Address Contract Partially Verified
Address
0xa3a30F627dBC02AFf3c0A736A065443A0e85b1AE
Balance
0 ETH
Nonce
1
Code Size
4188 bytes
Creator
0x899c284A...c94f at tx 0xadd375cc...7f2eed
Indexed Transactions
0
Contract Bytecode
4188 bytes
0x6080604052600436106100c65760003560e01c8063a217fddf1161007f578063db76009311610059578063db760093146102a5578063e9ac06dd146102c5578063f5b541a6146102e5578063fbfa77cf1461030757600080fd5b8063a217fddf14610224578063c55536ea14610239578063d547741f1461028557600080fd5b806301ffc9a71461012f578063248a9ca3146101645780632f2ff15d146101a257806336568abe146101c457806391d14854146101e45780639d3d15671461020457600080fd5b3661012a5760405162461bcd60e51b815260206004820152602960248201527f76616c7565206f6e6c7920616363657074656420627920746865205661756c746044820152680818dbdb9d1c9858dd60ba1b60648201526084015b60405180910390fd5b600080fd5b34801561013b57600080fd5b5061014f61014a366004610ce0565b61033b565b60405190151581526020015b60405180910390f35b34801561017057600080fd5b5061019461017f366004610d0a565b60009081526020819052604090206001015490565b60405190815260200161015b565b3480156101ae57600080fd5b506101c26101bd366004610d38565b610372565b005b3480156101d057600080fd5b506101c26101df366004610d38565b61039c565b3480156101f057600080fd5b5061014f6101ff366004610d38565b61041a565b34801561021057600080fd5b506101c261021f366004610d0a565b610443565b34801561023057600080fd5b50610194600081565b34801561024557600080fd5b5061026d7f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c81565b6040516001600160a01b03909116815260200161015b565b34801561029157600080fd5b506101c26102a0366004610d38565b61078f565b3480156102b157600080fd5b506101c26102c0366004610d0a565b6107b4565b3480156102d157600080fd5b506101c26102e0366004610d68565b6108c0565b3480156102f157600080fd5b5061019460008051602061100783398151915281565b34801561031357600080fd5b5061026d7f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da81565b60006001600160e01b03198216637965db0b60e01b148061036c57506301ffc9a760e01b6001600160e01b03198316145b92915050565b60008281526020819052604090206001015461038d816109dc565b61039783836109e9565b505050565b6001600160a01b038116331461040c5760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b6064820152608401610121565b6104168282610a6d565b5050565b6000918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b60008051602061100783398151915261045b816109dc565b60007f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c6001600160a01b0316632eb3e1d16040518163ffffffff1660e01b81526004016020604051808303816000875af11580156104bd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104e19190610d94565b604051636eb1769f60e11b81526001600160a01b037f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da811660048301527f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c81166024830152919250849183169063dd62ed3e90604401602060405180830381865afa158015610574573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105989190610db1565b101561069a57604080517f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c6001600160a01b039081166024830152604480830187905283518084039091018152606490920183526020820180516001600160e01b031663095ea7b360e01b1790529151631409412160e31b815290917f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da169063a04a0908906106509085908590600090600401610e1a565b6000604051808303816000875af115801561066f573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526106979190810190610e64565b50505b60408051602480820186905282518083039091018152604490910182526020810180516001600160e01b0316639d3d156760e01b1790529051631409412160e31b81527f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da6001600160a01b03169063a04a090890610741907f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c908590600090600401610e1a565b6000604051808303816000875af1158015610760573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526107889190810190610e64565b5050505050565b6000828152602081905260409020600101546107aa816109dc565b6103978383610a6d565b6000805160206110078339815191526107cc816109dc565b60408051602480820185905282518083039091018152604490910182526020810180516001600160e01b031663db76009360e01b1790529051631409412160e31b81527f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da6001600160a01b03169063a04a090890610873907f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c908590600090600401610e1a565b6000604051808303816000875af1158015610892573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526108ba9190810190610e64565b50505050565b6000805160206110078339815191526108d8816109dc565b604080516024810186905260448101859052606480820185905282518083039091018152608490910182526020810180516001600160e01b031663e9ac06dd60e01b1790529051631409412160e31b81527f000000000000000000000000047d41f2544b7f63a8e991af2068a363d210d6da6001600160a01b03169063a04a09089061098d907f000000000000000000000000d681c5574b7f4e387b608ed9af5f5fc88662b37c908590600090600401610e1a565b6000604051808303816000875af11580156109ac573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109d49190810190610e64565b505050505050565b6109e68133610ad2565b50565b6109f3828261041a565b610416576000828152602081815260408083206001600160a01b03851684529091529020805460ff19166001179055610a293390565b6001600160a01b0316816001600160a01b0316837f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45050565b610a77828261041a565b15610416576000828152602081815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45050565b610adc828261041a565b61041657610ae981610b2b565b610af4836020610b3d565b604051602001610b05929190610f11565b60408051601f198184030181529082905262461bcd60e51b825261012191600401610f86565b606061036c6001600160a01b03831660145b60606000610b4c836002610faf565b610b57906002610fc6565b67ffffffffffffffff811115610b6f57610b6f610e4e565b6040519080825280601f01601f191660200182016040528015610b99576020820181803683370190505b509050600360fc1b81600081518110610bb457610bb4610fd9565b60200101906001600160f81b031916908160001a905350600f60fb1b81600181518110610be357610be3610fd9565b60200101906001600160f81b031916908160001a9053506000610c07846002610faf565b610c12906001610fc6565b90505b6001811115610c8a576f181899199a1a9b1b9c1cb0b131b232b360811b85600f1660108110610c4657610c46610fd9565b1a60f81b828281518110610c5c57610c5c610fd9565b60200101906001600160f81b031916908160001a90535060049490941c93610c8381610fef565b9050610c15565b508315610cd95760405162461bcd60e51b815260206004820181905260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152606401610121565b9392505050565b600060208284031215610cf257600080fd5b81356001600160e01b031981168114610cd957600080fd5b600060208284031215610d1c57600080fd5b5035919050565b6001600160a01b03811681146109e657600080fd5b60008060408385031215610d4b57600080fd5b823591506020830135610d5d81610d23565b809150509250929050565b600080600060608486031215610d7d57600080fd5b505081359360208301359350604090920135919050565b600060208284031215610da657600080fd5b8151610cd981610d23565b600060208284031215610dc357600080fd5b5051919050565b60005b83811015610de5578181015183820152602001610dcd565b50506000910152565b60008151808452610e06816020860160208601610dca565b601f01601f19169290920160200192915050565b6001600160a01b0384168152606060208201819052600090610e3e90830185610dee565b9050826040830152949350505050565b634e487b7160e01b600052604160045260246000fd5b600060208284031215610e7657600080fd5b815167ffffffffffffffff80821115610e8e57600080fd5b818401915084601f830112610ea257600080fd5b815181811115610eb457610eb4610e4e565b604051601f8201601f19908116603f01168101908382118183101715610edc57610edc610e4e565b81604052828152876020848701011115610ef557600080fd5b610f06836020830160208801610dca565b979650505050505050565b7f416363657373436f6e74726f6c3a206163636f756e7420000000000000000000815260008351610f49816017850160208801610dca565b7001034b99036b4b9b9b4b733903937b6329607d1b6017918401918201528351610f7a816028840160208801610dca565b01602801949350505050565b602081526000610cd96020830184610dee565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761036c5761036c610f99565b8082018082111561036c5761036c610f99565b634e487b7160e01b600052603260045260246000fd5b600081610ffe57610ffe610f99565b50600019019056fe97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929a2646970667358221220fc1d411e2f70d461640dd807f9c1973dd66c5e0e924942b8065b41bedb0ff98f64736f6c63430008110033
Verified Source Code Partial Match
Compiler: v0.8.17+commit.8df45f5f
EVM: london
Optimization: Yes (200 runs)
IVault.sol 10 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;
interface IVault {
function execute(
address target,
bytes memory data,
uint256 value
) external returns (bytes memory);
}
ILockedFBTC.sol 39 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;
// Reference: https://github.com/fbtc-com/fbtcX-contract/blob/main/src/LockedFBTC.sol
interface ILockedFBTC {
enum Operation {
Nop, // starts from 1.
Mint,
Burn,
CrosschainRequest,
CrosschainConfirm
}
enum Status {
Unused,
Pending,
Confirmed,
Rejected
}
struct Request {
Operation op;
Status status;
uint128 nonce; // Those can be packed into one slot in evm storage.
bytes32 srcChain;
bytes srcAddress;
bytes32 dstChain;
bytes dstAddress;
uint256 amount; // Transfer value without fee.
uint256 fee;
bytes extra;
}
function mintLockedFbtcRequest(uint256 _amount) external returns (uint256 realAmount);
function redeemFbtcRequest(uint256 _amount, bytes32 _depositTxid, uint256 _outputIndex) external returns (bytes32 _hash, Request memory _r);
function confirmRedeemFbtc(uint256 _amount) external;
function burn(uint256 _amount) external;
function fbtc() external returns (address);
}
FBTCProxy.sol 56 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.12;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../../interfaces/IVault.sol";
import "../../interfaces/ILockedFBTC.sol";
// Reference: https://github.com/fbtc-com/fbtcX-contract/blob/main/src/LockedFBTC.sol
contract FBTCProxy is AccessControl {
address public immutable vault;
address public immutable lockedFBTC;
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
constructor(address _vault, address _lockedFBTC, address _admin) {
vault = _vault;
lockedFBTC = _lockedFBTC;
_grantRole(DEFAULT_ADMIN_ROLE, _admin);
_grantRole(OPERATOR_ROLE, _admin);
}
receive() external payable {
revert("value only accepted by the Vault contract");
}
/**
* @dev mint lockedFBTC in response to a burn FBTC request on the FBTC bridge.
*/
function mintLockedFbtcRequest(uint256 _amount) external onlyRole(OPERATOR_ROLE) {
address fbtc = ILockedFBTC(lockedFBTC).fbtc();
if (IERC20(fbtc).allowance(vault, lockedFBTC) < _amount) {
bytes memory data = abi.encodeWithSelector(IERC20.approve.selector, lockedFBTC, _amount);
IVault(vault).execute(fbtc, data, 0);
}
bytes memory data = abi.encodeWithSelector(ILockedFBTC.mintLockedFbtcRequest.selector, _amount);
IVault(vault).execute(lockedFBTC, data, 0);
}
/**
* @dev initiate a FBTC redemption request on the FBTC bridge with the corresponding BTC deposit tx details.
*/
function redeemFbtcRequest(uint256 _amount, bytes32 _depositTxid, uint256 _outputIndex) external onlyRole(OPERATOR_ROLE) {
bytes memory data = abi.encodeWithSelector(ILockedFBTC.redeemFbtcRequest.selector, _amount, _depositTxid, _outputIndex);
IVault(vault).execute(lockedFBTC, data, 0);
}
/**
* @dev burn Vault's locked FBTC and transfer back the equivalent FBTC to Vault.
*/
function confirmRedeemFbtc(uint256 _amount) external onlyRole(OPERATOR_ROLE) {
bytes memory data = abi.encodeWithSelector(ILockedFBTC.confirmRedeemFbtc.selector, _amount);
IVault(vault).execute(lockedFBTC, data, 0);
}
}
Context.sol 24 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
Strings.sol 70 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
Math.sol 345 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
IERC20.sol 82 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
AccessControl.sol 247 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
IAccessControl.sol 88 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
ERC165.sol 29 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Read Contract
DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
OPERATOR_ROLE 0xf5b541a6 → bytes32
getRoleAdmin 0x248a9ca3 → bytes32
hasRole 0x91d14854 → bool
lockedFBTC 0xc55536ea → address
supportsInterface 0x01ffc9a7 → bool
vault 0xfbfa77cf → address
Write Contract 6 functions
These functions modify contract state and require a wallet transaction to execute.
confirmRedeemFbtc 0xdb760093
uint256 _amount
grantRole 0x2f2ff15d
bytes32 role
address account
mintLockedFbtcRequest 0x9d3d1567
uint256 _amount
redeemFbtcRequest 0xe9ac06dd
uint256 _amount
bytes32 _depositTxid
uint256 _outputIndex
renounceRole 0x36568abe
bytes32 role
address account
revokeRole 0xd547741f
bytes32 role
address account
Recent Transactions
No transactions found for this address