Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0x81F6e9914136Da1A1d3b1eFd14F7E0761c3d4cc7
Balance 0 ETH
Nonce 1
Code Size 7717 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

7717 bytes
0x6080604052600436106101bb5760003560e01c80638065657f116100ec578063bc197c811161008a578063d547741f11610064578063d547741f14610582578063e38335e5146105a2578063f23a6e61146105b5578063f27a0c92146105e157600080fd5b8063bc197c8114610509578063c4d252f514610535578063d45c44351461055557600080fd5b806391d14854116100c657806391d1485414610480578063a217fddf146104a0578063b08e51c0146104b5578063b1c5f427146104e957600080fd5b80638065657f1461040c5780638f2a0bb01461042c5780638f61f4f51461044c57600080fd5b8063248a9ca31161015957806331d507501161013357806331d507501461038c57806336568abe146103ac578063584b153e146103cc57806364d62353146103ec57600080fd5b8063248a9ca31461030b5780632ab0f5291461033b5780632f2ff15d1461036c57600080fd5b80630d3cf6fc116101955780630d3cf6fc14610260578063134008d31461029457806313bc9f20146102a7578063150b7a02146102c757600080fd5b806301d5062a146101c757806301ffc9a7146101e957806307bd02651461021e57600080fd5b366101c257005b600080fd5b3480156101d357600080fd5b506101e76101e2366004611442565b6105f6565b005b3480156101f557600080fd5b506102096102043660046114b6565b6106cc565b60405190151581526020015b60405180910390f35b34801561022a57600080fd5b506102527fd8aa0f3194971a2a116679f7c2090f6939c8d4e01a2a8d7e41d55e5351469e6381565b604051908152602001610215565b34801561026c57600080fd5b506102527f5f58e3a2316349923ce3780f8d587db2d72378aed66a8261c916544fa6846ca581565b6101e76102a23660046114e0565b6106f7565b3480156102b357600080fd5b506102096102c236600461154b565b6107ac565b3480156102d357600080fd5b506102f26102e2366004611619565b630a85bd0160e11b949350505050565b6040516001600160e01b03199091168152602001610215565b34801561031757600080fd5b5061025261032636600461154b565b60009081526020819052604090206001015490565b34801561034757600080fd5b5061020961035636600461154b565b6000908152600160208190526040909120541490565b34801561037857600080fd5b506101e7610387366004611680565b6107d2565b34801561039857600080fd5b506102096103a736600461154b565b6107fc565b3480156103b857600080fd5b506101e76103c7366004611680565b610815565b3480156103d857600080fd5b506102096103e736600461154b565b610898565b3480156103f857600080fd5b506101e761040736600461154b565b6108ae565b34801561041857600080fd5b506102526104273660046114e0565b610952565b34801561043857600080fd5b506101e76104473660046116f0565b610991565b34801561045857600080fd5b506102527fb09aa5aeb3702cfd50b6b62bc4532604938f21248a27a1d5ca736082b6819cc181565b34801561048c57600080fd5b5061020961049b366004611680565b610b24565b3480156104ac57600080fd5b50610252600081565b3480156104c157600080fd5b506102527ffd643c72710c63c0180259aba6b2d05451e3591a24e58b62239378085726f78381565b3480156104f557600080fd5b506102526105043660046117a1565b610b4d565b34801561051557600080fd5b506102f26105243660046118c8565b63bc197c8160e01b95945050505050565b34801561054157600080fd5b506101e761055036600461154b565b610b92565b34801561056157600080fd5b5061025261057036600461154b565b60009081526001602052604090205490565b34801561058e57600080fd5b506101e761059d366004611680565b610c67565b6101e76105b03660046117a1565b610c8c565b3480156105c157600080fd5b506102f26105d0366004611971565b63f23a6e6160e01b95945050505050565b3480156105ed57600080fd5b50600254610252565b7fb09aa5aeb3702cfd50b6b62bc4532604938f21248a27a1d5ca736082b6819cc161062081610e16565b6000610630898989898989610952565b905061063c8184610e23565b6000817f4cf4410cc57040e44862ef0f45f3dd5a5e02db8eb8add648d4b0e236f1d07dca8b8b8b8b8b8a604051610678969594939291906119fe565b60405180910390a383156106c157807f20fda5fd27a1ea7bf5b9567f143ac5470bb059374a27e8f67cb44f946f6d0387856040516106b891815260200190565b60405180910390a25b505050505050505050565b60006001600160e01b03198216630271189760e51b14806106f157506106f182610f12565b92915050565b7fd8aa0f3194971a2a116679f7c2090f6939c8d4e01a2a8d7e41d55e5351469e63610723816000610b24565b610731576107318133610f47565b6000610741888888888888610952565b905061074d8185610fa0565b6107598888888861103c565b6000817fc2617efa69bab66782fa219543714338489c4e9e178271560a91b82c3f612b588a8a8a8a6040516107919493929190611a3b565b60405180910390a36107a28161110f565b5050505050505050565b6000818152600160205260408120546001811180156107cb5750428111155b9392505050565b6000828152602081905260409020600101546107ed81610e16565b6107f78383611148565b505050565b60008181526001602052604081205481905b1192915050565b6001600160a01b038116331461088a5760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b60648201526084015b60405180910390fd5b61089482826111cc565b5050565b600081815260016020819052604082205461080e565b3330146109115760405162461bcd60e51b815260206004820152602b60248201527f54696d656c6f636b436f6e74726f6c6c65723a2063616c6c6572206d7573742060448201526a62652074696d656c6f636b60a81b6064820152608401610881565b60025460408051918252602082018390527f11c24f4ead16507c69ac467fbd5e4eed5fb5c699626d2cc6d66421df253886d5910160405180910390a1600255565b600086868686868660405160200161096f969594939291906119fe565b6040516020818303038152906040528051906020012090509695505050505050565b7fb09aa5aeb3702cfd50b6b62bc4532604938f21248a27a1d5ca736082b6819cc16109bb81610e16565b8887146109da5760405162461bcd60e51b815260040161088190611a6d565b8885146109f95760405162461bcd60e51b815260040161088190611a6d565b6000610a0b8b8b8b8b8b8b8b8b610b4d565b9050610a178184610e23565b60005b8a811015610ad55780827f4cf4410cc57040e44862ef0f45f3dd5a5e02db8eb8add648d4b0e236f1d07dca8e8e85818110610a5757610a57611ab0565b9050602002016020810190610a6c9190611ac6565b8d8d86818110610a7e57610a7e611ab0565b905060200201358c8c87818110610a9757610a97611ab0565b9050602002810190610aa99190611ae1565b8c8b604051610abd969594939291906119fe565b60405180910390a3610ace81611b3d565b9050610a1a565b508315610b1757807f20fda5fd27a1ea7bf5b9567f143ac5470bb059374a27e8f67cb44f946f6d038785604051610b0e91815260200190565b60405180910390a25b5050505050505050505050565b6000918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b60008888888888888888604051602001610b6e989796959493929190611be7565b60405160208183030381529060405280519060200120905098975050505050505050565b7ffd643c72710c63c0180259aba6b2d05451e3591a24e58b62239378085726f783610bbc81610e16565b610bc582610898565b610c2b5760405162461bcd60e51b815260206004820152603160248201527f54696d656c6f636b436f6e74726f6c6c65723a206f7065726174696f6e2063616044820152701b9b9bdd0818994818d85b98d95b1b1959607a1b6064820152608401610881565b6000828152600160205260408082208290555183917fbaa1eb22f2a492ba1a5fea61b8df4d27c6c8b5f3971e63bb58fa14ff72eedb7091a25050565b600082815260208190526040902060010154610c8281610e16565b6107f783836111cc565b7fd8aa0f3194971a2a116679f7c2090f6939c8d4e01a2a8d7e41d55e5351469e63610cb8816000610b24565b610cc657610cc68133610f47565b878614610ce55760405162461bcd60e51b815260040161088190611a6d565b878414610d045760405162461bcd60e51b815260040161088190611a6d565b6000610d168a8a8a8a8a8a8a8a610b4d565b9050610d228185610fa0565b60005b89811015610e005760008b8b83818110610d4157610d41611ab0565b9050602002016020810190610d569190611ac6565b905060008a8a84818110610d6c57610d6c611ab0565b9050602002013590503660008a8a86818110610d8a57610d8a611ab0565b9050602002810190610d9c9190611ae1565b91509150610dac8484848461103c565b84867fc2617efa69bab66782fa219543714338489c4e9e178271560a91b82c3f612b5886868686604051610de39493929190611a3b565b60405180910390a35050505080610df990611b3d565b9050610d25565b50610e0a8161110f565b50505050505050505050565b610e208133610f47565b50565b610e2c826107fc565b15610e915760405162461bcd60e51b815260206004820152602f60248201527f54696d656c6f636b436f6e74726f6c6c65723a206f7065726174696f6e20616c60448201526e1c9958591e481cd8da19591d5b1959608a1b6064820152608401610881565b600254811015610ef25760405162461bcd60e51b815260206004820152602660248201527f54696d656c6f636b436f6e74726f6c6c65723a20696e73756666696369656e746044820152652064656c617960d01b6064820152608401610881565b610efc8142611c88565b6000928352600160205260409092209190915550565b60006001600160e01b03198216637965db0b60e01b14806106f157506301ffc9a760e01b6001600160e01b03198316146106f1565b610f518282610b24565b61089457610f5e81611231565b610f69836020611243565b604051602001610f7a929190611cbf565b60408051601f198184030181529082905262461bcd60e51b825261088191600401611d34565b610fa9826107ac565b610fc55760405162461bcd60e51b815260040161088190611d67565b801580610fe15750600081815260016020819052604090912054145b6108945760405162461bcd60e51b815260206004820152602660248201527f54696d656c6f636b436f6e74726f6c6c65723a206d697373696e6720646570656044820152656e64656e637960d01b6064820152608401610881565b6000846001600160a01b0316848484604051611059929190611db1565b60006040518083038185875af1925050503d8060008114611096576040519150601f19603f3d011682016040523d82523d6000602084013e61109b565b606091505b50509050806111085760405162461bcd60e51b815260206004820152603360248201527f54696d656c6f636b436f6e74726f6c6c65723a20756e6465726c79696e6720746044820152721c985b9cd858dd1a5bdb881c995d995c9d1959606a1b6064820152608401610881565b5050505050565b611118816107ac565b6111345760405162461bcd60e51b815260040161088190611d67565b600090815260016020819052604090912055565b6111528282610b24565b610894576000828152602081815260408083206001600160a01b03851684529091529020805460ff191660011790556111883390565b6001600160a01b0316816001600160a01b0316837f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45050565b6111d68282610b24565b15610894576000828152602081815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45050565b60606106f16001600160a01b03831660145b60606000611252836002611dc1565b61125d906002611c88565b6001600160401b0381111561127457611274611564565b6040519080825280601f01601f19166020018201604052801561129e576020820181803683370190505b509050600360fc1b816000815181106112b9576112b9611ab0565b60200101906001600160f81b031916908160001a905350600f60fb1b816001815181106112e8576112e8611ab0565b60200101906001600160f81b031916908160001a905350600061130c846002611dc1565b611317906001611c88565b90505b600181111561138f576f181899199a1a9b1b9c1cb0b131b232b360811b85600f166010811061134b5761134b611ab0565b1a60f81b82828151811061136157611361611ab0565b60200101906001600160f81b031916908160001a90535060049490941c9361138881611dd8565b905061131a565b5083156107cb5760405162461bcd60e51b815260206004820181905260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152606401610881565b80356001600160a01b03811681146113f557600080fd5b919050565b60008083601f84011261140c57600080fd5b5081356001600160401b0381111561142357600080fd5b60208301915083602082850101111561143b57600080fd5b9250929050565b600080600080600080600060c0888a03121561145d57600080fd5b611466886113de565b96506020880135955060408801356001600160401b0381111561148857600080fd5b6114948a828b016113fa565b989b979a50986060810135976080820135975060a09091013595509350505050565b6000602082840312156114c857600080fd5b81356001600160e01b0319811681146107cb57600080fd5b60008060008060008060a087890312156114f957600080fd5b611502876113de565b95506020870135945060408701356001600160401b0381111561152457600080fd5b61153089828a016113fa565b979a9699509760608101359660809091013595509350505050565b60006020828403121561155d57600080fd5b5035919050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b03811182821017156115a2576115a2611564565b604052919050565b600082601f8301126115bb57600080fd5b81356001600160401b038111156115d4576115d4611564565b6115e7601f8201601f191660200161157a565b8181528460208386010111156115fc57600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000806080858703121561162f57600080fd5b611638856113de565b9350611646602086016113de565b92506040850135915060608501356001600160401b0381111561166857600080fd5b611674878288016115aa565b91505092959194509250565b6000806040838503121561169357600080fd5b823591506116a3602084016113de565b90509250929050565b60008083601f8401126116be57600080fd5b5081356001600160401b038111156116d557600080fd5b6020830191508360208260051b850101111561143b57600080fd5b600080600080600080600080600060c08a8c03121561170e57600080fd5b89356001600160401b038082111561172557600080fd5b6117318d838e016116ac565b909b50995060208c013591508082111561174a57600080fd5b6117568d838e016116ac565b909950975060408c013591508082111561176f57600080fd5b5061177c8c828d016116ac565b9a9d999c50979a969997986060880135976080810135975060a0013595509350505050565b60008060008060008060008060a0898b0312156117bd57600080fd5b88356001600160401b03808211156117d457600080fd5b6117e08c838d016116ac565b909a50985060208b01359150808211156117f957600080fd5b6118058c838d016116ac565b909850965060408b013591508082111561181e57600080fd5b5061182b8b828c016116ac565b999c989b509699959896976060870135966080013595509350505050565b600082601f83011261185a57600080fd5b813560206001600160401b0382111561187557611875611564565b8160051b61188482820161157a565b928352848101820192828101908785111561189e57600080fd5b83870192505b848310156118bd578235825291830191908301906118a4565b979650505050505050565b600080600080600060a086880312156118e057600080fd5b6118e9866113de565b94506118f7602087016113de565b935060408601356001600160401b038082111561191357600080fd5b61191f89838a01611849565b9450606088013591508082111561193557600080fd5b61194189838a01611849565b9350608088013591508082111561195757600080fd5b50611964888289016115aa565b9150509295509295909350565b600080600080600060a0868803121561198957600080fd5b611992866113de565b94506119a0602087016113de565b9350604086013592506060860135915060808601356001600160401b038111156119c957600080fd5b611964888289016115aa565b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b60018060a01b038716815285602082015260a060408201526000611a2660a0830186886119d5565b60608301949094525060800152949350505050565b60018060a01b0385168152836020820152606060408201526000611a636060830184866119d5565b9695505050505050565b60208082526023908201527f54696d656c6f636b436f6e74726f6c6c65723a206c656e677468206d69736d616040820152620e8c6d60eb1b606082015260800190565b634e487b7160e01b600052603260045260246000fd5b600060208284031215611ad857600080fd5b6107cb826113de565b6000808335601e19843603018112611af857600080fd5b8301803591506001600160401b03821115611b1257600080fd5b60200191503681900382131561143b57600080fd5b634e487b7160e01b600052601160045260246000fd5b600060018201611b4f57611b4f611b27565b5060010190565b81835260006020808501808196508560051b810191508460005b87811015611bda5782840389528135601e19883603018112611b9157600080fd5b870185810190356001600160401b03811115611bac57600080fd5b803603821315611bbb57600080fd5b611bc68682846119d5565b9a87019a9550505090840190600101611b70565b5091979650505050505050565b60a0808252810188905260008960c08301825b8b811015611c28576001600160a01b03611c13846113de565b16825260209283019290910190600101611bfa565b5083810360208501528881526001600160fb1b03891115611c4857600080fd5b8860051b9150818a60208301370182810360209081016040850152611c709082018789611b56565b60608401959095525050608001529695505050505050565b808201808211156106f1576106f1611b27565b60005b83811015611cb6578181015183820152602001611c9e565b50506000910152565b7f416363657373436f6e74726f6c3a206163636f756e7420000000000000000000815260008351611cf7816017850160208801611c9b565b7001034b99036b4b9b9b4b733903937b6329607d1b6017918401918201528351611d28816028840160208801611c9b565b01602801949350505050565b6020815260008251806020840152611d53816040850160208701611c9b565b601f01601f19169190910160400192915050565b6020808252602a908201527f54696d656c6f636b436f6e74726f6c6c65723a206f7065726174696f6e206973604082015269206e6f7420726561647960b01b606082015260800190565b8183823760009101908152919050565b80820281158282048414176106f1576106f1611b27565b600081611de757611de7611b27565b50600019019056fea26469706673582212206f2774980646309e3db7914b3825cf9bed7901ad1ec6f2c62a9c0cdc5d02193d64736f6c63430008130033

Verified Source Code Full Match

Compiler: v0.8.19+commit.7dd6d404 EVM: paris Optimization: Yes (200 runs)
TimelockController.sol 445 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (governance/TimelockController.sol)

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";

/**
 * @dev Contract module which acts as a timelocked controller. When set as the
 * owner of an `Ownable` smart contract, it enforces a timelock on all
 * `onlyOwner` maintenance operations. This gives time for users of the
 * controlled contract to exit before a potentially dangerous maintenance
 * operation is applied.
 *
 * By default, this contract is self administered, meaning administration tasks
 * have to go through the timelock process. The proposer (resp executor) role
 * is in charge of proposing (resp executing) operations. A common use case is
 * to position this {TimelockController} as the owner of a smart contract, with
 * a multisig or a DAO as the sole proposer.
 *
 * _Available since v3.3._
 */
contract TimelockController is AccessControl, IERC721Receiver, IERC1155Receiver {
    bytes32 public constant TIMELOCK_ADMIN_ROLE = keccak256("TIMELOCK_ADMIN_ROLE");
    bytes32 public constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");
    bytes32 public constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");
    bytes32 public constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
    uint256 internal constant _DONE_TIMESTAMP = uint256(1);

    mapping(bytes32 => uint256) private _timestamps;
    uint256 private _minDelay;

    /**
     * @dev Emitted when a call is scheduled as part of operation `id`.
     */
    event CallScheduled(
        bytes32 indexed id,
        uint256 indexed index,
        address target,
        uint256 value,
        bytes data,
        bytes32 predecessor,
        uint256 delay
    );

    /**
     * @dev Emitted when a call is performed as part of operation `id`.
     */
    event CallExecuted(
        bytes32 indexed id,
        uint256 indexed index,
        address target,
        uint256 value,
        bytes data
    );

    /**
     * @dev Emitted when new proposal is scheduled with non-zero salt.
     */
    event CallSalt(bytes32 indexed id, bytes32 salt);

    /**
     * @dev Emitted when operation `id` is cancelled.
     */
    event Cancelled(bytes32 indexed id);

    /**
     * @dev Emitted when the minimum delay for future operations is modified.
     */
    event MinDelayChange(uint256 oldDuration, uint256 newDuration);

    /**
     * @dev Initializes the contract with the following parameters:
     *
     * - `minDelay`: initial minimum delay for operations
     * - `proposers`: accounts to be granted proposer and canceller roles
     * - `executors`: accounts to be granted executor role
     * - `admin`: optional account to be granted admin role; disable with zero address
     *
     * IMPORTANT: The optional admin can aid with initial configuration of roles after deployment
     * without being subject to delay, but this role should be subsequently renounced in favor of
     * administration through timelocked proposals. Previous versions of this contract would assign
     * this admin to the deployer automatically and should be renounced as well.
     */
    constructor(
        uint256 minDelay,
        address[] memory proposers,
        address[] memory executors,
        address admin
    ) {
        _setRoleAdmin(TIMELOCK_ADMIN_ROLE, TIMELOCK_ADMIN_ROLE);
        _setRoleAdmin(PROPOSER_ROLE, TIMELOCK_ADMIN_ROLE);
        _setRoleAdmin(EXECUTOR_ROLE, TIMELOCK_ADMIN_ROLE);
        _setRoleAdmin(CANCELLER_ROLE, TIMELOCK_ADMIN_ROLE);

        // self administration
        _setupRole(TIMELOCK_ADMIN_ROLE, address(this));

        // optional admin
        if (admin != address(0)) {
            _setupRole(TIMELOCK_ADMIN_ROLE, admin);
        }

        // register proposers and cancellers
        for (uint256 i = 0; i < proposers.length; ++i) {
            _setupRole(PROPOSER_ROLE, proposers[i]);
            _setupRole(CANCELLER_ROLE, proposers[i]);
        }

        // register executors
        for (uint256 i = 0; i < executors.length; ++i) {
            _setupRole(EXECUTOR_ROLE, executors[i]);
        }

        _minDelay = minDelay;
        emit MinDelayChange(0, minDelay);
    }

    /**
     * @dev Modifier to make a function callable only by a certain role. In
     * addition to checking the sender's role, `address(0)` 's role is also
     * considered. Granting a role to `address(0)` is equivalent to enabling
     * this role for everyone.
     */
    modifier onlyRoleOrOpenRole(bytes32 role) {
        if (!hasRole(role, address(0))) {
            _checkRole(role, _msgSender());
        }
        _;
    }

    /**
     * @dev Contract might receive/hold ETH as part of the maintenance process.
     */
    receive() external payable {}

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(
        bytes4 interfaceId
    ) public view virtual override(IERC165, AccessControl) returns (bool) {
        return
            interfaceId == type(IERC1155Receiver).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns whether an id correspond to a registered operation. This
     * includes both Pending, Ready and Done operations.
     */
    function isOperation(bytes32 id) public view virtual returns (bool) {
        return getTimestamp(id) > 0;
    }

    /**
     * @dev Returns whether an operation is pending or not. Note that a "pending" operation may also be "ready".
     */
    function isOperationPending(bytes32 id) public view virtual returns (bool) {
        return getTimestamp(id) > _DONE_TIMESTAMP;
    }

    /**
     * @dev Returns whether an operation is ready for execution. Note that a "ready" operation is also "pending".
     */
    function isOperationReady(bytes32 id) public view virtual returns (bool) {
        uint256 timestamp = getTimestamp(id);
        return timestamp > _DONE_TIMESTAMP && timestamp <= block.timestamp;
    }

    /**
     * @dev Returns whether an operation is done or not.
     */
    function isOperationDone(bytes32 id) public view virtual returns (bool) {
        return getTimestamp(id) == _DONE_TIMESTAMP;
    }

    /**
     * @dev Returns the timestamp at which an operation becomes ready (0 for
     * unset operations, 1 for done operations).
     */
    function getTimestamp(bytes32 id) public view virtual returns (uint256) {
        return _timestamps[id];
    }

    /**
     * @dev Returns the minimum delay for an operation to become valid.
     *
     * This value can be changed by executing an operation that calls `updateDelay`.
     */
    function getMinDelay() public view virtual returns (uint256) {
        return _minDelay;
    }

    /**
     * @dev Returns the identifier of an operation containing a single
     * transaction.
     */
    function hashOperation(
        address target,
        uint256 value,
        bytes calldata data,
        bytes32 predecessor,
        bytes32 salt
    ) public pure virtual returns (bytes32) {
        return keccak256(abi.encode(target, value, data, predecessor, salt));
    }

    /**
     * @dev Returns the identifier of an operation containing a batch of
     * transactions.
     */
    function hashOperationBatch(
        address[] calldata targets,
        uint256[] calldata values,
        bytes[] calldata payloads,
        bytes32 predecessor,
        bytes32 salt
    ) public pure virtual returns (bytes32) {
        return keccak256(abi.encode(targets, values, payloads, predecessor, salt));
    }

    /**
     * @dev Schedule an operation containing a single transaction.
     *
     * Emits {CallSalt} if salt is nonzero, and {CallScheduled}.
     *
     * Requirements:
     *
     * - the caller must have the 'proposer' role.
     */
    function schedule(
        address target,
        uint256 value,
        bytes calldata data,
        bytes32 predecessor,
        bytes32 salt,
        uint256 delay
    ) public virtual onlyRole(PROPOSER_ROLE) {
        bytes32 id = hashOperation(target, value, data, predecessor, salt);
        _schedule(id, delay);
        emit CallScheduled(id, 0, target, value, data, predecessor, delay);
        if (salt != bytes32(0)) {
            emit CallSalt(id, salt);
        }
    }

    /**
     * @dev Schedule an operation containing a batch of transactions.
     *
     * Emits {CallSalt} if salt is nonzero, and one {CallScheduled} event per transaction in the batch.
     *
     * Requirements:
     *
     * - the caller must have the 'proposer' role.
     */
    function scheduleBatch(
        address[] calldata targets,
        uint256[] calldata values,
        bytes[] calldata payloads,
        bytes32 predecessor,
        bytes32 salt,
        uint256 delay
    ) public virtual onlyRole(PROPOSER_ROLE) {
        require(targets.length == values.length, "TimelockController: length mismatch");
        require(targets.length == payloads.length, "TimelockController: length mismatch");

        bytes32 id = hashOperationBatch(targets, values, payloads, predecessor, salt);
        _schedule(id, delay);
        for (uint256 i = 0; i < targets.length; ++i) {
            emit CallScheduled(id, i, targets[i], values[i], payloads[i], predecessor, delay);
        }
        if (salt != bytes32(0)) {
            emit CallSalt(id, salt);
        }
    }

    /**
     * @dev Schedule an operation that is to become valid after a given delay.
     */
    function _schedule(bytes32 id, uint256 delay) private {
        require(!isOperation(id), "TimelockController: operation already scheduled");
        require(delay >= getMinDelay(), "TimelockController: insufficient delay");
        _timestamps[id] = block.timestamp + delay;
    }

    /**
     * @dev Cancel an operation.
     *
     * Requirements:
     *
     * - the caller must have the 'canceller' role.
     */
    function cancel(bytes32 id) public virtual onlyRole(CANCELLER_ROLE) {
        require(isOperationPending(id), "TimelockController: operation cannot be cancelled");
        delete _timestamps[id];

        emit Cancelled(id);
    }

    /**
     * @dev Execute an (ready) operation containing a single transaction.
     *
     * Emits a {CallExecuted} event.
     *
     * Requirements:
     *
     * - the caller must have the 'executor' role.
     */
    // This function can reenter, but it doesn't pose a risk because _afterCall checks that the proposal is pending,
    // thus any modifications to the operation during reentrancy should be caught.
    // slither-disable-next-line reentrancy-eth
    function execute(
        address target,
        uint256 value,
        bytes calldata payload,
        bytes32 predecessor,
        bytes32 salt
    ) public payable virtual onlyRoleOrOpenRole(EXECUTOR_ROLE) {
        bytes32 id = hashOperation(target, value, payload, predecessor, salt);

        _beforeCall(id, predecessor);
        _execute(target, value, payload);
        emit CallExecuted(id, 0, target, value, payload);
        _afterCall(id);
    }

    /**
     * @dev Execute an (ready) operation containing a batch of transactions.
     *
     * Emits one {CallExecuted} event per transaction in the batch.
     *
     * Requirements:
     *
     * - the caller must have the 'executor' role.
     */
    // This function can reenter, but it doesn't pose a risk because _afterCall checks that the proposal is pending,
    // thus any modifications to the operation during reentrancy should be caught.
    // slither-disable-next-line reentrancy-eth
    function executeBatch(
        address[] calldata targets,
        uint256[] calldata values,
        bytes[] calldata payloads,
        bytes32 predecessor,
        bytes32 salt
    ) public payable virtual onlyRoleOrOpenRole(EXECUTOR_ROLE) {
        require(targets.length == values.length, "TimelockController: length mismatch");
        require(targets.length == payloads.length, "TimelockController: length mismatch");

        bytes32 id = hashOperationBatch(targets, values, payloads, predecessor, salt);

        _beforeCall(id, predecessor);
        for (uint256 i = 0; i < targets.length; ++i) {
            address target = targets[i];
            uint256 value = values[i];
            bytes calldata payload = payloads[i];
            _execute(target, value, payload);
            emit CallExecuted(id, i, target, value, payload);
        }
        _afterCall(id);
    }

    /**
     * @dev Execute an operation's call.
     */
    function _execute(address target, uint256 value, bytes calldata data) internal virtual {
        (bool success, ) = target.call{ value: value }(data);
        require(success, "TimelockController: underlying transaction reverted");
    }

    /**
     * @dev Checks before execution of an operation's calls.
     */
    function _beforeCall(bytes32 id, bytes32 predecessor) private view {
        require(isOperationReady(id), "TimelockController: operation is not ready");
        require(
            predecessor == bytes32(0) || isOperationDone(predecessor),
            "TimelockController: missing dependency"
        );
    }

    /**
     * @dev Checks after execution of an operation's calls.
     */
    function _afterCall(bytes32 id) private {
        require(isOperationReady(id), "TimelockController: operation is not ready");
        _timestamps[id] = _DONE_TIMESTAMP;
    }

    /**
     * @dev Changes the minimum timelock duration for future operations.
     *
     * Emits a {MinDelayChange} event.
     *
     * Requirements:
     *
     * - the caller must be the timelock itself. This can only be achieved by scheduling and later executing
     * an operation where the timelock is the target and the data is the ABI-encoded call to this function.
     */
    function updateDelay(uint256 newDelay) external virtual {
        require(msg.sender == address(this), "TimelockController: caller must be timelock");
        emit MinDelayChange(_minDelay, newDelay);
        _minDelay = newDelay;
    }

    /**
     * @dev See {IERC721Receiver-onERC721Received}.
     */
    function onERC721Received(
        address,
        address,
        uint256,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC721Received.selector;
    }

    /**
     * @dev See {IERC1155Receiver-onERC1155Received}.
     */
    function onERC1155Received(
        address,
        address,
        uint256,
        uint256,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC1155Received.selector;
    }

    /**
     * @dev See {IERC1155Receiver-onERC1155BatchReceived}.
     */
    function onERC1155BatchReceived(
        address,
        address,
        uint256[] memory,
        uint256[] memory,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC1155BatchReceived.selector;
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
AccessControl.sol 248 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
IAccessControl.sol 88 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
ERC165.sol 29 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
IERC721Receiver.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
IERC1155Receiver.sol 58 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev _Available since v3.1._
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

Read Contract

CANCELLER_ROLE 0xb08e51c0 → bytes32
DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
EXECUTOR_ROLE 0x07bd0265 → bytes32
PROPOSER_ROLE 0x8f61f4f5 → bytes32
TIMELOCK_ADMIN_ROLE 0x0d3cf6fc → bytes32
getMinDelay 0xf27a0c92 → uint256
getRoleAdmin 0x248a9ca3 → bytes32
getTimestamp 0xd45c4435 → uint256
hasRole 0x91d14854 → bool
hashOperation 0x8065657f → bytes32
hashOperationBatch 0xb1c5f427 → bytes32
isOperation 0x31d50750 → bool
isOperationDone 0x2ab0f529 → bool
isOperationPending 0x584b153e → bool
isOperationReady 0x13bc9f20 → bool
supportsInterface 0x01ffc9a7 → bool

Write Contract 12 functions

These functions modify contract state and require a wallet transaction to execute.

cancel 0xc4d252f5
bytes32 id
execute 0x134008d3
address target
uint256 value
bytes payload
bytes32 predecessor
bytes32 salt
executeBatch 0xe38335e5
address[] targets
uint256[] values
bytes[] payloads
bytes32 predecessor
bytes32 salt
grantRole 0x2f2ff15d
bytes32 role
address account
onERC1155BatchReceived 0xbc197c81
address
address
uint256[]
uint256[]
bytes
returns: bytes4
onERC1155Received 0xf23a6e61
address
address
uint256
uint256
bytes
returns: bytes4
onERC721Received 0x150b7a02
address
address
uint256
bytes
returns: bytes4
renounceRole 0x36568abe
bytes32 role
address account
revokeRole 0xd547741f
bytes32 role
address account
schedule 0x01d5062a
address target
uint256 value
bytes data
bytes32 predecessor
bytes32 salt
uint256 delay
scheduleBatch 0x8f2a0bb0
address[] targets
uint256[] values
bytes[] payloads
bytes32 predecessor
bytes32 salt
uint256 delay
updateDelay 0x64d62353
uint256 newDelay

Recent Transactions

No transactions found for this address