolCap,
				"curve/exceeds pool cap"
			);
		}
		if (!ICurveFactory(curveFactory).isPoolGuarded(pool)) {
			_;
		} else {
			_;
			uint256 poolGuardAmt = ICurveFactory(curveFactory)
				.getPoolGuardAmount(pool);
			require(
				curve.balances[msg.sender] <= poolGuardAmt,
				"curve/deposit-exceeds-guard-amt"
			);
		}
	}

	constructor(
		string memory _name,
		string memory _symbol,
		address[] memory _assets,
		uint256[] memory _assetWeights,
		address _factory
	) {
		require(_factory != address(0), "Curve/curve factory zero address!");
		owner = msg.sender;
		name = _name;
		symbol = _symbol;
		curveFactory = _factory;
		emit OwnershipTransfered(address(0), msg.sender);

		Orchestrator.initialize(
			curve,
			numeraires,
			reserves,
			derivatives,
			_assets,
			_assetWeights
		);
	}

	/// @notice sets the parameters for the pool
	/// @param _alpha the value for alpha (halt threshold) must be less than or equal to 1 and greater than 0
	/// @param _beta the value for beta must be less than alpha and greater than 0
	/// @param _feeAtHalt the maximum value for the fee at the halt point
	/// @param _epsilon the base fee for the pool
	/// @param _lambda the value for lambda must be less than or equal to 1 and greater than zero
	function setParams(
		uint256 _alpha,
		uint256 _beta,
		uint256 _feeAtHalt,
		uint256 _epsilon,
		uint256 _lambda
	) external onlyOwner {
		Orchestrator.setParams(
			curve,
			_alpha,
			_beta,
			_feeAtHalt,
			_epsilon,
			_lambda
		);
	}

	function setAssimilator(
		address _baseCurrency,
		address _baseAssim,
		address _quoteCurrency,
		address _quoteAssim
	) external onlyOwner {
		Orchestrator.setAssimilator(
			curve,
			_baseCurrency,
			_baseAssim,
			_quoteCurrency,
			_quoteAssim
		);
	}

	/// @notice excludes an assimilator from the curve
	/// @param _derivative the address of the assimilator to exclude
	function excludeDerivative(address _derivative) external onlyOwner {
		for (uint256 i = 0; i < numeraires.length; i++) {
			if (_derivative == numeraires[i])
				revert("Curve/cannot-delete-numeraire");
			if (_derivative == reserves[i])
				revert("Curve/cannot-delete-reserve");
		}

		delete curve.assimilators[_derivative];
	}

	/// @notice view the current parameters of the curve
	/// @return alpha_ the current alpha value
	///  beta_ the current beta value
	///  delta_ the current delta value
	///  epsilon_ the current epsilon value
	///  lambda_ the current lambda value
	///  omega_ the current omega value
	function viewCurve()
		external
		view
		returns (
			uint256 alpha_,
			uint256 beta_,
			uint256 delta_,
			uint256 epsilon_,
			uint256 lambda_
		)
	{
		return Orchestrator.viewCurve(curve);
	}

	function setEmergency(bool _emergency) external onlyOwner {
		emit EmergencyAlarm(_emergency);

		emergency = _emergency;
	}

	function setFrozen(bool _toFreezeOrNotToFreeze) external onlyOwner {
		emit FrozenSet(_toFreezeOrNotToFreeze);

		frozen = _toFreezeOrNotToFreeze;
	}

	function transferOwnership(address _newOwner) external onlyOwner {
		require(
			_newOwner != address(0),
			"Curve/new-owner-cannot-be-zeroth-address"
		);

		emit OwnershipTransfered(owner, _newOwner);

		owner = _newOwner;
	}

	/// @notice swap a dynamic origin amount for a fixed target amount
	/// @param _origin the address of the origin
	/// @param _target the address of the target
	/// @param _originAmount the origin amount
	/// @param _minTargetAmount the minimum target amount
	/// @param _deadline deadline in block number after which the trade will not execute
	/// @return targetAmount_ the amount of target that has been swapped for the origin amount
	function originSwap(
		address _origin,
		address _target,
		uint256 _originAmount,
		uint256 _minTargetAmount,
		uint256 _deadline
	)
		external
		deadline(_deadline)
		globallyTransactable
		transactable
		noDelegateCall
		isNotEmergency
		nonReentrant
		returns (uint256 targetAmount_)
	{
		OriginSwapData memory _swapData;
		_swapData._origin = _origin;
		_swapData._target = _target;
		_swapData._originAmount = _originAmount;
		_swapData._recipient = msg.sender;
		_swapData._curveFactory = curveFactory;
		targetAmount_ = Swaps.originSwap(curve, _swapData);
		// targetAmount_ = Swaps.originSwap(curve, _origin, _target, _originAmount, msg.sender,curveFactory);

		require(
			targetAmount_ >= _minTargetAmount,
			"Curve/below-min-target-amount"
		);
	}

	/// @notice view how much target amount a fixed origin amount will swap for
	/// @param _origin the address of the origin
	/// @param _target the address of the target
	/// @param _originAmount the origin amount
	/// @return targetAmount_ the target amount that would have been swapped for the origin amount
	function viewOriginSwap(
		address _origin,
		address _target,
		uint256 _originAmount
	)
		external
		view
		globallyTransactable
		transactable
		returns (uint256 targetAmount_)
	{
		targetAmount_ = Swaps.viewOriginSwap(
			curve,
			_origin,
			_target,
			_originAmount
		);
	}

	/// @notice swap a dynamic origin amount for a fixed target amount
	/// @param _origin the address of the origin
	/// @param _target the address of the target
	/// @param _maxOriginAmount the maximum origin amount
	/// @param _targetAmount the target amount
	/// @param _deadline deadline in block number after which the trade will not execute
	/// @return originAmount_ the amount of origin that has been swapped for the target
	function targetSwap(
		address _origin,
		address _target,
		uint256 _maxOriginAmount,
		uint256 _targetAmount,
		uint256 _deadline
	)
		external
		deadline(_deadline)
		globallyTransactable
		transactable
		noDelegateCall
		isNotEmergency
		nonReentrant
		returns (uint256 originAmount_)
	{
		TargetSwapData memory _swapData;
		_swapData._origin = _origin;
		_swapData._target = _target;
		_swapData._targetAmount = _targetAmount;
		_swapData._recipient = msg.sender;
		_swapData._curveFactory = curveFactory;
		originAmount_ = Swaps.targetSwap(curve, _swapData);
		// originAmount_ = Swaps.targetSwap(curve, _origin, _target, _targetAmount, msg.sender,curveFactory);

		require(
			originAmount_ <= _maxOriginAmount,
			"Curve/above-max-origin-amount"
		);
	}

	/// @notice view how much of the origin currency the target currency will take
	/// @param _origin the address of the origin
	/// @param _target the address of the target
	/// @param _targetAmount the target amount
	/// @return originAmount_ the amount of target that has been swapped for the origin
	function viewTargetSwap(
		address _origin,
		address _target,
		uint256 _targetAmount
	)
		external
		view
		globallyTransactable
		transactable
		returns (uint256 originAmount_)
	{
		originAmount_ = Swaps.viewTargetSwap(
			curve,
			_origin,
			_target,
			_targetAmount
		);
	}

	/// @notice deposit into the pool with no slippage from the numeraire assets the pool supports
	/// @param  _deposit the full amount you want to deposit into the pool which will be divided up evenly amongst
	///                  the numeraire assets of the pool
	/// @return ( the amount of curves you receive in return for your deposit,
	///           the amount deposited for each numeraire)
	function deposit(
		uint256 _deposit,
		uint256 _minQuoteAmount,
		uint256 _minBaseAmount,
		uint256 _maxQuoteAmount,
		uint256 _maxBaseAmount,
		uint256 _deadline
	)
		external
		deadline(_deadline)
		globallyTransactable
		transactable
		nonReentrant
		noDelegateCall
		isNotEmergency
		isDepositable(address(this), _deposit)
		returns (uint256, uint256[] memory)
	{
		require(_deposit > 0, "Curve/deposit_below_zero");

		// (curvesMinted_,  deposits_)
		DepositData memory _depositData;
		_depositData.deposits = _deposit;
		_depositData.minQuote = _minQuoteAmount;
		_depositData.minBase = _minBaseAmount;
		_depositData.maxQuote = _maxQuoteAmount;
		_depositData.maxBase = _maxBaseAmount;
		(
			uint256 curvesMinted_,
			uint256[] memory deposits_
		) = ProportionalLiquidity.proportionalDeposit(curve, _depositData);
		return (curvesMinted_, deposits_);
	}

	/// @notice view deposits and curves minted a given deposit would return
	/// @param _deposit the full amount of stablecoins you want to deposit. Divided evenly according to the
	///                 prevailing proportions of the numeraire assets of the pool
	/// @return (the amount of curves you receive in return for your deposit,
	///          the amount deposited for each numeraire)
	function viewDeposit(
		uint256 _deposit
	)
		external
		view
		globallyTransactable
		transactable
		returns (uint256, uint256[] memory)
	{
		// curvesToMint_, depositsToMake_
		return ProportionalLiquidity.viewProportionalDeposit(curve, _deposit);
	}

	/// @notice  Emergency withdraw tokens in the event that the oracle somehow bugs out
	///          and no one is able to withdraw due to the invariant check
	/// @param   _curvesToBurn the full amount you want to withdraw from the pool which will be withdrawn from evenly amongst the
	///                        numeraire assets of the pool
	/// @return withdrawals_ the amonts of numeraire assets withdrawn from the pool
	function emergencyWithdraw(
		uint256 _curvesToBurn,
		uint256 _deadline
	)
		external
		isEmergency
		deadline(_deadline)
		nonReentrant
		noDelegateCall
		returns (uint256[] memory withdrawals_)
	{
		return ProportionalLiquidity.proportionalWithdraw(curve, _curvesToBurn);
	}

	/// @notice  withdrawas amount of curve tokens from the the pool equally from the numeraire assets of the pool with no slippage
	/// @param   _curvesToBurn the full amount you want to withdraw from the pool which will be withdrawn from evenly amongst the
	///                        numeraire assets of the pool
	/// @return withdrawals_ the amonts of numeraire assets withdrawn from the pool
	function withdraw(
		uint256 _curvesToBurn,
		uint256 _deadline
	)
		external
		deadline(_deadline)
		nonReentrant
		noDelegateCall
		isNotEmergency
		returns (uint256[] memory withdrawals_)
	{
		return ProportionalLiquidity.proportionalWithdraw(curve, _curvesToBurn);
	}

	/// @notice  views the withdrawal information from the pool
	/// @param   _curvesToBurn the full amount you want to withdraw from the pool which will be withdrawn from evenly amongst the
	///                        numeraire assets of the pool
	/// @return the amonnts of numeraire assets withdrawn from the pool
	function viewWithdraw(
		uint256 _curvesToBurn
	)
		external
		view
		globallyTransactable
		transactable
		returns (uint256[] memory)
	{
		return
			ProportionalLiquidity.viewProportionalWithdraw(
				curve,
				_curvesToBurn
			);
	}

	function supportsInterface(
		bytes4 _interface
	) public pure returns (bool supports_) {
		supports_ =
			this.supportsInterface.selector == _interface || // erc165
			bytes4(0x7f5828d0) == _interface || // eip173
			bytes4(0x36372b07) == _interface; // erc20
	}

	/// @notice transfers curve tokens
	/// @param _recipient the address of where to send the curve tokens
	/// @param _amount the amount of curve tokens to send
	/// @return success_ the success bool of the call
	function transfer(
		address _recipient,
		uint256 _amount
	)
		public
		nonReentrant
		noDelegateCall
		isNotEmergency
		returns (bool success_)
	{
		success_ = Curves.transfer(curve, _recipient, _amount);
	}

	/// @notice transfers curve tokens from one address to another address
	/// @param _sender the account from which the curve tokens will be sent
	/// @param _recipient the account to which the curve tokens will be sent
	/// @param _amount the amount of curve tokens to transfer
	/// @return success_ the success bool of the call
	function transferFrom(
		address _sender,
		address _recipient,
		uint256 _amount
	)
		public
		nonReentrant
		noDelegateCall
		isNotEmergency
		returns (bool success_)
	{
		success_ = Curves.transferFrom(curve, _sender, _recipient, _amount);
	}

	/// @notice approves a user to spend curve tokens on their behalf
	/// @param _spender the account to allow to spend from msg.sender
	/// @param _amount the amount to specify the spender can spend
	/// @return success_ the success bool of this call
	function approve(
		address _spender,
		uint256 _amount
	) public nonReentrant noDelegateCall returns (bool success_) {
		success_ = Curves.approve(curve, _spender, _amount);
	}

	function flash(
		address recipient,
		uint256 amount0,
		uint256 amount1,
		bytes calldata data
	)
		external
		isFlashable
		globallyTransactable
		nonReentrant
		noDelegateCall
		transactable
		isNotEmergency
	{
		uint256 fee = curve.epsilon.mulu(1e18);

		require(
			IERC20(derivatives[0]).balanceOf(address(this)) > 0,
			"Curve/token0-zero-liquidity-depth"
		);
		require(
			IERC20(derivatives[1]).balanceOf(address(this)) > 0,
			"Curve/token1-zero-liquidity-depth"
		);

		uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e18);
		uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e18);

		uint256 balance0Before = IERC20(derivatives[0]).balanceOf(
			address(this)
		);
		uint256 balance1Before = IERC20(derivatives[1]).balanceOf(
			address(this)
		);

		if (amount0 > 0)
			IERC20(derivatives[0]).safeTransfer(recipient, amount0);
		if (amount1 > 0)
			IERC20(derivatives[1]).safeTransfer(recipient, amount1);

		IFlashCallback(msg.sender).flashCallback(fee0, fee1, data);

		uint256 balance0After = IERC20(derivatives[0]).balanceOf(address(this));
		uint256 balance1After = IERC20(derivatives[1]).balanceOf(address(this));

		require(
			balance0Before.add(fee0) <= balance0After,
			"Curve/insufficient-token0-returned"
		);
		require(
			balance1Before.add(fee1) <= balance1After,
			"Curve/insufficient-token1-returned"
		);

		// sub is safe because we know balanceAfter is gt balanceBefore by at least fee
		uint256 paid0 = balance0After - balance0Before;
		uint256 paid1 = balance1After - balance1Before;

		IERC20(derivatives[0]).safeTransfer(owner, paid0);
		IERC20(derivatives[1]).safeTransfer(owner, paid1);

		emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
	}

	/// @notice view the curve token balance of a given account
	/// @param _account the account to view the balance of
	/// @return balance_ the curve token ballance of the given account
	function balanceOf(
		address _account
	) public view returns (uint256 balance_) {
		balance_ = curve.balances[_account];
	}

	/// @notice views the total curve supply of the pool
	/// @return totalSupply_ the total supply of curve tokens
	function totalSupply() public view returns (uint256 totalSupply_) {
		totalSupply_ = curve.totalSupply;
	}

	/// @notice views the total allowance one address has to spend from another address
	/// @param _owner the address of the owner
	/// @param _spender the address of the spender
	/// @return allowance_ the amount the owner has allotted the spender
	function allowance(
		address _owner,
		address _spender
	) public view returns (uint256 allowance_) {
		allowance_ = curve.allowances[_owner][_spender];
	}

	/// @notice views the total amount of liquidity in the curve in numeraire value and format - 18 decimals
	/// @return total_ the total value in the curve
	/// @return individual_ the individual values in the curve
	function liquidity()
		public
		view
		returns (uint256 total_, uint256[] memory individual_)
	{
		return ViewLiquidity.viewLiquidity(curve);
	}

	/// @notice view the assimilator address for a derivative
	/// @return assimilator_ the assimilator address
	function assimilator(
		address _derivative
	) public view returns (address assimilator_) {
		assimilator_ = curve.assimilators[_derivative].addr;
	}
}
Swaps.sol 482 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "./Assimilators.sol";
import "./Storage.sol";
import "./CurveMath.sol";
import "./lib/UnsafeMath64x64.sol";
import "./lib/ABDKMath64x64.sol";
import "./CurveFactory.sol";
import "./Structs.sol";

library Swaps {
	using ABDKMath64x64 for int128;
	using ABDKMath64x64 for int256;
	using UnsafeMath64x64 for int128;
	using ABDKMath64x64 for uint256;
	using SafeMath for uint256;

	event Trade(
		address indexed trader,
		address indexed origin,
		address indexed target,
		uint256 originAmount,
		uint256 targetAmount,
		int128 rawProtocolFee
	);

	int128 public constant ONE = 0x10000000000000000;

	function getOriginAndTarget(
		Storage.Curve storage curve,
		address _o,
		address _t
	)
		private
		view
		returns (Storage.Assimilator memory, Storage.Assimilator memory)
	{
		Storage.Assimilator memory o_ = curve.assimilators[_o];
		Storage.Assimilator memory t_ = curve.assimilators[_t];

		require(o_.addr != address(0), "Curve/origin-not-supported");
		require(t_.addr != address(0), "Curve/target-not-supported");

		return (o_, t_);
	}

	function originSwap(
		Storage.Curve storage curve,
		OriginSwapData memory _swapData
	) external returns (uint256 tAmt_) {
		(
			Storage.Assimilator memory _o,
			Storage.Assimilator memory _t
		) = getOriginAndTarget(curve, _swapData._origin, _swapData._target);

		if (_o.ix == _t.ix)
			return
				Assimilators.outputNumeraire(
					_t.addr,
					_swapData._recipient,
					Assimilators.intakeRaw(_o.addr, _swapData._originAmount)
				);

		SwapInfo memory _swapInfo;
		(
			int128 _amt,
			int128 _oGLiq,
			int128 _nGLiq,
			int128[] memory _oBals,
			int128[] memory _nBals
		) = getOriginSwapData(
				curve,
				_o.ix,
				_t.ix,
				_o.addr,
				_swapData._originAmount
			);

		_swapInfo.totalAmount = _amt;

		_amt = CurveMath.calculateTrade(
			curve,
			_oGLiq,
			_nGLiq,
			_oBals,
			_nBals,
			_amt,
			_t.ix
		);

		_swapInfo.curveFactory = ICurveFactory(_swapData._curveFactory);
		_swapInfo.amountToUser = _amt.us_mul(ONE - curve.epsilon);
		// _swapInfo.totalFee = _swapInfo.totalAmount + _swapInfo.amountToUser;
		_swapInfo.totalFee = _swapInfo.amountToUser - _amt;
		_swapInfo.protocolFeePercentage = _swapInfo
			.curveFactory
			.getProtocolFee();
		_swapInfo.treasury = _swapInfo.curveFactory.getProtocolTreasury();
		_swapInfo.amountToTreasury = _swapInfo
			.totalFee
			.muli(_swapInfo.protocolFeePercentage)
			.divi(100000);
		Assimilators.transferFee(
			_t.addr,
			_swapInfo.amountToTreasury,
			_swapInfo.treasury
		);
		tAmt_ = Assimilators.outputNumeraire(
			_t.addr,
			_swapData._recipient,
			_swapInfo.amountToUser
		);

		emit Trade(
			msg.sender,
			_swapData._origin,
			_swapData._target,
			_swapData._originAmount,
			tAmt_,
			_swapInfo.amountToTreasury
		);
	}

	function viewOriginSwap(
		Storage.Curve storage curve,
		address _origin,
		address _target,
		uint256 _originAmount
	) external view returns (uint256 tAmt_) {
		(
			Storage.Assimilator memory _o,
			Storage.Assimilator memory _t
		) = getOriginAndTarget(curve, _origin, _target);

		if (_o.ix == _t.ix)
			return
				Assimilators.viewRawAmount(
					_t.addr,
					Assimilators.viewNumeraireAmount(_o.addr, _originAmount)
				);

		(
			int128 _amt,
			int128 _oGLiq,
			int128 _nGLiq,
			int128[] memory _nBals,
			int128[] memory _oBals
		) = viewOriginSwapData(curve, _o.ix, _t.ix, _originAmount, _o.addr);

		_amt = CurveMath.calculateTrade(
			curve,
			_oGLiq,
			_nGLiq,
			_oBals,
			_nBals,
			_amt,
			_t.ix
		);

		_amt = _amt.us_mul(ONE - curve.epsilon);

		tAmt_ = Assimilators.viewRawAmount(_t.addr, _amt.abs());
	}

	function targetSwap(
		Storage.Curve storage curve,
		TargetSwapData memory _swapData
	) external returns (uint256 oAmt_) {
		(
			Storage.Assimilator memory _o,
			Storage.Assimilator memory _t
		) = getOriginAndTarget(curve, _swapData._origin, _swapData._target);

		if (_o.ix == _t.ix)
			return
				Assimilators.intakeNumeraire(
					_o.addr,
					Assimilators.outputRaw(
						_t.addr,
						_swapData._recipient,
						_swapData._targetAmount
					)
				);

		(
			int128 _amt,
			int128 _oGLiq,
			int128 _nGLiq,
			int128[] memory _oBals,
			int128[] memory _nBals
		) = getTargetSwapData(
				curve,
				_t.ix,
				_o.ix,
				_t.addr,
				_swapData._recipient,
				_swapData._targetAmount
			);

		_amt = CurveMath.calculateTrade(
			curve,
			_oGLiq,
			_nGLiq,
			_oBals,
			_nBals,
			_amt,
			_o.ix
		);

		SwapInfo memory _swapInfo;

		_swapInfo.totalAmount = _amt;
		_swapInfo.curveFactory = ICurveFactory(_swapData._curveFactory);
		_swapInfo.amountToUser = _amt.us_mul(ONE + curve.epsilon);
		_swapInfo.totalFee = _swapInfo.amountToUser - _amt;
		_swapInfo.protocolFeePercentage = _swapInfo
			.curveFactory
			.getProtocolFee();
		_swapInfo.treasury = _swapInfo.curveFactory.getProtocolTreasury();
		_swapInfo.amountToTreasury = _swapInfo
			.totalFee
			.muli(_swapInfo.protocolFeePercentage)
			.divi(100000);

		Assimilators.transferFee(
			_o.addr,
			_swapInfo.amountToTreasury,
			_swapInfo.treasury
		);

		oAmt_ = Assimilators.intakeNumeraire(_o.addr, _swapInfo.amountToUser);

		emit Trade(
			msg.sender,
			_swapData._origin,
			_swapData._target,
			oAmt_,
			_swapData._targetAmount,
			_swapInfo.amountToTreasury
		);
	}

	function viewTargetSwap(
		Storage.Curve storage curve,
		address _origin,
		address _target,
		uint256 _targetAmount
	) external view returns (uint256 oAmt_) {
		(
			Storage.Assimilator memory _o,
			Storage.Assimilator memory _t
		) = getOriginAndTarget(curve, _origin, _target);

		if (_o.ix == _t.ix)
			return
				Assimilators.viewRawAmount(
					_o.addr,
					Assimilators.viewNumeraireAmount(_t.addr, _targetAmount)
				);

		(
			int128 _amt,
			int128 _oGLiq,
			int128 _nGLiq,
			int128[] memory _nBals,
			int128[] memory _oBals
		) = viewTargetSwapData(curve, _t.ix, _o.ix, _targetAmount, _t.addr);

		_amt = CurveMath.calculateTrade(
			curve,
			_oGLiq,
			_nGLiq,
			_oBals,
			_nBals,
			_amt,
			_o.ix
		);

		_amt = _amt.us_mul(ONE + curve.epsilon);

		oAmt_ = Assimilators.viewRawAmount(_o.addr, _amt);
	}

	function getOriginSwapData(
		Storage.Curve storage curve,
		uint256 _inputIx,
		uint256 _outputIx,
		address _assim,
		uint256 _amt
	)
		private
		returns (
			int128 amt_,
			int128 oGLiq_,
			int128 nGLiq_,
			int128[] memory,
			int128[] memory
		)
	{
		uint256 _length = curve.assets.length;

		int128[] memory oBals_ = new int128[](_length);
		int128[] memory nBals_ = new int128[](_length);
		Storage.Assimilator[] memory _reserves = curve.assets;

		for (uint256 i = 0; i < _length; i++) {
			if (i != _inputIx)
				nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(
					_reserves[i].addr
				);
			else {
				int128 _bal;
				(amt_, _bal) = Assimilators.intakeRawAndGetBalance(
					_assim,
					_amt
				);

				oBals_[i] = _bal.sub(amt_);
				nBals_[i] = _bal;
			}

			oGLiq_ += oBals_[i];
			nGLiq_ += nBals_[i];
		}

		nGLiq_ = nGLiq_.sub(amt_);
		nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);

		return (amt_, oGLiq_, nGLiq_, oBals_, nBals_);
	}

	function getTargetSwapData(
		Storage.Curve storage curve,
		uint256 _inputIx,
		uint256 _outputIx,
		address _assim,
		address _recipient,
		uint256 _amt
	)
		private
		returns (
			int128 amt_,
			int128 oGLiq_,
			int128 nGLiq_,
			int128[] memory,
			int128[] memory
		)
	{
		uint256 _length = curve.assets.length;

		int128[] memory oBals_ = new int128[](_length);
		int128[] memory nBals_ = new int128[](_length);
		Storage.Assimilator[] memory _reserves = curve.assets;

		for (uint256 i = 0; i < _length; i++) {
			if (i != _inputIx)
				nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(
					_reserves[i].addr
				);
			else {
				int128 _bal;
				(amt_, _bal) = Assimilators.outputRawAndGetBalance(
					_assim,
					_recipient,
					_amt
				);

				oBals_[i] = _bal.sub(amt_);
				nBals_[i] = _bal;
			}

			oGLiq_ += oBals_[i];
			nGLiq_ += nBals_[i];
		}

		nGLiq_ = nGLiq_.sub(amt_);
		nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);

		return (amt_, oGLiq_, nGLiq_, oBals_, nBals_);
	}

	function viewOriginSwapData(
		Storage.Curve storage curve,
		uint256 _inputIx,
		uint256 _outputIx,
		uint256 _amt,
		address _assim
	)
		private
		view
		returns (
			int128 amt_,
			int128 oGLiq_,
			int128 nGLiq_,
			int128[] memory,
			int128[] memory
		)
	{
		uint256 _length = curve.assets.length;
		int128[] memory nBals_ = new int128[](_length);
		int128[] memory oBals_ = new int128[](_length);

		for (uint256 i = 0; i < _length; i++) {
			if (i != _inputIx)
				nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(
					curve.assets[i].addr
				);
			else {
				int128 _bal;
				(amt_, _bal) = Assimilators.viewNumeraireAmountAndBalance(
					_assim,
					_amt
				);

				oBals_[i] = _bal;
				nBals_[i] = _bal.add(amt_);
			}

			oGLiq_ += oBals_[i];
			nGLiq_ += nBals_[i];
		}

		nGLiq_ = nGLiq_.sub(amt_);
		nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);

		return (amt_, oGLiq_, nGLiq_, nBals_, oBals_);
	}

	function viewTargetSwapData(
		Storage.Curve storage curve,
		uint256 _inputIx,
		uint256 _outputIx,
		uint256 _amt,
		address _assim
	)
		private
		view
		returns (
			int128 amt_,
			int128 oGLiq_,
			int128 nGLiq_,
			int128[] memory,
			int128[] memory
		)
	{
		uint256 _length = curve.assets.length;
		int128[] memory nBals_ = new int128[](_length);
		int128[] memory oBals_ = new int128[](_length);

		for (uint256 i = 0; i < _length; i++) {
			if (i != _inputIx)
				nBals_[i] = oBals_[i] = Assimilators.viewNumeraireBalance(
					curve.assets[i].addr
				);
			else {
				int128 _bal;
				(amt_, _bal) = Assimilators.viewNumeraireAmountAndBalance(
					_assim,
					_amt
				);
				amt_ = amt_.neg();

				oBals_[i] = _bal;
				nBals_[i] = _bal.add(amt_);
			}

			oGLiq_ += oBals_[i];
			nGLiq_ += nBals_[i];
		}

		nGLiq_ = nGLiq_.sub(amt_);
		nBals_[_outputIx] = ABDKMath64x64.sub(nBals_[_outputIx], amt_);

		return (amt_, oGLiq_, nGLiq_, nBals_, oBals_);
	}
}
Storage.sol 66 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

import "./interfaces/IOracle.sol";
import "./Assimilators.sol";

contract Storage {
	struct Curve {
		// Curve parameters
		int128 alpha;
		int128 beta;
		int128 delta;
		int128 epsilon;
		int128 lambda;
		int128[] weights;
		// Assets and their assimilators
		Assimilator[] assets;
		mapping(address => Assimilator) assimilators;
		// Oracles to determine the price
		// Note that 0'th index should always be USDC 1e18
		// Oracle's pricing should be denominated in Currency/USDC
		mapping(address => IOracle) oracles;
		// ERC20 Interface
		uint256 totalSupply;
		mapping(address => uint256) balances;
		mapping(address => mapping(address => uint256)) allowances;
	}

	struct Assimilator {
		address addr;
		uint8 ix;
	}

	// Curve parameters
	Curve public curve;

	// Ownable
	address public owner;

	string public name;
	string public symbol;
	uint8 public constant decimals = 18;

	address[] public derivatives;
	address[] public numeraires;
	address[] public reserves;

	// Curve operational state
	bool public frozen = false;
	bool public emergency = false;
	bool internal notEntered = true;
}
Structs.sol 66 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "./interfaces/ICurveFactory.sol";
import "./interfaces/IOracle.sol";

struct OriginSwapData {
	address _origin;
	address _target;
	uint256 _originAmount;
	address _recipient;
	address _curveFactory;
}

struct TargetSwapData {
	address _origin;
	address _target;
	uint256 _targetAmount;
	address _recipient;
	address _curveFactory;
}

struct SwapInfo {
	int128 totalAmount;
	int128 totalFee;
	int128 amountToUser;
	int128 amountToTreasury;
	int128 protocolFeePercentage;
	address treasury;
	ICurveFactory curveFactory;
}

struct CurveInfo {
	string _name;
	string _symbol;
	address _baseCurrency;
	address _quoteCurrency;
	uint256 _baseWeight;
	uint256 _quoteWeight;
	IOracle _baseOracle;
	IOracle _quoteOracle;
	uint256 _alpha;
	uint256 _beta;
	uint256 _feeAtHalt;
	uint256 _epsilon;
	uint256 _lambda;
}

struct DepositData {
	uint256 deposits;
	uint256 minQuote;
	uint256 minBase;
	uint256 maxQuote;
	uint256 maxBase;
}

struct IntakeNumLpRatioInfo {
	uint256 baseWeight;
	uint256 minBase;
	uint256 maxBase;
	uint256 quoteWeight;
	uint256 minQuote;
	uint256 maxQuote;
	int128 amount;
}
CurveMath.sol 245 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

import "./Storage.sol";
import "./lib/UnsafeMath64x64.sol";
import "./lib/ABDKMath64x64.sol";

library CurveMath {
	int128 private constant ONE = 0x10000000000000000;
	int128 private constant MAX = 0x4000000000000000; // .25 in layman's terms
	int128 private constant MAX_DIFF = -0x10C6F7A0B5EE;
	int128 private constant ONE_WEI = 0x12;

	using ABDKMath64x64 for int128;
	using UnsafeMath64x64 for int128;
	using ABDKMath64x64 for uint256;

	// This is used to prevent stack too deep errors
	function calculateFee(
		int128 _gLiq,
		int128[] memory _bals,
		Storage.Curve storage curve,
		int128[] memory _weights
	) internal view returns (int128 psi_) {
		int128 _beta = curve.beta;
		int128 _delta = curve.delta;

		psi_ = calculateFee(_gLiq, _bals, _beta, _delta, _weights);
	}

	function calculateFee(
		int128 _gLiq,
		int128[] memory _bals,
		int128 _beta,
		int128 _delta,
		int128[] memory _weights
	) internal pure returns (int128 psi_) {
		uint256 _length = _bals.length;

		for (uint256 i = 0; i < _length; i++) {
			int128 _ideal = _gLiq.mul(_weights[i]);
			psi_ += calculateMicroFee(_bals[i], _ideal, _beta, _delta);
		}
	}

	function calculateMicroFee(
		int128 _bal,
		int128 _ideal,
		int128 _beta,
		int128 _delta
	) private pure returns (int128 fee_) {
		if (_bal < _ideal) {
			int128 _threshold = _ideal.mul(ONE - _beta);

			if (_bal < _threshold) {
				int128 _feeMargin = _threshold - _bal;

				fee_ = _feeMargin.mul(_delta);
				fee_ = fee_.div(_ideal);

				if (fee_ > MAX) fee_ = MAX;

				fee_ = fee_.mul(_feeMargin);
			} else fee_ = 0;
		} else {
			int128 _threshold = _ideal.mul(ONE + _beta);

			if (_bal > _threshold) {
				int128 _feeMargin = _bal - _threshold;

				fee_ = _feeMargin.mul(_delta);
				fee_ = fee_.div(_ideal);

				if (fee_ > MAX) fee_ = MAX;

				fee_ = fee_.mul(_feeMargin);
			} else fee_ = 0;
		}
	}

	function calculateTrade(
		Storage.Curve storage curve,
		int128 _oGLiq,
		int128 _nGLiq,
		int128[] memory _oBals,
		int128[] memory _nBals,
		int128 _inputAmt,
		uint256 _outputIndex
	) internal view returns (int128 outputAmt_) {
		outputAmt_ = -_inputAmt;

		int128 _lambda = curve.lambda;
		int128[] memory _weights = curve.weights;

		int128 _omega = calculateFee(_oGLiq, _oBals, curve, _weights);
		int128 _psi;

		for (uint256 i = 0; i < 32; i++) {
			_psi = calculateFee(_nGLiq, _nBals, curve, _weights);

			int128 prevAmount;
			{
				prevAmount = outputAmt_;
				outputAmt_ = _omega < _psi
					? -(_inputAmt + _omega - _psi)
					: -(_inputAmt + _lambda.mul(_omega - _psi));
				// outputAmt_ = _omega < _psi ? -(_inputAmt + _omega - _psi) : -(_inputAmt +_omega - _psi);
			}

			if (outputAmt_ / 1e13 == prevAmount / 1e13) {
				_nGLiq = _oGLiq + _inputAmt + outputAmt_;

				_nBals[_outputIndex] = _oBals[_outputIndex] + outputAmt_;

				enforceHalts(curve, _oGLiq, _nGLiq, _oBals, _nBals, _weights);

				enforceSwapInvariant(_oGLiq, _omega, _nGLiq, _psi);
				return outputAmt_;
			} else {
				_nGLiq = _oGLiq + _inputAmt + outputAmt_;

				_nBals[_outputIndex] = _oBals[_outputIndex].add(outputAmt_);
			}
		}

		revert("Curve/swap-convergence-failed");
	}

	function calculateLiquidityMembrane(
		Storage.Curve storage curve,
		int128 _oGLiq,
		int128 _nGLiq,
		int128[] memory _oBals,
		int128[] memory _nBals
	) internal view returns (int128 curves_) {
		enforceHalts(curve, _oGLiq, _nGLiq, _oBals, _nBals, curve.weights);

		int128 _omega;
		int128 _psi;

		{
			int128 _beta = curve.beta;
			int128 _delta = curve.delta;
			int128[] memory _weights = curve.weights;

			_omega = calculateFee(_oGLiq, _oBals, _beta, _delta, _weights);
			_psi = calculateFee(_nGLiq, _nBals, _beta, _delta, _weights);
		}

		int128 _feeDiff = _psi.sub(_omega);
		int128 _liqDiff = _nGLiq.sub(_oGLiq);
		int128 _oUtil = _oGLiq.sub(_omega);
		int128 _totalShells = curve.totalSupply.divu(1e18);
		int128 _curveMultiplier;

		if (_totalShells == 0) {
			curves_ = _nGLiq.sub(_psi);
		} else if (_feeDiff >= 0) {
			_curveMultiplier = _liqDiff.sub(_feeDiff).div(_oUtil);
		} else {
			_curveMultiplier = _liqDiff.sub(curve.lambda.mul(_feeDiff));

			_curveMultiplier = _curveMultiplier.div(_oUtil);
		}

		if (_totalShells != 0) {
			curves_ = _totalShells.mul(_curveMultiplier);
		}
	}

	function enforceSwapInvariant(
		int128 _oGLiq,
		int128 _omega,
		int128 _nGLiq,
		int128 _psi
	) private pure {
		int128 _nextUtil = _nGLiq - _psi;

		int128 _prevUtil = _oGLiq - _omega;

		int128 _diff = _nextUtil - _prevUtil;

		require(
			0 < _diff || _diff >= MAX_DIFF,
			"Curve/swap-invariant-violation"
		);
	}

	function enforceHalts(
		Storage.Curve storage curve,
		int128 _oGLiq,
		int128 _nGLiq,
		int128[] memory _oBals,
		int128[] memory _nBals,
		int128[] memory _weights
	) private view {
		uint256 _length = _nBals.length;
		int128 _alpha = curve.alpha;

		for (uint256 i = 0; i < _length; i++) {
			int128 _nIdeal = _nGLiq.mul(_weights[i]);

			if (_nBals[i] > _nIdeal) {
				int128 _upperAlpha = ONE + _alpha;

				int128 _nHalt = _nIdeal.mul(_upperAlpha);

				if (_nBals[i] > _nHalt) {
					int128 _oHalt = _oGLiq.mul(_weights[i]).mul(_upperAlpha);

					if (_oBals[i] < _oHalt) revert("Curve/upper-halt");
					if (_nBals[i] - _nHalt > _oBals[i] - _oHalt)
						revert("Curve/upper-halt");
				}
			} else {
				int128 _lowerAlpha = ONE - _alpha;

				int128 _nHalt = _nIdeal.mul(_lowerAlpha);

				if (_nBals[i] < _nHalt) {
					int128 _oHalt = _oGLiq.mul(_weights[i]);
					_oHalt = _oHalt.mul(_lowerAlpha);

					if (_oBals[i] > _oHalt) revert("Curve/lower-halt");
					if (_nHalt - _nBals[i] > _oHalt - _oBals[i])
						revert("Curve/lower-halt");
				}
			}
		}
	}
}
Assimilators.sol 222 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

import "@openzeppelin/contracts/utils/Address.sol";
import "./interfaces/IAssimilator.sol";
import "./lib/ABDKMath64x64.sol";
import "./Structs.sol";

library Assimilators {
	using ABDKMath64x64 for int128;
	using Address for address;

	IAssimilator public constant iAsmltr = IAssimilator(address(0));

	function delegate(
		address _callee,
		bytes memory _data
	) internal returns (bytes memory) {
		require(_callee.isContract(), "Assimilators/callee-is-not-a-contract");

		// solhint-disable-next-line
		(bool _success, bytes memory returnData_) = _callee.delegatecall(_data);

		// solhint-disable-next-line
		assembly {
			if eq(_success, 0) {
				revert(add(returnData_, 0x20), returndatasize())
			}
		}

		return returnData_;
	}

	function getRate(address _assim) internal view returns (uint256 amount_) {
		amount_ = IAssimilator(_assim).getRate();
	}

	function viewRawAmount(
		address _assim,
		int128 _amt
	) internal view returns (uint256 amount_) {
		amount_ = IAssimilator(_assim).viewRawAmount(_amt);
	}

	function viewRawAmountLPRatio(
		address _assim,
		uint256 _baseWeight,
		uint256 _quoteWeight,
		int128 _amount
	) internal view returns (uint256 amount_) {
		amount_ = IAssimilator(_assim).viewRawAmountLPRatio(
			_baseWeight,
			_quoteWeight,
			address(this),
			_amount
		);
	}

	function viewNumeraireAmount(
		address _assim,
		uint256 _amt
	) internal view returns (int128 amt_) {
		amt_ = IAssimilator(_assim).viewNumeraireAmount(_amt);
	}

	function viewNumeraireAmountAndBalance(
		address _assim,
		uint256 _amt
	) internal view returns (int128 amt_, int128 bal_) {
		(amt_, bal_) = IAssimilator(_assim).viewNumeraireAmountAndBalance(
			address(this),
			_amt
		);
	}

	function viewNumeraireBalance(
		address _assim
	) internal view returns (int128 bal_) {
		bal_ = IAssimilator(_assim).viewNumeraireBalance(address(this));
	}

	function viewNumeraireBalanceLPRatio(
		uint256 _baseWeight,
		uint256 _quoteWeight,
		address _assim
	) internal view returns (int128 bal_) {
		bal_ = IAssimilator(_assim).viewNumeraireBalanceLPRatio(
			_baseWeight,
			_quoteWeight,
			address(this)
		);
	}

	function intakeRaw(
		address _assim,
		uint256 _amt
	) internal returns (int128 amt_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.intakeRaw.selector,
			_amt
		);

		amt_ = abi.decode(delegate(_assim, data), (int128));
	}

	function intakeRawAndGetBalance(
		address _assim,
		uint256 _amt
	) internal returns (int128 amt_, int128 bal_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.intakeRawAndGetBalance.selector,
			_amt
		);

		(amt_, bal_) = abi.decode(delegate(_assim, data), (int128, int128));
	}

	function intakeNumeraire(
		address _assim,
		int128 _amt
	) internal returns (uint256 amt_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.intakeNumeraire.selector,
			_amt
		);

		amt_ = abi.decode(delegate(_assim, data), (uint256));
	}

	function intakeNumeraireLPRatio(
		address _assim,
		IntakeNumLpRatioInfo memory info
	) internal returns (uint256 amt_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.intakeNumeraireLPRatio.selector,
			info.baseWeight,
			info.minBase,
			info.maxBase,
			info.quoteWeight,
			info.minQuote,
			info.maxQuote,
			address(this),
			// _amount
			info.amount
		);

		amt_ = abi.decode(delegate(_assim, data), (uint256));
	}

	function outputRaw(
		address _assim,
		address _dst,
		uint256 _amt
	) internal returns (int128 amt_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.outputRaw.selector,
			_dst,
			_amt
		);

		amt_ = abi.decode(delegate(_assim, data), (int128));

		amt_ = amt_.neg();
	}

	function outputRawAndGetBalance(
		address _assim,
		address _dst,
		uint256 _amt
	) internal returns (int128 amt_, int128 bal_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.outputRawAndGetBalance.selector,
			_dst,
			_amt
		);

		(amt_, bal_) = abi.decode(delegate(_assim, data), (int128, int128));

		amt_ = amt_.neg();
	}

	function outputNumeraire(
		address _assim,
		address _dst,
		int128 _amt
	) internal returns (uint256 amt_) {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.outputNumeraire.selector,
			_dst,
			_amt.abs()
		);

		amt_ = abi.decode(delegate(_assim, data), (uint256));
	}

	function transferFee(
		address _assim,
		int128 _amt,
		address _treasury
	) internal {
		bytes memory data = abi.encodeWithSelector(
			iAsmltr.transferFee.selector,
			_amt,
			_treasury
		);
		delegate(_assim, data);
	}
}
CurveFactory.sol 93 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is disstributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

// Finds new Curves! logs their addresses and provides `isCurve(address) -> (bool)`

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

import "./interfaces/IFreeFromUpTo.sol";
import "./Curve.sol";

contract CurveFactory is Ownable, ReentrancyGuard {
	event NewCurve(
		address indexed caller,
		bytes32 indexed id,
		address indexed curve
	);

	mapping(bytes32 => address) public curves;

	function getCurve(
		address _baseCurrency,
		address _quoteCurrency
	) external view returns (address) {
		bytes32 curveId = keccak256(abi.encode(_baseCurrency, _quoteCurrency));
		return (curves[curveId]);
	}

	function newCurve(
		string memory _name,
		string memory _symbol,
		address _baseCurrency,
		address _quoteCurrency,
		uint256 _baseWeight,
		uint256 _quoteWeight,
		address _baseAssimilator,
		address _quoteAssimilator
	) public nonReentrant onlyOwner returns (Curve) {
		bytes32 curveId = keccak256(abi.encode(_baseCurrency, _quoteCurrency));
		if (curves[curveId] != address(0))
			revert("CurveFactory/currency-pair-already-exists");

		address[] memory _assets = new address[](10);
		uint256[] memory _assetWeights = new uint256[](2);

		// Base Currency
		_assets[0] = _baseCurrency;
		_assets[1] = _baseAssimilator;
		_assets[2] = _baseCurrency;
		_assets[3] = _baseAssimilator;
		_assets[4] = _baseCurrency;

		// Quote Currency (typically USDC)
		_assets[5] = _quoteCurrency;
		_assets[6] = _quoteAssimilator;
		_assets[7] = _quoteCurrency;
		_assets[8] = _quoteAssimilator;
		_assets[9] = _quoteCurrency;

		// Weights
		_assetWeights[0] = _baseWeight;
		_assetWeights[1] = _quoteWeight;

		// New curve
		Curve curve = new Curve(
			_name,
			_symbol,
			_assets,
			_assetWeights,
			address(this)
		);
		curve.transferOwnership(msg.sender);
		curves[curveId] = address(curve);

		emit NewCurve(msg.sender, curveId, address(curve));

		return curve;
	}
}
Orchestrator.sol 302 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "./lib/ABDKMath64x64.sol";
import "./Storage.sol";
import "./CurveMath.sol";

library Orchestrator {
	using SafeERC20 for IERC20;
	using ABDKMath64x64 for int128;
	using ABDKMath64x64 for uint256;

	int128 private constant ONE_WEI = 0x12;

	event ParametersSet(
		uint256 alpha,
		uint256 beta,
		uint256 delta,
		uint256 epsilon,
		uint256 lambda
	);

	event AssetIncluded(
		address indexed numeraire,
		address indexed reserve,
		uint256 weight
	);

	event AssimilatorIncluded(
		address indexed derivative,
		address indexed numeraire,
		address indexed reserve,
		address assimilator
	);

	function setParams(
		Storage.Curve storage curve,
		uint256 _alpha,
		uint256 _beta,
		uint256 _feeAtHalt,
		uint256 _epsilon,
		uint256 _lambda
	) external {
		require(0 < _alpha && _alpha < 1e18, "Curve/parameter-invalid-alpha");

		require(_beta < _alpha, "Curve/parameter-invalid-beta");

		require(_feeAtHalt <= 5e17, "Curve/parameter-invalid-max");

		require(_epsilon <= 1e16, "Curve/parameter-invalid-epsilon");

		require(_lambda <= 1e18, "Curve/parameter-invalid-lambda");

		int128 _omega = getFee(curve);

		curve.alpha = (_alpha + 1).divu(1e18);

		curve.beta = (_beta + 1).divu(1e18);

		curve.delta =
			(_feeAtHalt).divu(1e18).div(
				uint256(2).fromUInt().mul(curve.alpha.sub(curve.beta))
			) +
			ONE_WEI;

		curve.epsilon = (_epsilon + 1).divu(1e18);

		curve.lambda = (_lambda + 1).divu(1e18);

		int128 _psi = getFee(curve);

		require(_omega >= _psi, "Curve/parameters-increase-fee");

		emit ParametersSet(
			_alpha,
			_beta,
			curve.delta.mulu(1e18),
			_epsilon,
			_lambda
		);
	}

	function setAssimilator(
		Storage.Curve storage curve,
		address _baseCurrency,
		address _baseAssim,
		address _quoteCurrency,
		address _quoteAssim
	) external {
		require(
			_baseCurrency != address(0),
			"Curve/numeraire-cannot-be-zeroth-address"
		);
		require(
			_baseAssim != address(0),
			"Curve/numeraire-assimilator-cannot-be-zeroth-address"
		);
		require(
			_quoteCurrency != address(0),
			"Curve/reserve-cannot-be-zeroth-address"
		);
		require(
			_quoteAssim != address(0),
			"Curve/reserve-assimilator-cannot-be-zeroth-address"
		);

		Storage.Assimilator storage _baseAssimilator = curve.assimilators[
			_baseCurrency
		];
		_baseAssimilator.addr = _baseAssim;

		Storage.Assimilator storage _quoteAssimilator = curve.assimilators[
			_quoteCurrency
		];
		_quoteAssimilator.addr = _quoteAssim;

		curve.assets[0] = _baseAssimilator;
		curve.assets[1] = _quoteAssimilator;
	}

	function getFee(
		Storage.Curve storage curve
	) private view returns (int128 fee_) {
		int128 _gLiq;

		// Always pairs
		int128[] memory _bals = new int128[](2);

		for (uint256 i = 0; i < _bals.length; i++) {
			int128 _bal = Assimilators.viewNumeraireBalance(
				curve.assets[i].addr
			);

			_bals[i] = _bal;

			_gLiq += _bal;
		}

		fee_ = CurveMath.calculateFee(
			_gLiq,
			_bals,
			curve.beta,
			curve.delta,
			curve.weights
		);
	}

	function initialize(
		Storage.Curve storage curve,
		address[] storage numeraires,
		address[] storage reserves,
		address[] storage derivatives,
		address[] calldata _assets,
		uint256[] calldata _assetWeights
	) external {
		require(
			_assetWeights.length == 2,
			"Curve/assetWeights-must-be-length-two"
		);
		require(
			_assets.length % 5 == 0,
			"Curve/assets-must-be-divisible-by-five"
		);

		for (uint256 i = 0; i < _assetWeights.length; i++) {
			uint256 ix = i * 5;

			numeraires.push(_assets[ix]);
			derivatives.push(_assets[ix]);

			reserves.push(_assets[2 + ix]);
			if (_assets[ix] != _assets[2 + ix])
				derivatives.push(_assets[2 + ix]);

			includeAsset(
				curve,
				_assets[ix], // numeraire
				_assets[1 + ix], // numeraire assimilator
				_assets[2 + ix], // reserve
				_assets[3 + ix], // reserve assimilator
				_assets[4 + ix], // reserve approve to
				_assetWeights[i]
			);
		}
	}

	function includeAsset(
		Storage.Curve storage curve,
		address _numeraire,
		address _numeraireAssim,
		address _reserve,
		address _reserveAssim,
		address _reserveApproveTo,
		uint256 _weight
	) private {
		require(
			_numeraire != address(0),
			"Curve/numeraire-cannot-be-zeroth-address"
		);

		require(
			_numeraireAssim != address(0),
			"Curve/numeraire-assimilator-cannot-be-zeroth-address"
		);

		require(
			_reserve != address(0),
			"Curve/reserve-cannot-be-zeroth-address"
		);

		require(
			_reserveAssim != address(0),
			"Curve/reserve-assimilator-cannot-be-zeroth-address"
		);

		require(_weight < 1e18, "Curve/weight-must-be-less-than-one");

		if (_numeraire != _reserve)
			IERC20(_numeraire).safeApprove(_reserveApproveTo, type(uint).max);

		Storage.Assimilator storage _numeraireAssimilator = curve.assimilators[
			_numeraire
		];

		_numeraireAssimilator.addr = _numeraireAssim;

		_numeraireAssimilator.ix = uint8(curve.assets.length);

		Storage.Assimilator storage _reserveAssimilator = curve.assimilators[
			_reserve
		];

		_reserveAssimilator.addr = _reserveAssim;

		_reserveAssimilator.ix = uint8(curve.assets.length);

		int128 __weight = _weight.divu(1e18).add(uint256(1).divu(1e18));

		curve.weights.push(__weight);

		curve.assets.push(_numeraireAssimilator);

		emit AssetIncluded(_numeraire, _reserve, _weight);

		emit AssimilatorIncluded(
			_numeraire,
			_numeraire,
			_reserve,
			_numeraireAssim
		);

		if (_numeraireAssim != _reserveAssim) {
			emit AssimilatorIncluded(
				_reserve,
				_numeraire,
				_reserve,
				_reserveAssim
			);
		}
	}

	function viewCurve(
		Storage.Curve storage curve
	)
		external
		view
		returns (
			uint256 alpha_,
			uint256 beta_,
			uint256 delta_,
			uint256 epsilon_,
			uint256 lambda_
		)
	{
		alpha_ = curve.alpha.mulu(1e18);

		beta_ = curve.beta.mulu(1e18);

		delta_ = curve.delta.mulu(1e18);

		epsilon_ = curve.epsilon.mulu(1e18);

		lambda_ = curve.lambda.mulu(1e18);
	}
}
FullMath.sol 125 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
	/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
	/// @param a The multiplicand
	/// @param b The multiplier
	/// @param denominator The divisor
	/// @return result The 256-bit result
	/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
	function mulDiv(
		uint256 a,
		uint256 b,
		uint256 denominator
	) internal pure returns (uint256 result) {
		// 512-bit multiply [prod1 prod0] = a * b
		// Compute the product mod 2**256 and mod 2**256 - 1
		// then use the Chinese Remainder Theorem to reconstruct
		// the 512 bit result. The result is stored in two 256
		// variables such that product = prod1 * 2**256 + prod0
		uint256 prod0; // Least significant 256 bits of the product
		uint256 prod1; // Most significant 256 bits of the product
		assembly {
			let mm := mulmod(a, b, not(0))
			prod0 := mul(a, b)
			prod1 := sub(sub(mm, prod0), lt(mm, prod0))
		}

		// Handle non-overflow cases, 256 by 256 division
		if (prod1 == 0) {
			require(denominator > 0);
			assembly {
				result := div(prod0, denominator)
			}
			return result;
		}

		// Make sure the result is less than 2**256.
		// Also prevents denominator == 0
		require(denominator > prod1);

		///////////////////////////////////////////////
		// 512 by 256 division.
		///////////////////////////////////////////////

		// Make division exact by subtracting the remainder from [prod1 prod0]
		// Compute remainder using mulmod
		uint256 remainder;
		assembly {
			remainder := mulmod(a, b, denominator)
		}
		// Subtract 256 bit number from 512 bit number
		assembly {
			prod1 := sub(prod1, gt(remainder, prod0))
			prod0 := sub(prod0, remainder)
		}

		// Factor powers of two out of denominator
		// Compute largest power of two divisor of denominator.
		// Always >= 1.
		uint256 twos = denominator & (~denominator + 1);
		// Divide denominator by power of two
		assembly {
			denominator := div(denominator, twos)
		}

		// Divide [prod1 prod0] by the factors of two
		assembly {
			prod0 := div(prod0, twos)
		}
		// Shift in bits from prod1 into prod0. For this we need
		// to flip `twos` such that it is 2**256 / twos.
		// If twos is zero, then it becomes one
		assembly {
			twos := add(div(sub(0, twos), twos), 1)
		}
		prod0 |= prod1 * twos;

		// Invert denominator mod 2**256
		// Now that denominator is an odd number, it has an inverse
		// modulo 2**256 such that denominator * inv = 1 mod 2**256.
		// Compute the inverse by starting with a seed that is correct
		// correct for four bits. That is, denominator * inv = 1 mod 2**4
		uint256 inv = (3 * denominator) ^ 2;
		// Now use Newton-Raphson iteration to improve the precision.
		// Thanks to Hensel's lifting lemma, this also works in modular
		// arithmetic, doubling the correct bits in each step.
		inv *= 2 - denominator * inv; // inverse mod 2**8
		inv *= 2 - denominator * inv; // inverse mod 2**16
		inv *= 2 - denominator * inv; // inverse mod 2**32
		inv *= 2 - denominator * inv; // inverse mod 2**64
		inv *= 2 - denominator * inv; // inverse mod 2**128
		inv *= 2 - denominator * inv; // inverse mod 2**256

		// Because the division is now exact we can divide by multiplying
		// with the modular inverse of denominator. This will give us the
		// correct result modulo 2**256. Since the precoditions guarantee
		// that the outcome is less than 2**256, this is the final result.
		// We don't need to compute the high bits of the result and prod1
		// is no longer required.
		result = prod0 * inv;
		return result;
	}

	/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
	/// @param a The multiplicand
	/// @param b The multiplier
	/// @param denominator The divisor
	/// @return result The 256-bit result
	function mulDivRoundingUp(
		uint256 a,
		uint256 b,
		uint256 denominator
	) internal pure returns (uint256 result) {
		result = mulDiv(a, b, denominator);
		if (mulmod(a, b, denominator) > 0) {
			require(result < type(uint256).max);
			result++;
		}
	}
}
ViewLiquidity.sol 43 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

import "./Storage.sol";
import "./Assimilators.sol";
import "./lib/ABDKMath64x64.sol";

library ViewLiquidity {
	using ABDKMath64x64 for int128;

	function viewLiquidity(
		Storage.Curve storage curve
	) external view returns (uint256 total_, uint256[] memory individual_) {
		uint256 _length = curve.assets.length;

		individual_ = new uint256[](_length);

		for (uint256 i = 0; i < _length; i++) {
			uint256 _liquidity = Assimilators
				.viewNumeraireBalance(curve.assets[i].addr)
				.mulu(1e18);

			total_ += _liquidity;
			individual_[i] = _liquidity;
		}

		return (total_, individual_);
	}
}
ABDKMath64x64.sol 845 lines
// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */

pragma solidity 0.8.19;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
	/*
	 * Minimum value signed 64.64-bit fixed point number may have.
	 */
	int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

	/*
	 * Maximum value signed 64.64-bit fixed point number may have.
	 */
	int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

	/**
	 * Convert signed 256-bit integer number into signed 64.64-bit fixed point
	 * number.  Revert on overflow.
	 *
	 * @param x signed 256-bit integer number
	 * @return signed 64.64-bit fixed point number
	 */
	function fromInt(int256 x) internal pure returns (int128) {
		unchecked {
			require(x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
			return int128(x << 64);
		}
	}

	/**
	 * Convert signed 64.64 fixed point number into signed 64-bit integer number
	 * rounding down.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64-bit integer number
	 */
	function toInt(int128 x) internal pure returns (int64) {
		unchecked {
			return int64(x >> 64);
		}
	}

	/**
	 * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
	 * number.  Revert on overflow.
	 *
	 * @param x unsigned 256-bit integer number
	 * @return signed 64.64-bit fixed point number
	 */
	function fromUInt(uint256 x) internal pure returns (int128) {
		unchecked {
			require(x <= 0x7FFFFFFFFFFFFFFF);
			return int128(int256(x << 64));
		}
	}

	/**
	 * Convert signed 64.64 fixed point number into unsigned 64-bit integer
	 * number rounding down.  Revert on underflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return unsigned 64-bit integer number
	 */
	function toUInt(int128 x) internal pure returns (uint64) {
		unchecked {
			require(x >= 0);
			return uint64(uint128(x >> 64));
		}
	}

	/**
	 * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
	 * number rounding down.  Revert on overflow.
	 *
	 * @param x signed 128.128-bin fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function from128x128(int256 x) internal pure returns (int128) {
		unchecked {
			int256 result = x >> 64;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Convert signed 64.64 fixed point number into signed 128.128 fixed point
	 * number.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 128.128 fixed point number
	 */
	function to128x128(int128 x) internal pure returns (int256) {
		unchecked {
			return int256(x) << 64;
		}
	}

	/**
	 * Calculate x + y.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function add(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			int256 result = int256(x) + y;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate x - y.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function sub(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			int256 result = int256(x) - y;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate x * y rounding down.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function mul(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			int256 result = (int256(x) * y) >> 64;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
	 * number and y is signed 256-bit integer number.  Revert on overflow.
	 *
	 * @param x signed 64.64 fixed point number
	 * @param y signed 256-bit integer number
	 * @return signed 256-bit integer number
	 */
	function muli(int128 x, int256 y) internal pure returns (int256) {
		unchecked {
			if (x == MIN_64x64) {
				require(
					y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
						y <= 0x1000000000000000000000000000000000000000000000000
				);
				return -y << 63;
			} else {
				bool negativeResult = false;
				if (x < 0) {
					x = -x;
					negativeResult = true;
				}
				if (y < 0) {
					y = -y; // We rely on overflow behavior here
					negativeResult = !negativeResult;
				}
				uint256 absoluteResult = mulu(x, uint256(y));
				if (negativeResult) {
					require(
						absoluteResult <=
							0x8000000000000000000000000000000000000000000000000000000000000000
					);
					return -int256(absoluteResult); // We rely on overflow behavior here
				} else {
					require(
						absoluteResult <=
							0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
					);
					return int256(absoluteResult);
				}
			}
		}
	}

	/**
	 * Calculate x * y rounding down, where x is signed 64.64 fixed point number
	 * and y is unsigned 256-bit integer number.  Revert on overflow.
	 *
	 * @param x signed 64.64 fixed point number
	 * @param y unsigned 256-bit integer number
	 * @return unsigned 256-bit integer number
	 */
	function mulu(int128 x, uint256 y) internal pure returns (uint256) {
		unchecked {
			if (y == 0) return 0;

			require(x >= 0);

			uint256 lo = (uint256(int256(x)) *
				(y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
			uint256 hi = uint256(int256(x)) * (y >> 128);

			require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
			hi <<= 64;

			require(
				hi <=
					0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -
						lo
			);
			return hi + lo;
		}
	}

	/**
	 * Calculate x / y rounding towards zero.  Revert on overflow or when y is
	 * zero.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function div(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			require(y != 0);
			int256 result = (int256(x) << 64) / y;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate x / y rounding towards zero, where x and y are signed 256-bit
	 * integer numbers.  Revert on overflow or when y is zero.
	 *
	 * @param x signed 256-bit integer number
	 * @param y signed 256-bit integer number
	 * @return signed 64.64-bit fixed point number
	 */
	function divi(int256 x, int256 y) internal pure returns (int128) {
		unchecked {
			require(y != 0);

			bool negativeResult = false;
			if (x < 0) {
				x = -x; // We rely on overflow behavior here
				negativeResult = true;
			}
			if (y < 0) {
				y = -y; // We rely on overflow behavior here
				negativeResult = !negativeResult;
			}
			uint128 absoluteResult = divuu(uint256(x), uint256(y));
			if (negativeResult) {
				require(absoluteResult <= 0x80000000000000000000000000000000);
				return -int128(absoluteResult); // We rely on overflow behavior here
			} else {
				require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
				return int128(absoluteResult); // We rely on overflow behavior here
			}
		}
	}

	/**
	 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
	 * integer numbers.  Revert on overflow or when y is zero.
	 *
	 * @param x unsigned 256-bit integer number
	 * @param y unsigned 256-bit integer number
	 * @return signed 64.64-bit fixed point number
	 */
	function divu(uint256 x, uint256 y) internal pure returns (int128) {
		unchecked {
			require(y != 0);
			uint128 result = divuu(x, y);
			require(result <= uint128(MAX_64x64));
			return int128(result);
		}
	}

	/**
	 * Calculate -x.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function neg(int128 x) internal pure returns (int128) {
		unchecked {
			require(x != MIN_64x64);
			return -x;
		}
	}

	/**
	 * Calculate |x|.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function abs(int128 x) internal pure returns (int128) {
		unchecked {
			require(x != MIN_64x64);
			return x < 0 ? -x : x;
		}
	}

	/**
	 * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
	 * zero.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function inv(int128 x) internal pure returns (int128) {
		unchecked {
			require(x != 0);
			int256 result = int256(0x100000000000000000000000000000000) / x;
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function avg(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			return int128((int256(x) + int256(y)) >> 1);
		}
	}

	/**
	 * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
	 * Revert on overflow or in case x * y is negative.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function gavg(int128 x, int128 y) internal pure returns (int128) {
		unchecked {
			int256 m = int256(x) * int256(y);
			require(m >= 0);
			require(
				m <
					0x4000000000000000000000000000000000000000000000000000000000000000
			);
			return int128(sqrtu(uint256(m)));
		}
	}

	/**
	 * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
	 * and y is unsigned 256-bit integer number.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y uint256 value
	 * @return signed 64.64-bit fixed point number
	 */
	function pow(int128 x, uint256 y) internal pure returns (int128) {
		unchecked {
			bool negative = x < 0 && y & 1 == 1;

			uint256 absX = uint128(x < 0 ? -x : x);
			uint256 absResult;
			absResult = 0x100000000000000000000000000000000;

			if (absX <= 0x10000000000000000) {
				absX <<= 63;
				while (y != 0) {
					if (y & 0x1 != 0) {
						absResult = (absResult * absX) >> 127;
					}
					absX = (absX * absX) >> 127;

					if (y & 0x2 != 0) {
						absResult = (absResult * absX) >> 127;
					}
					absX = (absX * absX) >> 127;

					if (y & 0x4 != 0) {
						absResult = (absResult * absX) >> 127;
					}
					absX = (absX * absX) >> 127;

					if (y & 0x8 != 0) {
						absResult = (absResult * absX) >> 127;
					}
					absX = (absX * absX) >> 127;

					y >>= 4;
				}

				absResult >>= 64;
			} else {
				uint256 absXShift = 63;
				if (absX < 0x1000000000000000000000000) {
					absX <<= 32;
					absXShift -= 32;
				}
				if (absX < 0x10000000000000000000000000000) {
					absX <<= 16;
					absXShift -= 16;
				}
				if (absX < 0x1000000000000000000000000000000) {
					absX <<= 8;
					absXShift -= 8;
				}
				if (absX < 0x10000000000000000000000000000000) {
					absX <<= 4;
					absXShift -= 4;
				}
				if (absX < 0x40000000000000000000000000000000) {
					absX <<= 2;
					absXShift -= 2;
				}
				if (absX < 0x80000000000000000000000000000000) {
					absX <<= 1;
					absXShift -= 1;
				}

				uint256 resultShift = 0;
				while (y != 0) {
					require(absXShift < 64);

					if (y & 0x1 != 0) {
						absResult = (absResult * absX) >> 127;
						resultShift += absXShift;
						if (absResult > 0x100000000000000000000000000000000) {
							absResult >>= 1;
							resultShift += 1;
						}
					}
					absX = (absX * absX) >> 127;
					absXShift <<= 1;
					if (absX >= 0x100000000000000000000000000000000) {
						absX >>= 1;
						absXShift += 1;
					}

					y >>= 1;
				}

				require(resultShift < 64);
				absResult >>= 64 - resultShift;
			}
			int256 result = negative ? -int256(absResult) : int256(absResult);
			require(result >= MIN_64x64 && result <= MAX_64x64);
			return int128(result);
		}
	}

	/**
	 * Calculate sqrt (x) rounding down.  Revert if x < 0.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function sqrt(int128 x) internal pure returns (int128) {
		unchecked {
			require(x >= 0);
			return int128(sqrtu(uint256(int256(x)) << 64));
		}
	}

	/**
	 * Calculate binary logarithm of x.  Revert if x <= 0.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function log_2(int128 x) internal pure returns (int128) {
		unchecked {
			require(x > 0);

			int256 msb = 0;
			int256 xc = x;
			if (xc >= 0x10000000000000000) {
				xc >>= 64;
				msb += 64;
			}
			if (xc >= 0x100000000) {
				xc >>= 32;
				msb += 32;
			}
			if (xc >= 0x10000) {
				xc >>= 16;
				msb += 16;
			}
			if (xc >= 0x100) {
				xc >>= 8;
				msb += 8;
			}
			if (xc >= 0x10) {
				xc >>= 4;
				msb += 4;
			}
			if (xc >= 0x4) {
				xc >>= 2;
				msb += 2;
			}
			if (xc >= 0x2) msb += 1; // No need to shift xc anymore

			int256 result = (msb - 64) << 64;
			uint256 ux = uint256(int256(x)) << uint256(127 - msb);
			for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
				ux *= ux;
				uint256 b = ux >> 255;
				ux >>= 127 + b;
				result += bit * int256(b);
			}

			return int128(result);
		}
	}

	/**
	 * Calculate natural logarithm of x.  Revert if x <= 0.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function ln(int128 x) internal pure returns (int128) {
		unchecked {
			require(x > 0);

			return
				int128(
					int256(
						(uint256(int256(log_2(x))) *
							0xB17217F7D1CF79ABC9E3B39803F2F6AF) >> 128
					)
				);
		}
	}

	/**
	 * Calculate binary exponent of x.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function exp_2(int128 x) internal pure returns (int128) {
		unchecked {
			require(x < 0x400000000000000000); // Overflow

			if (x < -0x400000000000000000) return 0; // Underflow

			uint256 result = 0x80000000000000000000000000000000;

			if (x & 0x8000000000000000 > 0)
				result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
			if (x & 0x4000000000000000 > 0)
				result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128;
			if (x & 0x2000000000000000 > 0)
				result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128;
			if (x & 0x1000000000000000 > 0)
				result = (result * 0x10B5586CF9890F6298B92B71842A98363) >> 128;
			if (x & 0x800000000000000 > 0)
				result = (result * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128;
			if (x & 0x400000000000000 > 0)
				result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128;
			if (x & 0x200000000000000 > 0)
				result = (result * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128;
			if (x & 0x100000000000000 > 0)
				result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128;
			if (x & 0x80000000000000 > 0)
				result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128;
			if (x & 0x40000000000000 > 0)
				result = (result * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128;
			if (x & 0x20000000000000 > 0)
				result = (result * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128;
			if (x & 0x10000000000000 > 0)
				result = (result * 0x1000B175EFFDC76BA38E31671CA939725) >> 128;
			if (x & 0x8000000000000 > 0)
				result = (result * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128;
			if (x & 0x4000000000000 > 0)
				result = (result * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128;
			if (x & 0x2000000000000 > 0)
				result = (result * 0x1000162E525EE054754457D5995292026) >> 128;
			if (x & 0x1000000000000 > 0)
				result = (result * 0x10000B17255775C040618BF4A4ADE83FC) >> 128;
			if (x & 0x800000000000 > 0)
				result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128;
			if (x & 0x400000000000 > 0)
				result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128;
			if (x & 0x200000000000 > 0)
				result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
			if (x & 0x100000000000 > 0)
				result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
			if (x & 0x80000000000 > 0)
				result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128;
			if (x & 0x40000000000 > 0)
				result = (result * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128;
			if (x & 0x20000000000 > 0)
				result = (result * 0x100000162E430E5A18F6119E3C02282A5) >> 128;
			if (x & 0x10000000000 > 0)
				result = (result * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128;
			if (x & 0x8000000000 > 0)
				result = (result * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128;
			if (x & 0x4000000000 > 0)
				result = (result * 0x10000002C5C8601CC6B9E94213C72737A) >> 128;
			if (x & 0x2000000000 > 0)
				result = (result * 0x1000000162E42FFF037DF38AA2B219F06) >> 128;
			if (x & 0x1000000000 > 0)
				result = (result * 0x10000000B17217FBA9C739AA5819F44F9) >> 128;
			if (x & 0x800000000 > 0)
				result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128;
			if (x & 0x400000000 > 0)
				result = (result * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128;
			if (x & 0x200000000 > 0)
				result = (result * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128;
			if (x & 0x100000000 > 0)
				result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
			if (x & 0x80000000 > 0)
				result = (result * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128;
			if (x & 0x40000000 > 0)
				result = (result * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128;
			if (x & 0x20000000 > 0)
				result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
			if (x & 0x10000000 > 0)
				result = (result * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128;
			if (x & 0x8000000 > 0)
				result = (result * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128;
			if (x & 0x4000000 > 0)
				result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128;
			if (x & 0x2000000 > 0)
				result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
			if (x & 0x1000000 > 0)
				result = (result * 0x10000000000B17217F7D20CF927C8E94C) >> 128;
			if (x & 0x800000 > 0)
				result = (result * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128;
			if (x & 0x400000 > 0)
				result = (result * 0x100000000002C5C85FDF477B662B26945) >> 128;
			if (x & 0x200000 > 0)
				result = (result * 0x10000000000162E42FEFA3AE53369388C) >> 128;
			if (x & 0x100000 > 0)
				result = (result * 0x100000000000B17217F7D1D351A389D40) >> 128;
			if (x & 0x80000 > 0)
				result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128;
			if (x & 0x40000 > 0)
				result = (result * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128;
			if (x & 0x20000 > 0)
				result = (result * 0x100000000000162E42FEFA39FE95583C2) >> 128;
			if (x & 0x10000 > 0)
				result = (result * 0x1000000000000B17217F7D1CFB72B45E1) >> 128;
			if (x & 0x8000 > 0)
				result = (result * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128;
			if (x & 0x4000 > 0)
				result = (result * 0x10000000000002C5C85FDF473E242EA38) >> 128;
			if (x & 0x2000 > 0)
				result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
			if (x & 0x1000 > 0)
				result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
			if (x & 0x800 > 0)
				result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
			if (x & 0x400 > 0)
				result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
			if (x & 0x200 > 0)
				result = (result * 0x10000000000000162E42FEFA39EF44D91) >> 128;
			if (x & 0x100 > 0)
				result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
			if (x & 0x80 > 0)
				result = (result * 0x10000000000000058B90BFBE8E7BCE544) >> 128;
			if (x & 0x40 > 0)
				result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
			if (x & 0x20 > 0)
				result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
			if (x & 0x10 > 0)
				result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
			if (x & 0x8 > 0)
				result = (result * 0x100000000000000058B90BFBE8E7BCD6D) >> 128;
			if (x & 0x4 > 0)
				result = (result * 0x10000000000000002C5C85FDF473DE6B2) >> 128;
			if (x & 0x2 > 0)
				result = (result * 0x1000000000000000162E42FEFA39EF358) >> 128;
			if (x & 0x1 > 0)
				result = (result * 0x10000000000000000B17217F7D1CF79AB) >> 128;

			result >>= uint256(int256(63 - (x >> 64)));
			require(result <= uint256(int256(MAX_64x64)));

			return int128(int256(result));
		}
	}

	/**
	 * Calculate natural exponent of x.  Revert on overflow.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */
	function exp(int128 x) internal pure returns (int128) {
		unchecked {
			require(x < 0x400000000000000000); // Overflow

			if (x < -0x400000000000000000) return 0; // Underflow

			return
				exp_2(
					int128(
						(int256(x) * 0x171547652B82FE1777D0FFDA0D23A7D12) >> 128
					)
				);
		}
	}

	/**
	 * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
	 * integer numbers.  Revert on overflow or when y is zero.
	 *
	 * @param x unsigned 256-bit integer number
	 * @param y unsigned 256-bit integer number
	 * @return unsigned 64.64-bit fixed point number
	 */
	function divuu(uint256 x, uint256 y) private pure returns (uint128) {
		unchecked {
			require(y != 0);

			uint256 result;

			if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
				result = (x << 64) / y;
			else {
				uint256 msb = 192;
				uint256 xc = x >> 192;
				if (xc >= 0x100000000) {
					xc >>= 32;
					msb += 32;
				}
				if (xc >= 0x10000) {
					xc >>= 16;
					msb += 16;
				}
				if (xc >= 0x100) {
					xc >>= 8;
					msb += 8;
				}
				if (xc >= 0x10) {
					xc >>= 4;
					msb += 4;
				}
				if (xc >= 0x4) {
					xc >>= 2;
					msb += 2;
				}
				if (xc >= 0x2) msb += 1; // No need to shift xc anymore

				result = (x << (255 - msb)) / (((y - 1) >> (msb - 191)) + 1);
				require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

				uint256 hi = result * (y >> 128);
				uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

				uint256 xh = x >> 192;
				uint256 xl = x << 64;

				if (xl < lo) xh -= 1;
				xl -= lo; // We rely on overflow behavior here
				lo = hi << 128;
				if (xl < lo) xh -= 1;
				xl -= lo; // We rely on overflow behavior here

				assert(xh == hi >> 128);

				result += xl / y;
			}

			require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
			return uint128(result);
		}
	}

	/**
	 * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
	 * number.
	 *
	 * @param x unsigned 256-bit integer number
	 * @return unsigned 128-bit integer number
	 */
	function sqrtu(uint256 x) private pure returns (uint128) {
		unchecked {
			if (x == 0) return 0;
			else {
				uint256 xx = x;
				uint256 r = 1;
				if (xx >= 0x100000000000000000000000000000000) {
					xx >>= 128;
					r <<= 64;
				}
				if (xx >= 0x10000000000000000) {
					xx >>= 64;
					r <<= 32;
				}
				if (xx >= 0x100000000) {
					xx >>= 32;
					r <<= 16;
				}
				if (xx >= 0x10000) {
					xx >>= 16;
					r <<= 8;
				}
				if (xx >= 0x100) {
					xx >>= 8;
					r <<= 4;
				}
				if (xx >= 0x10) {
					xx >>= 4;
					r <<= 2;
				}
				if (xx >= 0x8) {
					r <<= 1;
				}
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1;
				r = (r + x / r) >> 1; // Seven iterations should be enough
				uint256 r1 = x / r;
				return uint128(r < r1 ? r : r1);
			}
		}
	}
}
IOracle.sol 104 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

interface IOracle {
	function acceptOwnership() external;

	function accessController() external view returns (address);

	function aggregator() external view returns (address);

	function confirmAggregator(address _aggregator) external;

	function decimals() external view returns (uint8);

	function description() external view returns (string memory);

	function getAnswer(uint256 _roundId) external view returns (int256);

	function getRoundData(
		uint80 _roundId
	)
		external
		view
		returns (
			uint80 roundId,
			int256 answer,
			uint256 startedAt,
			uint256 updatedAt,
			uint80 answeredInRound
		);

	function getTimestamp(uint256 _roundId) external view returns (uint256);

	function latestAnswer() external view returns (int256);

	function latestRound() external view returns (uint256);

	function latestRoundData()
		external
		view
		returns (
			uint80 roundId,
			int256 answer,
			uint256 startedAt,
			uint256 updatedAt,
			uint80 answeredInRound
		);

	function latestTimestamp() external view returns (uint256);

	function owner() external view returns (address);

	function phaseAggregators(uint16) external view returns (address);

	function phaseId() external view returns (uint16);

	function proposeAggregator(address _aggregator) external;

	function proposedAggregator() external view returns (address);

	function proposedGetRoundData(
		uint80 _roundId
	)
		external
		view
		returns (
			uint80 roundId,
			int256 answer,
			uint256 startedAt,
			uint256 updatedAt,
			uint80 answeredInRound
		);

	function proposedLatestRoundData()
		external
		view
		returns (
			uint80 roundId,
			int256 answer,
			uint256 startedAt,
			uint256 updatedAt,
			uint80 answeredInRound
		);

	function setController(address _accessController) external;

	function transferOwnership(address _to) external;

	function version() external view returns (uint256);
}
NoDelegateCall.sol 28 lines
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.19;

/// @title Prevents delegatecall to a contract
/// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
abstract contract NoDelegateCall {
	/// @dev The original address of this contract
	address private immutable original;

	constructor() {
		// Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
		// In other words, this variable won't change when it's checked at runtime.
		original = address(this);
	}

	/// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
	///     and the use of immutable means the address bytes are copied in every place the modifier is used.
	function checkNotDelegateCall() private view {
		require(address(this) == original);
	}

	/// @notice Prevents delegatecall into the modified method
	modifier noDelegateCall() {
		checkNotDelegateCall();
		_;
	}
}
UnsafeMath64x64.sol 32 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

library UnsafeMath64x64 {
	/**
	 * Calculate x * y rounding down.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */

	function us_mul(int128 x, int128 y) internal pure returns (int128) {
		int256 result = (int256(x) * y) >> 64;
		return int128(result);
	}

	/**
	 * Calculate x / y rounding towards zero.  Revert on overflow or when y is
	 * zero.
	 *
	 * @param x signed 64.64-bit fixed point number
	 * @param y signed 64.64-bit fixed point number
	 * @return signed 64.64-bit fixed point number
	 */

	function us_div(int128 x, int128 y) internal pure returns (int128) {
		int256 result = (int256(x) << 64) / y;
		return int128(result);
	}
}
ProportionalLiquidity.sol 297 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "./Assimilators.sol";

import "./Storage.sol";

import "./lib/UnsafeMath64x64.sol";
import "./lib/ABDKMath64x64.sol";

import "./CurveMath.sol";
import "./Structs.sol";

library ProportionalLiquidity {
	using ABDKMath64x64 for uint256;
	using ABDKMath64x64 for int128;
	using UnsafeMath64x64 for int128;

	event Transfer(address indexed from, address indexed to, uint256 value);

	int128 public constant ONE = 0x10000000000000000;
	int128 public constant ONE_WEI = 0x12;

	function proportionalDeposit(
		Storage.Curve storage curve,
		DepositData memory depositData
	) external returns (uint256 curves_, uint256[] memory) {
		int128 __deposit = depositData.deposits.divu(1e18);

		uint256 _length = curve.assets.length;

		uint256[] memory deposits_ = new uint256[](_length);

		(
			int128 _oGLiq,
			int128[] memory _oBals
		) = getGrossLiquidityAndBalancesForDeposit(curve);

		// Needed to calculate liquidity invariant
		// (int128 _oGLiqProp, int128[] memory _oBalsProp) = getGrossLiquidityAndBalances(curve);

		// No liquidity, oracle sets the ratio
		if (_oGLiq == 0) {
			for (uint256 i = 0; i < _length; i++) {
				// Variable here to avoid stack-too-deep errors
				int128 _d = __deposit.mul(curve.weights[i]);
				deposits_[i] = Assimilators.intakeNumeraire(
					curve.assets[i].addr,
					_d.add(ONE_WEI)
				);
			}
		} else {
			// We already have an existing pool ratio
			// which must be respected
			int128 _multiplier = __deposit.div(_oGLiq);

			uint256 _baseWeight = curve.weights[0].mulu(1e18);
			uint256 _quoteWeight = curve.weights[1].mulu(1e18);

			for (uint256 i = 0; i < _length; i++) {
				IntakeNumLpRatioInfo memory info;
				info.baseWeight = _baseWeight;
				info.minBase = depositData.minBase;
				info.maxBase = depositData.maxBase;
				info.quoteWeight = _quoteWeight;
				info.minQuote = depositData.minQuote;
				info.maxQuote = depositData.maxQuote;
				info.amount = _oBals[i].mul(_multiplier).add(ONE_WEI);
				deposits_[i] = Assimilators.intakeNumeraireLPRatio(
					curve.assets[i].addr,
					info
				);
			}
		}

		int128 _totalShells = curve.totalSupply.divu(1e18);

		int128 _newShells = __deposit;

		if (_totalShells > 0) {
			_newShells = __deposit.mul(_totalShells);
			_newShells = _newShells.div(_oGLiq);
		}

		require(
			_newShells > 0,
			"Proportional Liquidity/can't mint negative amount"
		);
		mint(curve, msg.sender, curves_ = _newShells.mulu(1e18));

		return (curves_, deposits_);
	}

	function viewProportionalDeposit(
		Storage.Curve storage curve,
		uint256 _deposit
	) external view returns (uint256 curves_, uint256[] memory) {
		int128 __deposit = _deposit.divu(1e18);

		uint256 _length = curve.assets.length;

		(
			int128 _oGLiq,
			int128[] memory _oBals
		) = getGrossLiquidityAndBalancesForDeposit(curve);

		uint256[] memory deposits_ = new uint256[](_length);

		// No liquidity
		if (_oGLiq == 0) {
			for (uint256 i = 0; i < _length; i++) {
				deposits_[i] = Assimilators.viewRawAmount(
					curve.assets[i].addr,
					__deposit.mul(curve.weights[i]).add(ONE_WEI)
				);
			}
		} else {
			// We already have an existing pool ratio
			// this must be respected
			int128 _multiplier = __deposit.div(_oGLiq);

			uint256 _baseWeight = curve.weights[0].mulu(1e18);
			uint256 _quoteWeight = curve.weights[1].mulu(1e18);

			// Deposits into the pool is determined by existing LP ratio
			for (uint256 i = 0; i < _length; i++) {
				deposits_[i] = Assimilators.viewRawAmountLPRatio(
					curve.assets[i].addr,
					_baseWeight,
					_quoteWeight,
					_oBals[i].mul(_multiplier).add(ONE_WEI)
				);
			}
		}

		int128 _totalShells = curve.totalSupply.divu(1e18);

		int128 _newShells = __deposit;

		if (_totalShells > 0) {
			_newShells = __deposit.mul(_totalShells);
			_newShells = _newShells.div(_oGLiq);
		}

		curves_ = _newShells.mulu(1e18);

		return (curves_, deposits_);
	}

	function proportionalWithdraw(
		Storage.Curve storage curve,
		uint256 _withdrawal
	) external returns (uint256[] memory) {
		uint256 _length = curve.assets.length;

		(, int128[] memory _oBals) = getGrossLiquidityAndBalances(curve);

		uint256[] memory withdrawals_ = new uint256[](_length);

		int128 _totalShells = curve.totalSupply.divu(1e18);
		int128 __withdrawal = _withdrawal.divu(1e18);

		int128 _multiplier = __withdrawal.div(_totalShells);

		for (uint256 i = 0; i < _length; i++) {
			withdrawals_[i] = Assimilators.outputNumeraire(
				curve.assets[i].addr,
				msg.sender,
				_oBals[i].mul(_multiplier)
			);
		}

		burn(curve, msg.sender, _withdrawal);

		return withdrawals_;
	}

	function viewProportionalWithdraw(
		Storage.Curve storage curve,
		uint256 _withdrawal
	) external view returns (uint256[] memory) {
		uint256 _length = curve.assets.length;

		(, int128[] memory _oBals) = getGrossLiquidityAndBalances(curve);

		uint256[] memory withdrawals_ = new uint256[](_length);

		int128 _multiplier = _withdrawal.divu(1e18).div(
			curve.totalSupply.divu(1e18)
		);

		for (uint256 i = 0; i < _length; i++) {
			withdrawals_[i] = Assimilators.viewRawAmount(
				curve.assets[i].addr,
				_oBals[i].mul(_multiplier)
			);
		}

		return withdrawals_;
	}

	function getGrossLiquidityAndBalancesForDeposit(
		Storage.Curve storage curve
	) internal view returns (int128 grossLiquidity_, int128[] memory) {
		uint256 _length = curve.assets.length;

		int128[] memory balances_ = new int128[](_length);
		uint256 _baseWeight = curve.weights[0].mulu(1e18);
		uint256 _quoteWeight = curve.weights[1].mulu(1e18);

		for (uint256 i = 0; i < _length; i++) {
			int128 _bal = Assimilators.viewNumeraireBalanceLPRatio(
				_baseWeight,
				_quoteWeight,
				curve.assets[i].addr
			);

			balances_[i] = _bal;
			grossLiquidity_ += _bal;
		}

		return (grossLiquidity_, balances_);
	}

	function getGrossLiquidityAndBalances(
		Storage.Curve storage curve
	) internal view returns (int128 grossLiquidity_, int128[] memory) {
		uint256 _length = curve.assets.length;

		int128[] memory balances_ = new int128[](_length);

		for (uint256 i = 0; i < _length; i++) {
			int128 _bal = Assimilators.viewNumeraireBalance(
				curve.assets[i].addr
			);

			balances_[i] = _bal;
			grossLiquidity_ += _bal;
		}

		return (grossLiquidity_, balances_);
	}

	function burn(
		Storage.Curve storage curve,
		address account,
		uint256 amount
	) private {
		curve.balances[account] = burnSub(curve.balances[account], amount);

		curve.totalSupply = burnSub(curve.totalSupply, amount);

		emit Transfer(msg.sender, address(0), amount);
	}

	function mint(
		Storage.Curve storage curve,
		address account,
		uint256 amount
	) private {
		uint256 minLock = 1e6;
		if (curve.totalSupply == 0) {
			require(
				amount > minLock,
				"Proportional Liquidity/amount too small!"
			);
			uint256 toMintAmt = amount - minLock;
			// mint to lp provider
			curve.totalSupply = mintAdd(curve.totalSupply, toMintAmt);
			curve.balances[account] = mintAdd(
				curve.balances[account],
				toMintAmt
			);
			emit Transfer(address(0), msg.sender, toMintAmt);
			// mint to 0 address
			curve.totalSupply = mintAdd(curve.totalSupply, minLock);
			curve.balances[address(0)] = mintAdd(
				curve.balances[address(0)],
				minLock
			);
			emit Transfer(address(this), address(0), minLock);
		} else {
			curve.totalSupply = mintAdd(curve.totalSupply, amount);
			curve.balances[account] = mintAdd(curve.balances[account], amount);
			emit Transfer(address(0), msg.sender, amount);
		}
	}

	function mintAdd(uint256 x, uint256 y) private pure returns (uint256 z) {
		require((z = x + y) >= x, "Curve/mint-overflow");
	}

	function burnSub(uint256 x, uint256 y) private pure returns (uint256 z) {
		require((z = x - y) <= x, "Curve/burn-underflow");
	}
}
IAssimilator.sol 81 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

interface IAssimilator {
	function oracleDecimals() external view returns (uint256);

	function tokenDecimals() external view returns (uint256);

	function getRate() external view returns (uint256);

	function intakeRaw(uint256 amount) external returns (int128);

	function intakeRawAndGetBalance(
		uint256 amount
	) external returns (int128, int128);

	function intakeNumeraire(int128 amount) external returns (uint256);

	function intakeNumeraireLPRatio(
		uint256,
		uint256,
		uint256,
		uint256,
		uint256,
		uint256,
		address,
		int128
	) external returns (uint256);

	function outputRaw(address dst, uint256 amount) external returns (int128);

	function outputRawAndGetBalance(
		address dst,
		uint256 amount
	) external returns (int128, int128);

	function outputNumeraire(
		address dst,
		int128 amount
	) external returns (uint256);

	function viewRawAmount(int128) external view returns (uint256);

	function viewRawAmountLPRatio(
		uint256,
		uint256,
		address,
		int128
	) external view returns (uint256);

	function viewNumeraireAmount(uint256) external view returns (int128);

	function viewNumeraireBalanceLPRatio(
		uint256,
		uint256,
		address
	) external view returns (int128);

	function viewNumeraireBalance(address) external view returns (int128);

	function viewNumeraireAmountAndBalance(
		address,
		uint256
	) external view returns (int128, int128);

	function transferFee(int128, address) external;
}
ICurveFactory.sol 19 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

interface ICurveFactory {
	function getProtocolFee() external view returns (int128);

	function getProtocolTreasury() external view returns (address);

	function getGlobalFrozenState() external view returns (bool);

	function getFlashableState() external view returns (bool);

	function isPoolGuarded(address pool) external view returns (bool);

	function getPoolGuardAmount(address pool) external view returns (uint256);

	function getPoolCap(address pool) external view returns (uint256);
}
IFreeFromUpTo.sol 23 lines
// SPDX-License-Identifier: MIT

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.19;

interface IFreeFromUpTo {
	function freeFromUpTo(
		address from,
		uint256 value
	) external returns (uint256 freed);
}
IFlashCallback.sol 11 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

interface IFlashCallback {
	function flashCallback(
		uint256 fee0,
		uint256 fee1,
		bytes calldata data
	) external;
}
Address.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
Context.sol 24 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
Ownable.sol 83 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
ERC20.sol 389 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}
IERC20.sol 82 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}
SafeMath.sol 227 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}
ReentrancyGuard.sol 69 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}
SafeERC20.sol 116 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
IERC20Metadata.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
draft-IERC20Permit.sol 60 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Read Contract

allowance 0xdd62ed3e → uint256
assimilator 0x3cae77f7 → address
balanceOf 0x70a08231 → uint256
curve 0x7165485d → int128, int128, int128, int128, int128, uint256
decimals 0x313ce567 → uint8
derivatives 0xc0046e39 → address
emergency 0xcaa6fea4 → bool
frozen 0x054f7d9c → bool
liquidity 0x1a686502 → uint256, uint256[]
name 0x06fdde03 → string
numeraires 0xa8e9d528 → address
owner 0x8da5cb5b → address
reserves 0x8334278d → address
supportsInterface 0x01ffc9a7 → bool
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256
viewCurve 0x595520c7 → uint256, uint256, uint256, uint256, uint256
viewDeposit 0x6f2ef95b → uint256, uint256[]
viewOriginSwap 0x838e6a22 → uint256
viewTargetSwap 0x525d0da7 → uint256
viewWithdraw 0xe5cf8a5c → uint256[]

Write Contract 15 functions

These functions modify contract state and require a wallet transaction to execute.

approve 0x095ea7b3
address _spender
uint256 _amount
returns: bool
deposit 0x5872278a
uint256 _deposit
uint256 _minQuoteAmount
uint256 _minBaseAmount
uint256 _maxQuoteAmount
uint256 _maxBaseAmount
uint256 _deadline
returns: uint256, uint256[]
emergencyWithdraw 0x1f276b6e
uint256 _curvesToBurn
uint256 _deadline
returns: uint256[]
excludeDerivative 0xc912ff7a
address _derivative
flash 0x490e6cbc
address recipient
uint256 amount0
uint256 amount1
bytes data
originSwap 0x0b2583c8
address _origin
address _target
uint256 _originAmount
uint256 _minTargetAmount
uint256 _deadline
returns: uint256
setAssimilator 0x79a390a5
address _baseCurrency
address _baseAssim
address _quoteCurrency
address _quoteAssim
setEmergency 0x0501d556
bool _emergency
setFrozen 0x7e932d32
bool _toFreezeOrNotToFreeze
setParams 0xd828bb88
uint256 _alpha
uint256 _beta
uint256 _feeAtHalt
uint256 _epsilon
uint256 _lambda
targetSwap 0x72b4129a
address _origin
address _target
uint256 _maxOriginAmount
uint256 _targetAmount
uint256 _deadline
returns: uint256
transfer 0xa9059cbb
address _recipient
uint256 _amount
returns: bool
transferFrom 0x23b872dd
address _sender
address _recipient
uint256 _amount
returns: bool
transferOwnership 0xf2fde38b
address _newOwner
withdraw 0x441a3e70
uint256 _curvesToBurn
uint256 _deadline
returns: uint256[]

Recent Transactions

No transactions found for this address