Cryo Explorer Ethereum Mainnet

Address Contract Partially Verified

Address 0x8a63B7D2B66FB054705731Cc7964b05e7Ad095cF
Balance 0 ETH
Nonce 1
Code Size 6126 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

6126 bytes
0x608060405234801561001057600080fd5b506004361061018d5760003560e01c80637215774a116100de5780638da5cb5b116100975780639d6fa618116100715780639d6fa6181461037f5780639ee679e814610392578063b296fc79146103a5578063cd94b338146103b857600080fd5b80638da5cb5b1461035357806392fede00146103645780639d1105301461036c57600080fd5b80637215774a146102f45780637836a61114610314578063787a08a6146103275780637a29e80b146103305780637b371107146103435780638456cb591461034b57600080fd5b80634134fa5f1161014b57806358f18bfb1161012557806358f18bfb146102995780635c975abb146102ac5780635eb7413a146102be5780635f992fdd146102ec57600080fd5b80634134fa5f14610260578063441a3e70146102735780634fc3f41a1461028657600080fd5b80627fc3f214610192578063026508d1146101d65780630ba876d8146102095780631788d6b21461021e5780632daa7555146102315780633f4ba83a14610258575b600080fd5b6101b97f00000000000000000000000009d6f0f5a21f5be4f59e209747e2d07f50bc694c81565b6040516001600160a01b0390911681526020015b60405180910390f35b6101f96101e43660046114cf565b60066020526000908152604090205460ff1681565b60405190151581526020016101cd565b61021c610217366004611504565b6103cb565b005b61021c61022c366004611530565b6104b2565b6101b97f000000000000000000000000bf72e7c502bf088b0ff674c67d569da1304faab881565b61021c6104fe565b6002546101b9906001600160a01b031681565b61021c610281366004611552565b610532565b61021c6102943660046114cf565b61076b565b61021c6102a73660046114cf565b61079a565b600154600160a01b900460ff166101f9565b6102de6102cc366004611530565b60046020526000908152604090205481565b6040519081526020016101cd565b61021c6107a8565b6102de610302366004611530565b60056020526000908152604090205481565b61021c6103223660046114cf565b610814565b6102de60035481565b61021c61033e366004611552565b61081e565b61021c610891565b61021c610900565b6000546001600160a01b03166101b9565b61021c610932565b61021c61037a3660046115c0565b61095c565b61021c61038d366004611530565b610a02565b61021c6103a03660046114cf565b610ab3565b61021c6103b336600461162c565b610cd1565b61021c6103c63660046115c0565b610ce8565b604051634786437d60e11b81523360048201527f000000000000000000000000bf72e7c502bf088b0ff674c67d569da1304faab86001600160a01b031690638f0c86fa90602401602060405180830381865afa15801561042f573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061045391906116a6565b6104a45760405162461bcd60e51b815260206004820152601b60248201527f4f6e6c792072656769737465726564206469737472696275746f72000000000060448201526064015b60405180910390fd5b6104ae8282610d87565b5050565b6000546001600160a01b031633146104dc5760405162461bcd60e51b815260040161049b906116c8565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6000546001600160a01b031633146105285760405162461bcd60e51b815260040161049b906116c8565b610530610ea0565b565b61053a610ef5565b336000818152600460205260409020548311156105995760405162461bcd60e51b815260206004820152601760248201527f776974686472617720616d6f756e74203e20746f74616c000000000000000000604482015260640161049b565b600354156105ff576003546105ae9083611713565b4210156105ef5760405162461bcd60e51b815260206004820152600f60248201526e0636f6f6c646f776e206e6f7420757608c1b604482015260640161049b565b6105fa838284610f42565b6106c1565b6001600160a01b0381166000908152600560205260409020541561065a5760405162461bcd60e51b81526020600482015260126024820152711bdb19081c995c5d595cdd1cc8195e1a5cdd60721b604482015260640161049b565b600254604051637eee288d60e01b81526001600160a01b0383811660048301526024820186905290911690637eee288d90604401600060405180830381600087803b1580156106a857600080fd5b505af11580156106bc573d6000803e3d6000fd5b505050505b6001600160a01b038116600090815260046020526040812080548592906106e990849061172c565b9091555061072390506001600160a01b037f00000000000000000000000009d6f0f5a21f5be4f59e209747e2d07f50bc694c168285611098565b806001600160a01b03167f8c7cdad0d12a8db3e23561b42da6f10c8137914c97beff202213a410e1f520a38460405161075e91815260200190565b60405180910390a2505050565b6000546001600160a01b031633146107955760405162461bcd60e51b815260040161049b906116c8565b600355565b6107a5816000610532565b50565b6001546001600160a01b031633146108025760405162461bcd60e51b815260206004820152601c60248201527f4f776e61626c653a206e6f74206f776e65722063616e64696461746500000000604482015260640161049b565b600180546001600160a01b0319169055565b6107a58133610d87565b610829823383610f42565b60025460405163282d3fdf60e01b8152336004820152602481018490526001600160a01b039091169063282d3fdf90604401600060405180830381600087803b15801561087557600080fd5b505af1158015610889573d6000803e3d6000fd5b505050505050565b6001546001600160a01b031633146108eb5760405162461bcd60e51b815260206004820152601c60248201527f4f776e61626c653a206e6f74206f776e65722063616e64696461746500000000604482015260640161049b565b600154610802906001600160a01b0316611100565b6000546001600160a01b0316331461092a5760405162461bcd60e51b815260040161049b906116c8565b610530611150565b6000546001600160a01b031633146108025760405162461bcd60e51b815260040161049b906116c8565b8281146109a65760405162461bcd60e51b81526020600482015260186024820152770e0c2e4c2dacae8cae440c2e4d2e8f240dad2e6dac2e8c6d60431b604482015260640161049b565b60005b838110156109fb576109eb8585838181106109c6576109c661173f565b905060200201358484848181106109df576109df61173f565b90506020020135610532565b6109f481611755565b90506109a9565b5050505050565b6000546001600160a01b03163314610a2c5760405162461bcd60e51b815260040161049b906116c8565b6001600160a01b038116610a915760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161049b565b600180546001600160a01b0319166001600160a01b0392909216919091179055565b610abb610ef5565b33600081815260046020908152604080832054600590925290912054610ae19084611713565b1115610b2f5760405162461bcd60e51b815260206004820152601760248201527f7265717565737420616d6f756e7473203e20746f74616c000000000000000000604482015260640161049b565b600060035411610b815760405162461bcd60e51b815260206004820152601a60248201527f6f6e6c79207768656e20636f6f6c646f776e20656e61626c6564000000000000604482015260640161049b565b6000610b8e838342611193565b60008181526006602052604090205490915060ff1615610be45760405162461bcd60e51b8152602060048201526011602482015270191d5c1b1a58d85d19481c995c5d595cdd607a1b604482015260640161049b565b6001600160a01b03821660009081526005602052604081208054859290610c0c908490611713565b909155505060008181526006602052604090819020805460ff191660011790556002549051637eee288d60e01b81526001600160a01b0384811660048301526024820186905290911690637eee288d90604401600060405180830381600087803b158015610c7957600080fd5b505af1158015610c8d573d6000803e3d6000fd5b5050604080518681524260208201526001600160a01b03861693507f6620e1bb18901e7cc06eb4c152cbf61f7f069350e9cf118060d463c4e5430ba092500161075e565b610cdd84848484610ce8565b6109fb856000610532565b828114610d325760405162461bcd60e51b81526020600482015260186024820152770e0c2e4c2dacae8cae440c2e4d2e8f240dad2e6dac2e8c6d60431b604482015260640161049b565b60005b838110156109fb57610d77858583818110610d5257610d5261173f565b90506020020135848484818110610d6b57610d6b61173f565b9050602002013561081e565b610d8081611755565b9050610d35565b610d8f610ef5565b6001600160a01b03811660009081526004602052604081208054849290610db7908490611713565b909155505060025460405163282d3fdf60e01b81526001600160a01b038381166004830152602482018590529091169063282d3fdf90604401600060405180830381600087803b158015610e0a57600080fd5b505af1158015610e1e573d6000803e3d6000fd5b50610e599250506001600160a01b037f00000000000000000000000009d6f0f5a21f5be4f59e209747e2d07f50bc694c1690503330856111dc565b806001600160a01b03167f748bbc70c40b2e3e3b828688a7a7d8c2afb1e06ebe33406a029f4e985f94e07a83604051610e9491815260200190565b60405180910390a25050565b610ea861121a565b6001805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b600154600160a01b900460ff16156105305760405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b604482015260640161049b565b610f4a610ef5565b6000610f57848484611193565b60008181526006602052604090205490915060ff16610fa55760405162461bcd60e51b815260206004820152600a6024820152691b9bc81c995c5d595cdd60b21b604482015260640161049b565b6001600160a01b03831660009081526005602052604090205484111561100d5760405162461bcd60e51b815260206004820152601760248201527f616d6f756e74203e2072657175657374416d6f756e7473000000000000000000604482015260640161049b565b6000818152600660209081526040808320805460ff191690556001600160a01b038616835260059091528120805486929061104990849061172c565b909155505060408051858152602081018490526001600160a01b038516917f8beac21ec0206d8057c3ea48edd216fd5e5346e0cdedf004fe19773ebed39d62910160405180910390a250505050565b6040516001600160a01b0383166024820152604481018290526110fb90849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261126a565b505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b611158610ef5565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610ed83390565b6040805160208082019590955260609390931b6bffffffffffffffffffffffff191683820152605480840192909252805180840390920182526074909201909152805191012090565b6040516001600160a01b03808516602483015283166044820152606481018290526112149085906323b872dd60e01b906084016110c4565b50505050565b600154600160a01b900460ff166105305760405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b604482015260640161049b565b60006112bf826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661133f9092919063ffffffff16565b90508051600014806112e05750808060200190518101906112e091906116a6565b6110fb5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b606482015260840161049b565b606061134e8484600085611356565b949350505050565b6060824710156113b75760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b606482015260840161049b565b600080866001600160a01b031685876040516113d39190611792565b60006040518083038185875af1925050503d8060008114611410576040519150601f19603f3d011682016040523d82523d6000602084013e611415565b606091505b509150915061142687838387611431565b979650505050505050565b606083156114a0578251600003611499576001600160a01b0385163b6114995760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161049b565b508161134e565b61134e83838151156114b55781518083602001fd5b8060405162461bcd60e51b815260040161049b91906117ae565b6000602082840312156114e157600080fd5b5035919050565b80356001600160a01b03811681146114ff57600080fd5b919050565b6000806040838503121561151757600080fd5b82359150611527602084016114e8565b90509250929050565b60006020828403121561154257600080fd5b61154b826114e8565b9392505050565b6000806040838503121561156557600080fd5b50508035926020909101359150565b60008083601f84011261158657600080fd5b50813567ffffffffffffffff81111561159e57600080fd5b6020830191508360208260051b85010111156115b957600080fd5b9250929050565b600080600080604085870312156115d657600080fd5b843567ffffffffffffffff808211156115ee57600080fd5b6115fa88838901611574565b9096509450602087013591508082111561161357600080fd5b5061162087828801611574565b95989497509550505050565b60008060008060006060868803121561164457600080fd5b85359450602086013567ffffffffffffffff8082111561166357600080fd5b61166f89838a01611574565b9096509450604088013591508082111561168857600080fd5b5061169588828901611574565b969995985093965092949392505050565b6000602082840312156116b857600080fd5b8151801515811461154b57600080fd5b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b634e487b7160e01b600052601160045260246000fd5b80820180821115611726576117266116fd565b92915050565b81810381811115611726576117266116fd565b634e487b7160e01b600052603260045260246000fd5b600060018201611767576117676116fd565b5060010190565b60005b83811015611789578181015183820152602001611771565b50506000910152565b600082516117a481846020870161176e565b9190910192915050565b60208152600082518060208401526117cd81604085016020870161176e565b601f01601f1916919091016040019291505056fea164736f6c6343000813000a

Verified Source Code Partial Match

Compiler: v0.8.19+commit.7dd6d404 EVM: paris Optimization: Yes (200 runs)
TokenLock.sol 295 lines
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Pausable} from "@openzeppelin/contracts/security/Pausable.sol";

import "./NFTfiToken.sol";
import "./TokenUtilityAccounting.sol";
import "./DistributorRegistry.sol";
import "./TokenLock.sol";

import "./utils/Ownable.sol";

/**
 * @title TokenLock
 * @author NFTfi
 * @dev This contract allows users to lock tokens with a request-based withdrawal mechanism.
 * Cooldown functionality can be enabled or disabled (when cooldown=0)
 * With cooldown enabled, call requestWithdrawal and then withdraw after
 * the cooldown period (or cancel the request with deleteWithdrawRequest)
 * With cooldown disabled, directly withdraw without a corresponding request
 * Locked amounts are recorded in a `TokenUtilityAccounting` contract to maintain a weighted average for locked amounts.
 */
contract TokenLock is Ownable, Pausable {
    using SafeERC20 for NFTfiToken;

    // Contract that calculates a token utility score with a (locked) time based multiplier.
    // Optional, can be left zero-address and added in the future.
    TokenUtilityAccounting public tokenUtilityAccounting;
    NFTfiToken public immutable nftfiToken;

    // Cooldown time before a withdrawal can be executed in seconds
    uint256 public cooldown;

    mapping(address => uint256) public lockedTokens;

    mapping(address => uint256) public withdrawalRequestAmounts;

    mapping(bytes32 => bool) public withdrawRequests;

    DistributorRegistry public immutable distributorRegistry;

    /**
     * @dev Emitted when tokens are locked in the contract.
     * @param _amount The amount of tokens locked.
     * @param _user Address of the user who locked the tokens.
     */
    event Locked(uint256 _amount, address indexed _user);

    /**
     * @dev Emitted when a user requests to withdraw their tokens.
     * @param _amount The amount of tokens the user wants to withdraw.
     * @param _user Address of the user requesting the withdrawal.
     */
    event WithdrawalRequested(uint256 _amount, address indexed _user, uint256 _timestamp);

    /**
     * @dev Emitted when a user withdraws their tokens.
     * @param _amount The amount of tokens withdrawn.
     * @param _user Address of the user making the withdrawal.
     */
    event Withdrawn(uint256 _amount, address indexed _user);

    /**
     * @dev Emitted when a user's withdrawal request is deleted.
     * @param _amount The amount of tokens the user initially wanted to withdraw.
     * @param _user Address of the user whose request was deleted.
     * @param _timestamp When request was made (unix timstamp in seconds)
     */
    event WithdrawalRequestDeleted(uint256 _amount, address indexed _user, uint256 _timestamp);

    /**
     * @dev Initializes the contract, setting initial admin, token, distributor, and cooldown values.
     * @param _admin Admin's address.
     * @param _nftfiToken Address of the NFTFI token.
     * @param _cooldown Cooldown time in seconds.
     */
    constructor(
        address _admin,
        address _nftfiToken,
        address _distributorRegistry,
        address _tokenUtilityAccounting,
        uint256 _cooldown
    ) Ownable(_admin) {
        nftfiToken = NFTfiToken(_nftfiToken);
        tokenUtilityAccounting = TokenUtilityAccounting(_tokenUtilityAccounting);
        cooldown = _cooldown;
        distributorRegistry = DistributorRegistry(_distributorRegistry);
    }

    /**
     * @dev Allows the distributor to lock tokens on behalf of a beneficiary (claimer).
     * Only callable by the distributor
     * @param _amount Amount of tokens to lock.
     * @param _beneficiary Address of the beneficiary.
     */
    function distributorLockTokens(uint256 _amount, address _beneficiary) external {
        require(distributorRegistry.isDistributor(msg.sender), "Only registered distributor");
        _lockTokens(_amount, _beneficiary);
    }

    /**
     * @dev Allows a user to lock NFTfi tokens from their wallet.
     * When cooldown functionality is enabled, call requestWithdrawal to
     * start cooldown before being able to withdraw tokens after the cooldown period
     * @param _amount Amount of tokens to lock.
     */
    function externalLockTokens(uint256 _amount) external {
        _lockTokens(_amount, msg.sender);
    }

    /**
     * @dev Internal function to handle locking of tokens.
     * @param _amount Amount of tokens to lock.
     * @param _beneficiary Address for whom the tokens are being locked.
     */
    function _lockTokens(uint256 _amount, address _beneficiary) internal whenNotPaused {
        lockedTokens[_beneficiary] += _amount;
        tokenUtilityAccounting.lock(_beneficiary, _amount);
        nftfiToken.safeTransferFrom(msg.sender, address(this), _amount);
        emit Locked(_amount, _beneficiary);
    }

    /**
     * @dev Allows a user to request a withdrawal of their tokens.
     * @param _amount Amount of tokens to request for withdrawal.
     * Records the unlocked amount in the TokenUtilityAccounting contract.
     * This allows the utility contract to disregard the amount when
     * calculating the weighted average.
     */
    function requestWithdrawal(uint256 _amount) external whenNotPaused {
        address beneficiary = msg.sender;
        require(
            _amount + withdrawalRequestAmounts[beneficiary] <= lockedTokens[beneficiary],
            "request amounts > total"
        );
        require(cooldown > 0, "only when cooldown enabled");
        bytes32 requestHash = _calculateRequestHash(_amount, beneficiary, block.timestamp);
        require(!withdrawRequests[requestHash], "duplicate request");
        withdrawalRequestAmounts[beneficiary] += _amount;
        withdrawRequests[requestHash] = true;
        tokenUtilityAccounting.unlock(beneficiary, _amount);
        emit WithdrawalRequested(_amount, beneficiary, block.timestamp);
    }

    /**
     * @dev Deletes a withdrawal request and .
     * Records the amount as locked in the TokenUtilityAccounting contract.
     * This allows the utility contract to include the amount when calculating the weighted average.
     * @param _amount Amount of tokens that were requested for withdrawal.
     * @param _requestTimestamp Timestamp of the original withdrawal request.
     */
    function deleteWithdrawRequest(uint256 _amount, uint256 _requestTimestamp) public {
        _checkAndDeleteRequest(_amount, msg.sender, _requestTimestamp);
        tokenUtilityAccounting.lock(msg.sender, _amount);
    }

    /**
     * @dev Delete multiple withdrawal requests.
     * @param _amounts array of Amounts of tokens that were requested for withdrawal.
     * @param _requestTimestamps array of Timestamps of the original withdrawal request.
     */
    function deleteMultipleWithdrawRequests(uint256[] calldata _amounts, uint256[] calldata _requestTimestamps) public {
        require(_amounts.length == _requestTimestamps.length, "parameter arity mismatch");
        for (uint256 i = 0; i < _amounts.length; ++i) {
            deleteWithdrawRequest(_amounts[i], _requestTimestamps[i]);
        }
    }

    /**
     * @dev Allows a user to withdraw their tokens (to the sender wallet).
     * With cooldown enabled: expects a corresponding withdraw request and that the cooldown period has
     * elapsed since the request. In this case the request is verified and
     * deleted and we can assume that the amount was unlocked when the withdraw request was made.
     * With cooldown disabled: requires that there are no active requests and then records
     * the unlocking of the amount with the TokenUtilityAccounting contract.
     * @param _amount Amount of tokens to withdraw.
     * @param _requestTimestamp Timestamp of the original withdrawal request. Disregarded when
     * cooldown is disabled (the caller can pass in anything, say 0)
     */
    function withdraw(uint256 _amount, uint256 _requestTimestamp) public whenNotPaused {
        address beneficiary = msg.sender;
        require(_amount <= lockedTokens[beneficiary], "withdraw amount > total");
        if (cooldown > 0) {
            require(block.timestamp >= _requestTimestamp + cooldown, "cooldown not up");
            _checkAndDeleteRequest(_amount, beneficiary, _requestTimestamp);
        } else {
            // if cooldown is disabled old requests have to be deleted first
            require(withdrawalRequestAmounts[beneficiary] == 0, "old requests exist");
            // when cooldown is disabled, there is no corresponding withdraw request which
            // would have unlocked this amount and so we need to unlock the amount on withdrawal
            tokenUtilityAccounting.unlock(beneficiary, _amount);
        }

        lockedTokens[beneficiary] -= _amount;

        nftfiToken.safeTransfer(beneficiary, _amount);
        emit Withdrawn(_amount, beneficiary);
    }

    function withdrawNoCooldown(uint256 _amount) external {
        withdraw(_amount, 0);
    }

    function deleteRequestsAndWithdraw(
        uint256 _withdrawAmount,
        uint256[] calldata _requestAmounts,
        uint256[] calldata _requestTimestamps
    ) external {
        deleteMultipleWithdrawRequests(_requestAmounts, _requestTimestamps);
        withdraw(_withdrawAmount, 0);
    }

    /**
     * @dev Allows withdrawal of multiple requests, parameter arrays have to be the same length
     * @param _amounts Array of Amount of tokens to withdraw.
     * @param _requestTimestamps Timestamp of the original withdrawal request.
     */
    function withdrawMultiple(uint256[] calldata _amounts, uint256[] calldata _requestTimestamps) external {
        require(_amounts.length == _requestTimestamps.length, "parameter arity mismatch");
        for (uint256 i = 0; i < _amounts.length; ++i) {
            withdraw(_amounts[i], _requestTimestamps[i]);
        }
    }

    function _checkAndDeleteRequest(
        uint256 _amount,
        address _beneficiary,
        uint256 _requestTimestamp
    ) internal whenNotPaused {
        bytes32 requestHash = _calculateRequestHash(_amount, _beneficiary, _requestTimestamp);
        require(withdrawRequests[requestHash], "no request");
        require(_amount <= withdrawalRequestAmounts[_beneficiary], "amount > requestAmounts");
        delete withdrawRequests[requestHash];
        withdrawalRequestAmounts[_beneficiary] -= _amount;
        emit WithdrawalRequestDeleted(_amount, _beneficiary, _requestTimestamp);
    }

    /**
     * @dev Calculates the hash of a withdrawal request.
     * @param _amount Amount of tokens to withdraw.
     * @param _user Address of the user.
     * @param _timestamp Timestamp of the request.
     * @return Hash of the withdrawal request.
     */
    function _calculateRequestHash(
        uint256 _amount,
        address _user,
        uint256 _timestamp
    ) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(_amount, _user, _timestamp));
    }

    /**
     * @dev Allows the owner to set a new TokenUtilityAccounting contract.
     * @param _newTokenUtilityAccounting Address of the new TokenUtilityAccounting contract.
     */
    function setTokenUtilityAccounting(address _newTokenUtilityAccounting) external onlyOwner {
        tokenUtilityAccounting = TokenUtilityAccounting(_newTokenUtilityAccounting);
    }

    /**
     * @dev Sets up new cooldown period
     * cooldown checking feature can be turned off by setting it to 0
     * @param _cooldown - Cooldown time before a withdrawal can be executed after request in seconds
     */
    function setCooldown(uint256 _cooldown) external onlyOwner {
        cooldown = _cooldown;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - Only the owner can call this method.
     * - The contract must not be paused.
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - Only the owner can call this method.
     * - The contract must be paused.
     */
    function unpause() external onlyOwner {
        _unpause();
    }
}
NFTfiToken.sol 19 lines
// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

string constant NAME = "NFTfi";
string constant SYMBOL = "NFTFI";

/**
 * @title NFTfiToken
 * @author NFTfi
 * @dev standard ERC20 token
 */
contract NFTfiToken is ERC20Permit {
    constructor(uint256 _initialSupply, address _owner) ERC20(NAME, SYMBOL) ERC20Permit(NAME) {
        _mint(_owner, _initialSupply);
    }
}
Ownable.sol 83 lines
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.19;

import "@openzeppelin/contracts/utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 *
 * Modified version from openzeppelin/contracts/access/Ownable.sol that allows to
 * initialize the owner using a parameter in the constructor
 */
abstract contract Ownable is Context {
    address private _owner;

    address private _ownerCandidate;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor(address _initialOwner) {
        _setOwner(_initialOwner);
    }

    /**
     * @dev Requests transferring ownership of the contract to a new account (`_newOwnerCandidate`).
     * Can only be called by the current owner.
     */
    function requestTransferOwnership(address _newOwnerCandidate) public virtual onlyOwner {
        require(_newOwnerCandidate != address(0), "Ownable: new owner is the zero address");
        _ownerCandidate = _newOwnerCandidate;
    }

    function acceptTransferOwnership() public virtual {
        require(_ownerCandidate == _msgSender(), "Ownable: not owner candidate");
        _setOwner(_ownerCandidate);
        delete _ownerCandidate;
    }

    function cancelTransferOwnership() public virtual onlyOwner {
        delete _ownerCandidate;
    }

    function rejectTransferOwnership() public virtual {
        require(_ownerCandidate == _msgSender(), "Ownable: not owner candidate");
        delete _ownerCandidate;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Sets the owner.
     */
    function _setOwner(address _newOwner) internal {
        address oldOwner = _owner;
        _owner = _newOwner;
        emit OwnershipTransferred(oldOwner, _newOwner);
    }
}
MerkleDistributor.sol 141 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import {Pausable} from "@openzeppelin/contracts/security/Pausable.sol";

import "./NFTfiToken.sol";
import "./TokenLock.sol";

import "./utils/Ownable.sol";

/**
 * @title MerkleDistributor
 * @author NFTfi
 * @dev Modified version of Uniswap's MerkleDistributor
 * https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol
 * Main difference: in claim instead of transferring the tokens to the user,
 * we transfer it to the tokenLock contract
 */
contract MerkleDistributor is Ownable, Pausable {
    NFTfiToken public immutable nftfiToken;
    TokenLock public immutable tokenLock;
    address public immutable distributorRegistry;
    uint256 public immutable claimCutoffDate;

    bytes32 public merkleRoot;

    mapping(uint256 => uint256) private claimedBitMap;

    event Claimed(uint256 _index, uint256 _amount, bytes32[] _merkleProof, address indexed _account);

    /**
     * @dev Constructor initializes references for NFTfi token and TokenLock contract.
     * It also sets the owner of the contract.
     * @param _admin The initial owner of the contract, usually able to set Merkle roots.
     * @param _nftfiToken Address of the NFTfi token contract.
     * @param _tokenLock Address of the TokenLock contract where tokens are transferred upon claims.
     */
    constructor(
        bytes32 _merkleRoot,
        address _admin,
        address _nftfiToken,
        address _tokenLock,
        address _distributorRegistry,
        uint256 _claimCutoffDate
    ) Ownable(_admin) {
        merkleRoot = _merkleRoot;
        nftfiToken = NFTfiToken(_nftfiToken);
        tokenLock = TokenLock(_tokenLock);
        distributorRegistry = _distributorRegistry;
        claimCutoffDate = _claimCutoffDate;
    }

    function isClaimed(uint256 _index) public view returns (bool) {
        uint256 claimedWordIndex = _index / 256;
        uint256 claimedBitIndex = _index % 256;
        uint256 claimedWord = claimedBitMap[claimedWordIndex];
        uint256 mask = (1 << claimedBitIndex);
        return claimedWord & mask == mask;
    }

    function _setClaimed(uint256 _index) private {
        uint256 claimedWordIndex = _index / 256;
        uint256 claimedBitIndex = _index % 256;
        claimedBitMap[claimedWordIndex] = claimedBitMap[claimedWordIndex] | (1 << claimedBitIndex);
    }

    function claim(
        uint256 _index,
        uint256 _amount,
        bytes32[] memory _merkleProof
    ) external {
        _claim(_index, _amount, _merkleProof, msg.sender);
    }

    function claimFromRegistry(
        uint256 _index,
        uint256 _amount,
        bytes32[] memory _merkleProof,
        address _claimer
    ) external {
        require(msg.sender == distributorRegistry, "Only registry");
        _claim(_index, _amount, _merkleProof, _claimer);
    }

    function _claim(
        uint256 _index,
        uint256 _amount,
        bytes32[] memory _merkleProof,
        address _claimer
    ) internal whenNotPaused {
        require(block.timestamp < claimCutoffDate, "cutoff date elapsed");

        require(!isClaimed(_index), "distributor: already claimed");

        // Verify the merkle proof.
        bytes32 node = keccak256(abi.encodePacked(_index, _claimer, _amount));
        require(MerkleProof.verify(_merkleProof, merkleRoot, node), "distributor: invalid proof");

        // Mark it claimed and send the token.
        _setClaimed(_index);

        nftfiToken.approve(address(tokenLock), _amount);
        tokenLock.distributorLockTokens(_amount, _claimer);

        emit Claimed(_index, _amount, _merkleProof, _claimer);
    }

    /**
     * @dev Drain to admin address in an emergency
     * @param _amount of tokens to drain
     */
    function drain(uint256 _amount) public onlyOwner {
        nftfiToken.transfer(owner(), _amount);
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - Only the owner can call this method.
     * - The contract must not be paused.
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - Only the owner can call this method.
     * - The contract must be paused.
     */
    function unpause() external onlyOwner {
        _unpause();
    }
}
DistributorRegistry.sol 72 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./utils/Ownable.sol";
import "./MerkleDistributor.sol";

contract DistributorRegistry is Ownable {
    mapping(uint256 => address) public distributorsBySeason;
    mapping(address => bool) public distributors;

    /**
     * @dev Struct to represent claim data for batch processing.
     * @param rootNumber The Merkle root number associated with the claim.
     * @param index The index within the Merkle tree for this particular claim.
     * @param amount The amount of tokens to be claimed.
     * @param merkleProof The Merkle proof associated with the claim to validate it against the root.
     */
    struct MultiClaimData {
        uint256 seasonNumber;
        uint256 index;
        uint256 amount;
        bytes32[] merkleProof;
    }

    event DistributorAdded(uint256 indexed _seasonNumber, address _distributor);
    event DistributorRemoved(uint256 indexed _seasonNumber, address _distributor);

    constructor(address _admin) Ownable(_admin) {
        // solhint-disable-previous-line no-empty-blocks
    }

    function addDistributor(uint256 _seasonNumber, address _distributor) external onlyOwner {
        require(distributorsBySeason[_seasonNumber] == address(0), "Season number already set");
        distributorsBySeason[_seasonNumber] = _distributor;
        distributors[_distributor] = true;
        emit DistributorAdded(_seasonNumber, _distributor);
    }

    function removeDistributor(uint256 _seasonNumber) external onlyOwner {
        address distributor = distributorsBySeason[_seasonNumber];
        delete distributorsBySeason[_seasonNumber];
        delete distributors[distributor];
        emit DistributorRemoved(_seasonNumber, distributor);
    }

    function isDistributor(address _distributor) external view returns (bool) {
        return distributors[_distributor];
    }

    /**
     * @dev Supports batch claiming, instead of transferring to the recipient directly,
     * tokens are locked in the TokenLock contract.
     * multi claim where amounts are the same will fail with 'duplicate request' (request collision in token lock),
     * users need to claim one by one on the distributors in this case
     * @param _claimData An array containing details for each claim the caller wishes to make.
     */
    function multiClaim(MultiClaimData[] memory _claimData) external {
        for (uint256 i = 0; i < _claimData.length; ++i) {
            uint256 seasonNumber = _claimData[i].seasonNumber;
            uint256 index = _claimData[i].index;
            uint256 amount = _claimData[i].amount;
            bytes32[] memory merkleProof = _claimData[i].merkleProof;

            MerkleDistributor(distributorsBySeason[seasonNumber]).claimFromRegistry(
                index,
                amount,
                merkleProof,
                msg.sender
            );
        }
    }
}
TokenUtilityAccounting.sol 116 lines
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.19;

import "./utils/Ownable.sol";

/**
 * @title TokenUtilityAccounting
 * @author NFTfi
 * @dev
 */
contract TokenUtilityAccounting is Ownable {
    mapping(address => bool) public tokenLocks;

    mapping(address => uint256) public weightedAvgLockTimes;
    mapping(address => uint256) public amounts;

    // these two only needed if we wanted to distribute a finite,
    // given amount of rewards proportionally for locking times and amounts acrued
    uint256 public totalWeightedAvgLockTime;
    uint256 public totalAmount;

    event Update(
        address indexed _user,
        uint256 _weightedAvgLockTime,
        uint256 _acruedUserAmount,
        uint256 _totalWeightedAvgLockTime,
        uint256 _totalAmount
    );

    constructor(address _admin, address[] memory _tokenLockAddresses) Ownable(_admin) {
        _addTokenLocks(_tokenLockAddresses);
    }

    modifier onlyTokenLock() {
        require(tokenLocks[msg.sender], "Only token lock");
        _;
    }

    function lock(address _user, uint256 _amount) external onlyTokenLock {
        _updateUserWeightedAvgLockTime(_user, _amount);
        _updateTotalWeightedAvgLockTime(_amount);
        amounts[_user] += _amount;
        totalAmount += _amount;
        emit Update(_user, weightedAvgLockTimes[_user], amounts[_user], totalWeightedAvgLockTime, totalAmount);
    }

    function unlock(address _user, uint256 _amount) external onlyTokenLock {
        amounts[_user] -= _amount;
        totalAmount -= _amount;
        emit Update(_user, weightedAvgLockTimes[_user], amounts[_user], totalWeightedAvgLockTime, totalAmount);
    }

    /**
     * @dev updates weighted avg lock time for a given user based on the added amount
     * @param _user -
     * @param _amount - amount added
     */
    function _updateUserWeightedAvgLockTime(address _user, uint256 _amount) internal {
        weightedAvgLockTimes[_user] = _calculateWeightedAvgLockTime(
            _amount,
            amounts[_user],
            weightedAvgLockTimes[_user]
        );
    }

    /**
     * @dev updates weighted avg lock time for the whole system based on the added amount
     * @param _amount - amount added
     */
    function _updateTotalWeightedAvgLockTime(uint256 _amount) internal {
        totalWeightedAvgLockTime = _calculateWeightedAvgLockTime(_amount, totalAmount, totalWeightedAvgLockTime);
    }

    /**
     * @dev calculates weightedAvgMultiplier virtual timestamp value with
     * a new data point of token _amount weight and the current time
     * This function is either called by _updateAvgMultiplierStart or has to be called after
     * an explicit stake() or a deleteWithdrawRequest(), or any other possible instances,
     * The function takes the existing average and it's weight (existing balance) then calculates
     * it with the new value and weight with a weighted avg calculation between the 2 datapoints.
     * @param _amount - amount added
     * @param _oldAmount - cumulative amount before
     * @param _oldWeightedAvgLockTime -
     */
    function _calculateWeightedAvgLockTime(
        uint256 _amount,
        uint256 _oldAmount,
        uint256 _oldWeightedAvgLockTime
    ) internal view returns (uint256) {
        if (_oldAmount == 0 || _oldWeightedAvgLockTime == 0) {
            // if we are at initial state with just 1 datapoint
            return block.timestamp;
        } else {
            uint256 totalWeight = _oldAmount + _amount;
            // weighted avg calculation between the old value and the new lock timestamp
            return (_oldAmount * _oldWeightedAvgLockTime + _amount * block.timestamp) / totalWeight;
        }
    }

    function _addTokenLocks(address[] memory _tokenLockAddresses) internal {
        for (uint256 index = 0; index < _tokenLockAddresses.length; ++index) {
            tokenLocks[_tokenLockAddresses[index]] = true;
        }
    }

    function addTokenLocks(address[] memory _tokenLockAddresses) external onlyOwner {
        _addTokenLocks(_tokenLockAddresses);
    }

    function removeTokenLocks(address[] memory _tokenLockAddresses) external onlyOwner {
        for (uint256 index = 0; index < _tokenLockAddresses.length; ++index) {
            tokenLocks[_tokenLockAddresses[index]] = false;
        }
    }
}
Address.sol 244 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Counters.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
Pausable.sol 105 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
ERC20.sol 365 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
StorageSlot.sol 138 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
ShortStrings.sol 122 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
EIP712.sol 142 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}
SafeERC20.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
MerkleProof.sol 227 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
ERC20Permit.sol 95 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
IERC20Metadata.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

Read Contract

cooldown 0x787a08a6 → uint256
distributorRegistry 0x2daa7555 → address
lockedTokens 0x5eb7413a → uint256
nftfiToken 0x007fc3f2 → address
owner 0x8da5cb5b → address
paused 0x5c975abb → bool
tokenUtilityAccounting 0x4134fa5f → address
withdrawRequests 0x026508d1 → bool
withdrawalRequestAmounts 0x7215774a → uint256

Write Contract 17 functions

These functions modify contract state and require a wallet transaction to execute.

acceptTransferOwnership 0x7b371107
No parameters
cancelTransferOwnership 0x92fede00
No parameters
deleteMultipleWithdrawRequests 0xcd94b338
uint256[] _amounts
uint256[] _requestTimestamps
deleteRequestsAndWithdraw 0xb296fc79
uint256 _withdrawAmount
uint256[] _requestAmounts
uint256[] _requestTimestamps
deleteWithdrawRequest 0x7a29e80b
uint256 _amount
uint256 _requestTimestamp
distributorLockTokens 0x0ba876d8
uint256 _amount
address _beneficiary
externalLockTokens 0x7836a611
uint256 _amount
pause 0x8456cb59
No parameters
rejectTransferOwnership 0x5f992fdd
No parameters
requestTransferOwnership 0x9d6fa618
address _newOwnerCandidate
requestWithdrawal 0x9ee679e8
uint256 _amount
setCooldown 0x4fc3f41a
uint256 _cooldown
setTokenUtilityAccounting 0x1788d6b2
address _newTokenUtilityAccounting
unpause 0x3f4ba83a
No parameters
withdraw 0x441a3e70
uint256 _amount
uint256 _requestTimestamp
withdrawMultiple 0x9d110530
uint256[] _amounts
uint256[] _requestTimestamps
withdrawNoCooldown 0x58f18bfb
uint256 _amount

Recent Transactions

No transactions found for this address