Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xA865F7aA0c487e7A16b8192ABB7276D9D1bBd693
Balance 0 ETH
Nonce 1
Code Size 21227 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

21227 bytes
0x608060405234801561000f575f5ffd5b506004361061020f575f3560e01c806369535fe711610123578063d547741f116100ab578063ed43d3ad1161007a578063ed43d3ad14610613578063ee9d610f14610631578063f26a1a4714610661578063f481dc2c14610691578063fe016586146106ad5761020f565b8063d547741f1461059d578063dc4c90d3146105b9578063e328400c146105d7578063ec87621c146105f55761020f565b806396c684dd116100f257806396c684dd146104f9578063a1f7aeb714610515578063a217fddf14610545578063b518a00e14610563578063c36536a7146105815761020f565b806369535fe71461047357806370676ca21461048f5780638456cb59146104bf57806391d14854146104c95761020f565b806336568abe116101a6578063557db09811610175578063557db098146103bb5780635c69ae64146103eb5780635c975abb146104075780635ccafcd51461042557806364685022146104415761020f565b806336568abe146103475780633d012189146103635780633e6968b6146103935780633f4ba83a146103b15761020f565b8063248a9ca3116101e2578063248a9ca3146102c15780632f2ff15d146102f15780632f65788c1461030d5780632fcb3972146103295761020f565b806301ffc9a7146102135780630c003a981461024357806312e7f17c1461027357806314160e831461028f575b5f5ffd5b61022d600480360381019061022891906139e9565b6106c9565b60405161023a9190613a2e565b60405180910390f35b61025d60048036038101906102589190613a7a565b610742565b60405161026a9190613ac7565b60405180910390f35b61028d60048036038101906102889190613b4b565b610762565b005b6102a960048036038101906102a49190613ba9565b6107b2565b6040516102b893929190613dcb565b60405180910390f35b6102db60048036038101906102d69190613e15565b61092d565b6040516102e89190613e4f565b60405180910390f35b61030b60048036038101906103069190613e92565b610949565b005b61032760048036038101906103229190613f31565b61096b565b005b610331610a60565b60405161033e9190614010565b60405180910390f35b610361600480360381019061035c9190613e92565b610a84565b005b61037d60048036038101906103789190613ba9565b610aff565b60405161038a9190614099565b60405180910390f35b61039b610e0b565b6040516103a891906140d5565b60405180910390f35b6103b9610e19565b005b6103d560048036038101906103d091906141ed565b610e4e565b6040516103e291906142d1565b60405180910390f35b610405600480360381019061040091906142f1565b610f67565b005b61040f611236565b60405161041c9190613a2e565b60405180910390f35b61043f600480360381019061043a9190614355565b61124b565b005b61045b60048036038101906104569190613f31565b6114d5565b60405161046a93929190613dcb565b60405180910390f35b61048d600480360381019061048891906143a5565b611646565b005b6104a960048036038101906104a49190613a7a565b611712565b6040516104b69190613ac7565b60405180910390f35b6104c7611732565b005b6104e360048036038101906104de9190613e92565b611767565b6040516104f09190613a2e565b60405180910390f35b610513600480360381019061050e9190613ba9565b6117ca565b005b61052f600480360381019061052a91906143a5565b6118bc565b60405161053c91906142d1565b60405180910390f35b61054d6119d0565b60405161055a9190613e4f565b60405180910390f35b61056b6119d6565b6040516105789190614475565b60405180910390f35b61059b60048036038101906105969190614355565b6119fa565b005b6105b760048036038101906105b29190613e92565b611b1e565b005b6105c1611b40565b6040516105ce91906144ae565b60405180910390f35b6105df611b64565b6040516105ec9190613e4f565b60405180910390f35b6105fd611b88565b60405161060a9190613e4f565b60405180910390f35b61061b611bac565b60405161062891906144e7565b60405180910390f35b61064b60048036038101906106469190613f31565b611bd1565b6040516106589190613ac7565b60405180910390f35b61067b60048036038101906106769190614500565b611bea565b6040516106889190613ac7565b60405180910390f35b6106ab60048036038101906106a691906141ed565b611c01565b005b6106c760048036038101906106c29190614564565b611cf4565b005b5f7f7965db0b000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916148061073b575061073a82611e9c565b5b9050919050565b6005602052815f5260405f20602052805f5260405f205f91509150505481565b5f5f1b61076e81611f05565b8160045f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505050565b60608060605f5f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff166365439db688886040518363ffffffff1660e01b81526004016108149291906145c8565b5f60405180830381865afa15801561082e573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190610856919061481e565b915091505f825167ffffffffffffffff811115610876576108756145ef565b5b6040519080825280602002602001820160405280156108a45781602001602082028036833780820191505090505b5090505f6108b18a611f19565b90505f5f90505b8451811015610916575f8582815181106108d5576108d4614894565b5b602002602001015190506108eb838d8d84611f28565b8483815181106108fe576108fd614894565b5b602002602001018181525050508060010190506108b8565b508382849650965096505050505093509350939050565b5f5f5f8381526020019081526020015f20600101549050919050565b6109528261092d565b61095b81611f05565b6109658383612330565b50505050565b610973612419565b61097b61245f565b5f5f5f6109898888886124a0565b9250925092505f61099d8989898989612948565b90505f81116109d8576040517f5aa9184d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6109e5848989858d612b1d565b6109f28489898685612ccd565b86888573ffffffffffffffffffffffffffffffffffffffff167faaf0084f616cbb4f11f076022e4183ec07a5199180cca1ce9b04557ffac271eb8c85610a36612d7b565b604051610a45939291906148c1565b60405180910390a450505050610a59612d90565b5050505050565b7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420781565b610a8c612d9a565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610af0576040517f6697b23200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610afa8282612da1565b505050565b60605f7f000000000000000000000000faa8a501cf7ffd8080b0864f2c959e8cbcf8303073ffffffffffffffffffffffffffffffffffffffff1663e765c122866040518263ffffffff1660e01b8152600401610b5b9190613e4f565b60a060405180830381865afa158015610b76573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b9a91906149f2565b90505f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663068bcd8d866040518263ffffffff1660e01b8152600401610bf69190613ac7565b60c060405180830381865afa158015610c11573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c359190614ae4565b90505f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58888886040518463ffffffff1660e01b8152600401610c9693929190614b0f565b602060405180830381865afa158015610cb1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cd59190614b44565b90505f60405180608001604052805f856080015111610d8b577f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663f8b7317c8a6040518263ffffffff1660e01b8152600401610d479190613ac7565b602060405180830381865afa158015610d62573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d869190614b6f565b610d91565b84608001515b815260200160055f8a81526020019081526020015f205f8981526020019081526020015f20548152602001846040015161ffff168152602001846060015161ffff16815250905087848284604051602001610def9493929190614c71565b6040516020818303038152906040529450505050509392505050565b5f610e14612d7b565b905090565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b08610e4381611f05565b610e4b612e8a565b50565b60605f8989905067ffffffffffffffff811115610e6e57610e6d6145ef565b5b604051908082528060200260200182016040528015610e9c5781602001602082028036833780820191505090505b5090505f5f90505b8a8a9050811015610f5657610f2a8b8b83818110610ec557610ec4614894565b5b905060200201358a8a84818110610edf57610ede614894565b5b90506020020135898985818110610ef957610ef8614894565b5b90506020020135888886818110610f1357610f12614894565b5b9050602002810190610f259190614cc2565b612948565b828281518110610f3d57610f3c614894565b5b6020026020010181815250508080600101915050610ea4565b508091505098975050505050505050565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b08610f9181611f05565b5f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7866040518263ffffffff1660e01b8152600401610feb9190613ac7565b602060405180830381865afa158015611006573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061102a9190614d38565b90505f8173ffffffffffffffffffffffffffffffffffffffff166369940d796040518163ffffffff1660e01b8152600401602060405180830381865afa158015611076573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061109a9190614d38565b90505f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7876040518263ffffffff1660e01b81526004016110f69190613ac7565b602060405180830381865afa158015611111573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111359190614d38565b90505f8173ffffffffffffffffffffffffffffffffffffffff166369940d796040518163ffffffff1660e01b8152600401602060405180830381865afa158015611181573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111a59190614d38565b90508073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614611215576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161120c90614dbd565b60405180910390fd5b611220898988612eeb565b61122b898888612f7f565b505050505050505050565b5f60025f9054906101000a900460ff16905090565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b0861127581611f05565b5f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7856040518263ffffffff1660e01b81526004016112cf9190613ac7565b602060405180830381865afa1580156112ea573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061130e9190614d38565b90505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614158490611382576040517fb393400f0000000000000000000000000000000000000000000000000000000081526004016113799190613ac7565b60405180910390fd5b505f8190505f84116113c0576040517f5e85ae7300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8173ffffffffffffffffffffffffffffffffffffffff166369940d796040518163ffffffff1660e01b8152600401602060405180830381865afa15801561140a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061142e9190614d38565b90508460015f8981526020019081526020015f205f8881526020019081526020015f205f82825461145f9190614e08565b925050819055506114933330878473ffffffffffffffffffffffffffffffffffffffff16612fba909392919063ffffffff16565b85877ff6a171395858b001fdbf778ed6a358c81bb66a4580032064e6e55514239383d7876040516114c49190613ac7565b60405180910390a350505050505050565b60608060605f5f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff166365439db68a8a6040518363ffffffff1660e01b81526004016115379291906145c8565b5f60405180830381865afa158015611551573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611579919061481e565b915091505f825167ffffffffffffffff811115611599576115986145ef565b5b6040519080825280602002602001820160405280156115c75781602001602082028036833780820191505090505b5090505f5f90505b835181101561162e575f8482815181106115ec576115eb614894565b5b602002602001015190506116038d8d838d8d612948565b83838151811061161657611615614894565b5b602002602001018181525050508060010190506115cf565b50828183955095509550505050955095509592505050565b838390508686905014801561166057508181905086869050145b611696576040517f744bba7b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f5f90505b86869050811015611709576116fc8787838181106116bc576116bb614894565b5b905060200201358686848181106116d6576116d5614894565b5b905060200201358585858181106116f0576116ef614894565b5b905060200201356117ca565b808060010191505061169b565b50505050505050565b6001602052815f5260405f20602052805f5260405f205f91509150505481565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b0861175c81611f05565b61176461303c565b50565b5f5f5f8481526020019081526020015f205f015f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16905092915050565b6117d2612419565b6117da61245f565b5f5f5f6117e88686866124a0565b9250925092505f6117fb84888888611f28565b90505f8111611836576040517f5aa9184d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611843848787858b612b1d565b6118508487878685612ccd565b84868573ffffffffffffffffffffffffffffffffffffffff167faaf0084f616cbb4f11f076022e4183ec07a5199180cca1ce9b04557ffac271eb8a85611894612d7b565b6040516118a3939291906148c1565b60405180910390a4505050506118b7612d90565b505050565b60605f8787905067ffffffffffffffff8111156118dc576118db6145ef565b5b60405190808252806020026020018201604052801561190a5781602001602082028036833780820191505090505b5090505f5f90505b888890508110156119c1576119956119428a8a8481811061193657611935614894565b5b90506020020135611f19565b8a8a8481811061195557611954614894565b5b9050602002013589898581811061196f5761196e614894565b5b9050602002013588888681811061198957611988614894565b5b90506020020135611f28565b8282815181106119a8576119a7614894565b5b6020026020010181815250508080600101915050611912565b50809150509695505050505050565b5f5f1b81565b7f000000000000000000000000faa8a501cf7ffd8080b0864f2c959e8cbcf8303081565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b08611a2481611f05565b7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663dc23f1f1856040518263ffffffff1660e01b8152600401611a7d9190613ac7565b602060405180830381865afa158015611a98573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611abc9190614e3b565b15611af3576040517fd56fb85d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8160055f8681526020019081526020015f205f8581526020019081526020015f208190555050505050565b611b278261092d565b611b3081611f05565b611b3a8383612da1565b50505050565b7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad181565b7fa5a0b70b385ff7611cd3840916bd08b10829e5bf9e6637cf79dd9a427fc0e2ab81565b7f241ecf16d79d0f8dbfb92cbc07fe17840425976cf0667f022fe9877caa831b0881565b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f611bdf8686868686612948565b905095945050505050565b5f611bf785858585611f28565b9050949350505050565b8585905088889050148015611c1b57508383905088889050145b611c51576040517f744bba7b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f5f90505b88889050811015611ce957611cdc898983818110611c7757611c76614894565b5b90506020020135888884818110611c9157611c90614894565b5b90506020020135878785818110611cab57611caa614894565b5b90506020020135868686818110611cc557611cc4614894565b5b9050602002810190611cd79190614cc2565b61096b565b8080600101915050611c56565b505050505050505050565b7fa5a0b70b385ff7611cd3840916bd08b10829e5bf9e6637cf79dd9a427fc0e2ab611d1e81611f05565b611d29858585612eeb565b5f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7866040518263ffffffff1660e01b8152600401611d839190613ac7565b602060405180830381865afa158015611d9e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dc29190614d38565b73ffffffffffffffffffffffffffffffffffffffff166369940d796040518163ffffffff1660e01b8152600401602060405180830381865afa158015611e0a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e2e9190614d38565b9050611e5b83858373ffffffffffffffffffffffffffffffffffffffff1661309e9092919063ffffffff16565b84867f1df03225d8f4e318c36806a067f779f405a25d67b4e8e90ed6bf6352dc12193686604051611e8c9190613ac7565b60405180910390a3505050505050565b5f7f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b611f1681611f11612d9a565b61311d565b50565b5f6060825f1c901c9050919050565b5f5f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7846040518263ffffffff1660e01b8152600401611f839190613ac7565b602060405180830381865afa158015611f9e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fc29190614d38565b90505f7f000000000000000000000000faa8a501cf7ffd8080b0864f2c959e8cbcf8303073ffffffffffffffffffffffffffffffffffffffff1663e765c122876040518263ffffffff1660e01b815260040161201e9190613e4f565b60a060405180830381865afa158015612039573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061205d91906149f2565b90505f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663068bcd8d876040518263ffffffff1660e01b81526004016120b99190613ac7565b60c060405180830381865afa1580156120d4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120f89190614ae4565b90505f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58989896040518463ffffffff1660e01b815260040161215993929190614b0f565b602060405180830381865afa158015612174573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906121989190614b44565b90505f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663f8b7317c896040518263ffffffff1660e01b81526004016121f49190613ac7565b602060405180830381865afa15801561220f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906122339190614b6f565b90505f8114801561224757505f8360800151145b15612259575f95505050505050612328565b5f5f84608001511161226b5781612271565b83608001515b90508573ffffffffffffffffffffffffffffffffffffffff16634c6516228c878460055f8f81526020019081526020015f205f8e81526020019081526020015f205489604001518a606001518a6040518863ffffffff1660e01b81526004016122e09796959493929190614e75565b602060405180830381865afa1580156122fb573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061231f9190614b6f565b96505050505050505b949350505050565b5f61233b8383611767565b61240f5760015f5f8581526020019081526020015f205f015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055506123ac612d9a565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a460019050612413565b5f90505b92915050565b600260035403612455576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600381905550565b612467611236565b1561249e576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f5f5f6124ac86611f19565b92506124b6612d9a565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16146124ec612d9a565b849091612530576040517faf71074f000000000000000000000000000000000000000000000000000000008152600401612527929190614ee6565b60405180910390fd5b50507f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7856040518263ffffffff1660e01b815260040161258b9190613ac7565b602060405180830381865afa1580156125a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906125ca9190614d38565b91505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff161415849061263e576040517fb393400f0000000000000000000000000000000000000000000000000000000081526004016126359190613ac7565b60405180910390fd5b507f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663194418cb86866040518363ffffffff1660e01b815260040161269a9291906145c8565b602060405180830381865afa1580156126b5573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906126d99190614b6f565b90506126e78686838761316e565b5f8273ffffffffffffffffffffffffffffffffffffffff16630eb9b15a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612731573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127559190614f30565b905060018081111561276a57612769613cd9565b5b81600181111561277d5761277c613cd9565b5b03612862577f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff16633e22ad37876040518263ffffffff1660e01b81526004016127db9190613ac7565b602060405180830381865afa1580156127f6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061281a9190614e3b565b869061285c576040517fd2a9552d0000000000000000000000000000000000000000000000000000000081526004016128539190613ac7565b60405180910390fd5b5061293e565b7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff166351f41c09876040518263ffffffff1660e01b81526004016128bb9190613ac7565b602060405180830381865afa1580156128d6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906128fa9190614e3b565b869061293c576040517f2f461f840000000000000000000000000000000000000000000000000000000081526004016129339190613ac7565b60405180910390fd5b505b5093509350939050565b5f5f7f0000000000000000000000004b98fb37149f45fa498857e48b7c9c50739e420773ffffffffffffffffffffffffffffffffffffffff16636ccf2fa7866040518263ffffffff1660e01b81526004016129a39190613ac7565b602060405180830381865afa1580156129be573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906129e29190614d38565b90505f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58989896040518463ffffffff1660e01b8152600401612a4393929190614b0f565b602060405180830381865afa158015612a5e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612a829190614b44565b90505f612a918989898561363c565b90508273ffffffffffffffffffffffffffffffffffffffff166329f05e7c8288886040518463ffffffff1660e01b8152600401612ad093929190614f95565b602060405180830381865afa158015612aeb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612b0f9190614b6f565b935050505095945050505050565b5f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663cde4505c8685876040518463ffffffff1660e01b8152600401612b7b93929190614fcc565b602060405180830381865afa158015612b96573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612bba9190615001565b90505f5f6002811115612bd057612bcf613cd9565b5b826002811115612be357612be2613cd9565b5b03612bf0575f9050612c2a565b600280811115612c0357612c02613cd9565b5b826002811115612c1657612c15613cd9565b5b03612c245760029050612c29565b600190505b5b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166394c072e1888887898887612c75612d7b565b6040518863ffffffff1660e01b8152600401612c979796959493929190615072565b5f604051808303815f87803b158015612cae575f5ffd5b505af1158015612cc0573d5f5f3e3d5ffd5b5050505050505050505050565b612cd8848483612eeb565b5f8273ffffffffffffffffffffffffffffffffffffffff166369940d796040518163ffffffff1660e01b8152600401602060405180830381865afa158015612d22573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612d469190614d38565b9050612d7386838373ffffffffffffffffffffffffffffffffffffffff1661309e9092919063ffffffff16565b505050505050565b5f6201518042612d8b919061510c565b905090565b6001600381905550565b5f33905090565b5f612dac8383611767565b15612e80575f5f5f8581526020019081526020015f205f015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff021916908315150217905550612e1d612d9a565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16847ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b60405160405180910390a460019050612e84565b5f90505b92915050565b612e926138a8565b5f60025f6101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa612ed4612d9a565b604051612ee1919061513c565b60405180910390a1565b5f60015f8581526020019081526020015f205f8481526020019081526020015f2054905081811015612f49576040517fa9d1385600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8181612f559190615155565b60015f8681526020019081526020015f205f8581526020019081526020015f208190555050505050565b8060015f8581526020019081526020015f205f8481526020019081526020015f205f828254612fae9190614e08565b92505081905550505050565b613036848573ffffffffffffffffffffffffffffffffffffffff166323b872dd868686604051602401612fef93929190615188565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506138e8565b50505050565b61304461245f565b600160025f6101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258613087612d9a565b604051613094919061513c565b60405180910390a1565b613118838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb85856040516024016130d19291906151bd565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506138e8565b505050565b6131278282611767565b61316a5780826040517fe2517d3f0000000000000000000000000000000000000000000000000000000081526004016131619291906151e4565b60405180910390fd5b5050565b5f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663cde4505c8585856040518463ffffffff1660e01b81526004016131cc93929190614fcc565b602060405180830381865afa1580156131e7573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061320b9190615001565b90505f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166371e11f6c61325488611f19565b87876040518463ffffffff1660e01b81526004016132749392919061520b565b602060405180830381865afa15801561328f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906132b39190615263565b9050600160028111156132c9576132c8613cd9565b5b8260028111156132dc576132db613cd9565b5b036133f0575f60028111156132f4576132f3613cd9565b5b81600281111561330757613306613cd9565b5b148460045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58989886040518463ffffffff1660e01b815260040161336793929190614b0f565b602060405180830381865afa158015613382573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906133a69190614b44565b90916133e9576040517f5362f1fc0000000000000000000000000000000000000000000000000000000081526004016133e092919061528e565b60405180910390fd5b5050613634565b6001600281111561340457613403613cd9565b5b81600281111561341757613416613cd9565b5b14158460045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58989886040518463ffffffff1660e01b815260040161347893929190614b0f565b602060405180830381865afa158015613493573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906134b79190614b44565b90916134fa576040517fe619e40f0000000000000000000000000000000000000000000000000000000081526004016134f192919061528e565b60405180910390fd5b505060028081111561350f5761350e613cd9565b5b82600281111561352257613521613cd9565b5b036136335760028081111561353a57613539613cd9565b5b81600281111561354d5761354c613cd9565b5b14158460045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663961646b58989886040518463ffffffff1660e01b81526004016135ae93929190614b0f565b602060405180830381865afa1580156135c9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906135ed9190614b44565b9091613630576040517f7031f0b600000000000000000000000000000000000000000000000000000000815260040161362792919061528e565b60405180910390fd5b50505b5b505050505050565b60605f7f000000000000000000000000faa8a501cf7ffd8080b0864f2c959e8cbcf8303073ffffffffffffffffffffffffffffffffffffffff1663e765c122876040518263ffffffff1660e01b81526004016136989190613e4f565b60a060405180830381865afa1580156136b3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906136d791906149f2565b90505f7f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663068bcd8d876040518263ffffffff1660e01b81526004016137339190613ac7565b60c060405180830381865afa15801561374e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906137729190614ae4565b90505f60405180608001604052805f846080015111613828577f000000000000000000000000c7e162f85a4470046b22d059dc6a85a40f039ad173ffffffffffffffffffffffffffffffffffffffff1663f8b7317c8a6040518263ffffffff1660e01b81526004016137e49190613ac7565b602060405180830381865afa1580156137ff573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906138239190614b6f565b61382e565b83608001515b815260200160055f8a81526020019081526020015f205f8981526020019081526020015f20548152602001836040015161ffff168152602001836060015161ffff1681525090508783828760405160200161388c9493929190614c71565b6040516020818303038152906040529350505050949350505050565b6138b0611236565b6138e6576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f5f60205f8451602086015f885af180613907576040513d5f823e3d81fd5b3d92505f519150505f821461392057600181141561393b565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b1561397d57836040517f5274afe7000000000000000000000000000000000000000000000000000000008152600401613974919061513c565b60405180910390fd5b50505050565b5f604051905090565b5f5ffd5b5f5ffd5b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6139c881613994565b81146139d2575f5ffd5b50565b5f813590506139e3816139bf565b92915050565b5f602082840312156139fe576139fd61398c565b5b5f613a0b848285016139d5565b91505092915050565b5f8115159050919050565b613a2881613a14565b82525050565b5f602082019050613a415f830184613a1f565b92915050565b5f819050919050565b613a5981613a47565b8114613a63575f5ffd5b50565b5f81359050613a7481613a50565b92915050565b5f5f60408385031215613a9057613a8f61398c565b5b5f613a9d85828601613a66565b9250506020613aae85828601613a66565b9150509250929050565b613ac181613a47565b82525050565b5f602082019050613ada5f830184613ab8565b92915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f613b0982613ae0565b9050919050565b5f613b1a82613aff565b9050919050565b613b2a81613b10565b8114613b34575f5ffd5b50565b5f81359050613b4581613b21565b92915050565b5f60208284031215613b6057613b5f61398c565b5b5f613b6d84828501613b37565b91505092915050565b5f819050919050565b613b8881613b76565b8114613b92575f5ffd5b50565b5f81359050613ba381613b7f565b92915050565b5f5f5f60608486031215613bc057613bbf61398c565b5b5f613bcd86828701613b95565b9350506020613bde86828701613a66565b9250506040613bef86828701613a66565b9150509250925092565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b613c2b81613a47565b82525050565b5f613c3c8383613c22565b60208301905092915050565b5f602082019050919050565b5f613c5e82613bf9565b613c688185613c03565b9350613c7383613c13565b805f5b83811015613ca3578151613c8a8882613c31565b9750613c9583613c48565b925050600181019050613c76565b5085935050505092915050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b60038110613d1757613d16613cd9565b5b50565b5f819050613d2782613d06565b919050565b5f613d3682613d1a565b9050919050565b613d4681613d2c565b82525050565b5f613d578383613d3d565b60208301905092915050565b5f602082019050919050565b5f613d7982613cb0565b613d838185613cba565b9350613d8e83613cca565b805f5b83811015613dbe578151613da58882613d4c565b9750613db083613d63565b925050600181019050613d91565b5085935050505092915050565b5f6060820190508181035f830152613de38186613c54565b90508181036020830152613df78185613c54565b90508181036040830152613e0b8184613d6f565b9050949350505050565b5f60208284031215613e2a57613e2961398c565b5b5f613e3784828501613b95565b91505092915050565b613e4981613b76565b82525050565b5f602082019050613e625f830184613e40565b92915050565b613e7181613aff565b8114613e7b575f5ffd5b50565b5f81359050613e8c81613e68565b92915050565b5f5f60408385031215613ea857613ea761398c565b5b5f613eb585828601613b95565b9250506020613ec685828601613e7e565b9150509250929050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83601f840112613ef157613ef0613ed0565b5b8235905067ffffffffffffffff811115613f0e57613f0d613ed4565b5b602083019150836001820283011115613f2a57613f29613ed8565b5b9250929050565b5f5f5f5f5f60808688031215613f4a57613f4961398c565b5b5f613f5788828901613b95565b9550506020613f6888828901613a66565b9450506040613f7988828901613a66565b935050606086013567ffffffffffffffff811115613f9a57613f99613990565b5b613fa688828901613edc565b92509250509295509295909350565b5f819050919050565b5f613fd8613fd3613fce84613ae0565b613fb5565b613ae0565b9050919050565b5f613fe982613fbe565b9050919050565b5f613ffa82613fdf565b9050919050565b61400a81613ff0565b82525050565b5f6020820190506140235f830184614001565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61406b82614029565b6140758185614033565b9350614085818560208601614043565b61408e81614051565b840191505092915050565b5f6020820190508181035f8301526140b18184614061565b905092915050565b5f61ffff82169050919050565b6140cf816140b9565b82525050565b5f6020820190506140e85f8301846140c6565b92915050565b5f5f83601f84011261410357614102613ed0565b5b8235905067ffffffffffffffff8111156141205761411f613ed4565b5b60208301915083602082028301111561413c5761413b613ed8565b5b9250929050565b5f5f83601f84011261415857614157613ed0565b5b8235905067ffffffffffffffff81111561417557614174613ed4565b5b60208301915083602082028301111561419157614190613ed8565b5b9250929050565b5f5f83601f8401126141ad576141ac613ed0565b5b8235905067ffffffffffffffff8111156141ca576141c9613ed4565b5b6020830191508360208202830111156141e6576141e5613ed8565b5b9250929050565b5f5f5f5f5f5f5f5f6080898b0312156142095761420861398c565b5b5f89013567ffffffffffffffff81111561422657614225613990565b5b6142328b828c016140ee565b9850985050602089013567ffffffffffffffff81111561425557614254613990565b5b6142618b828c01614143565b9650965050604089013567ffffffffffffffff81111561428457614283613990565b5b6142908b828c01614143565b9450945050606089013567ffffffffffffffff8111156142b3576142b2613990565b5b6142bf8b828c01614198565b92509250509295985092959890939650565b5f6020820190508181035f8301526142e98184613c54565b905092915050565b5f5f5f5f608085870312156143095761430861398c565b5b5f61431687828801613a66565b945050602061432787828801613a66565b935050604061433887828801613a66565b925050606061434987828801613a66565b91505092959194509250565b5f5f5f6060848603121561436c5761436b61398c565b5b5f61437986828701613a66565b935050602061438a86828701613a66565b925050604061439b86828701613a66565b9150509250925092565b5f5f5f5f5f5f606087890312156143bf576143be61398c565b5b5f87013567ffffffffffffffff8111156143dc576143db613990565b5b6143e889828a016140ee565b9650965050602087013567ffffffffffffffff81111561440b5761440a613990565b5b61441789828a01614143565b9450945050604087013567ffffffffffffffff81111561443a57614439613990565b5b61444689828a01614143565b92509250509295509295509295565b5f61445f82613fdf565b9050919050565b61446f81614455565b82525050565b5f6020820190506144885f830184614466565b92915050565b5f61449882613fdf565b9050919050565b6144a88161448e565b82525050565b5f6020820190506144c15f83018461449f565b92915050565b5f6144d182613fdf565b9050919050565b6144e1816144c7565b82525050565b5f6020820190506144fa5f8301846144d8565b92915050565b5f5f5f5f608085870312156145185761451761398c565b5b5f61452587828801613e7e565b945050602061453687828801613b95565b935050604061454787828801613a66565b925050606061455887828801613a66565b91505092959194509250565b5f5f5f5f6080858703121561457c5761457b61398c565b5b5f61458987828801613a66565b945050602061459a87828801613a66565b93505060406145ab87828801613a66565b92505060606145bc87828801613e7e565b91505092959194509250565b5f6040820190506145db5f830185613ab8565b6145e86020830184613ab8565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61462582614051565b810181811067ffffffffffffffff82111715614644576146436145ef565b5b80604052505050565b5f614656613983565b9050614662828261461c565b919050565b5f67ffffffffffffffff821115614681576146806145ef565b5b602082029050602081019050919050565b5f815190506146a081613a50565b92915050565b5f6146b86146b384614667565b61464d565b905080838252602082019050602084028301858111156146db576146da613ed8565b5b835b8181101561470457806146f08882614692565b8452602084019350506020810190506146dd565b5050509392505050565b5f82601f83011261472257614721613ed0565b5b81516147328482602086016146a6565b91505092915050565b5f67ffffffffffffffff821115614755576147546145ef565b5b602082029050602081019050919050565b60038110614772575f5ffd5b50565b5f8151905061478381614766565b92915050565b5f61479b6147968461473b565b61464d565b905080838252602082019050602084028301858111156147be576147bd613ed8565b5b835b818110156147e757806147d38882614775565b8452602084019350506020810190506147c0565b5050509392505050565b5f82601f83011261480557614804613ed0565b5b8151614815848260208601614789565b91505092915050565b5f5f604083850312156148345761483361398c565b5b5f83015167ffffffffffffffff81111561485157614850613990565b5b61485d8582860161470e565b925050602083015167ffffffffffffffff81111561487e5761487d613990565b5b61488a858286016147f1565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f6060820190506148d45f830186613e40565b6148e16020830185613ab8565b6148ee60408301846140c6565b949350505050565b5f5ffd5b5f6fffffffffffffffffffffffffffffffff82169050919050565b61491e816148fa565b8114614928575f5ffd5b50565b5f8151905061493981614915565b92915050565b614948816140b9565b8114614952575f5ffd5b50565b5f815190506149638161493f565b92915050565b5f60a0828403121561497e5761497d6148f6565b5b61498860a061464d565b90505f6149978482850161492b565b5f8301525060206149aa84828501614955565b60208301525060406149be84828501614955565b60408301525060606149d284828501614955565b60608301525060806149e684828501614955565b60808301525092915050565b5f60a08284031215614a0757614a0661398c565b5b5f614a1484828501614969565b91505092915050565b614a2681613a14565b8114614a30575f5ffd5b50565b5f81519050614a4181614a1d565b92915050565b5f60c08284031215614a5c57614a5b6148f6565b5b614a6660c061464d565b90505f614a7584828501614a33565b5f830152506020614a8884828501614a33565b6020830152506040614a9c84828501614955565b6040830152506060614ab084828501614955565b6060830152506080614ac484828501614692565b60808301525060a0614ad884828501614692565b60a08301525092915050565b5f60c08284031215614af957614af861398c565b5b5f614b0684828501614a47565b91505092915050565b5f606082019050614b225f830186613e40565b614b2f6020830185613ab8565b614b3c6040830184613ab8565b949350505050565b5f60208284031215614b5957614b5861398c565b5b5f614b6684828501614955565b91505092915050565b5f60208284031215614b8457614b8361398c565b5b5f614b9184828501614692565b91505092915050565b614ba3816148fa565b82525050565b614bb2816140b9565b82525050565b60a082015f820151614bcc5f850182614b9a565b506020820151614bdf6020850182614ba9565b506040820151614bf26040850182614ba9565b506060820151614c056060850182614ba9565b506080820151614c186080850182614ba9565b50505050565b608082015f820151614c325f850182613c22565b506020820151614c456020850182613c22565b506040820151614c586040850182614ba9565b506060820151614c6b6060850182614ba9565b50505050565b5f61016082019050614c855f830187613e40565b614c926020830186614bb8565b614c9f60c0830185614c1e565b614cad6101408301846140c6565b95945050505050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83356001602003843603038112614cde57614cdd614cb6565b5b80840192508235915067ffffffffffffffff821115614d0057614cff614cba565b5b602083019250600182023603831315614d1c57614d1b614cbe565b5b509250929050565b5f81519050614d3281613e68565b92915050565b5f60208284031215614d4d57614d4c61398c565b5b5f614d5a84828501614d24565b91505092915050565b5f82825260208201905092915050565b7f446966666572656e742072657761726420746f6b656e730000000000000000005f82015250565b5f614da7601783614d63565b9150614db282614d73565b602082019050919050565b5f6020820190508181035f830152614dd481614d9b565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f614e1282613a47565b9150614e1d83613a47565b9250828201905080821115614e3557614e34614ddb565b5b92915050565b5f60208284031215614e5057614e4f61398c565b5b5f614e5d84828501614a33565b91505092915050565b614e6f81613aff565b82525050565b5f61016082019050614e895f83018a614e66565b614e966020830189614bb8565b614ea360c0830188613ab8565b614eb060e0830187613ab8565b614ebe6101008301866140c6565b614ecc6101208301856140c6565b614eda6101408301846140c6565b98975050505050505050565b5f604082019050614ef95f830185614e66565b614f066020830184614e66565b9392505050565b60028110614f19575f5ffd5b50565b5f81519050614f2a81614f0d565b92915050565b5f60208284031215614f4557614f4461398c565b5b5f614f5284828501614f1c565b91505092915050565b828183375f83830152505050565b5f614f748385614033565b9350614f81838584614f5b565b614f8a83614051565b840190509392505050565b5f6040820190508181035f830152614fad8186614061565b90508181036020830152614fc2818486614f69565b9050949350505050565b5f606082019050614fdf5f830186613ab8565b614fec6020830185613ab8565b614ff96040830184613ab8565b949350505050565b5f602082840312156150165761501561398c565b5b5f61502384828501614775565b91505092915050565b6003811061503d5761503c613cd9565b5b50565b5f81905061504d8261502c565b919050565b5f61505c82615040565b9050919050565b61506c81615052565b82525050565b5f60e0820190506150855f83018a614e66565b6150926020830189613ab8565b61509f6040830188613ab8565b6150ac6060830187613ab8565b6150b96080830186613e40565b6150c660a0830185615063565b6150d360c08301846140c6565b98975050505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61511682613a47565b915061512183613a47565b925082615131576151306150df565b5b828204905092915050565b5f60208201905061514f5f830184614e66565b92915050565b5f61515f82613a47565b915061516a83613a47565b925082820390508181111561518257615181614ddb565b5b92915050565b5f60608201905061519b5f830186614e66565b6151a86020830185614e66565b6151b56040830184613ab8565b949350505050565b5f6040820190506151d05f830185614e66565b6151dd6020830184613ab8565b9392505050565b5f6040820190506151f75f830185614e66565b6152046020830184613e40565b9392505050565b5f60608201905061521e5f830186614e66565b61522b6020830185613ab8565b6152386040830184613ab8565b949350505050565b6003811061524c575f5ffd5b50565b5f8151905061525d81615240565b92915050565b5f602082840312156152785761527761398c565b5b5f6152858482850161524f565b91505092915050565b5f6040820190506152a15f830185613ab8565b6152ae60208301846140c6565b939250505056fea26469706673582212207ff43e53b5ac9c1f8c451820a879fda9de4d8569c6318deff9370ef8265c2b7564736f6c634300081e0033

Verified Source Code Full Match

Compiler: v0.8.30+commit.73712a01 EVM: prague Optimization: No
RewardManagerV1.1.sol 715 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

import "../interfaces/staking/IStakingStorage.sol";
import "../interfaces/staking/IStakingVault.sol";
import "../interfaces/reward/IRewardStrategy.sol";
import "../interfaces/reward/IRewardStrategyV1.1.sol";

import "./ClaimsJournal.sol";
import "./PoolManager.sol";
import "./FundingManager.sol";

import "../interfaces/reward/RewardErrors.sol";

/**
 * @title RewardManager
 * @author @Tudmotu & Gemini
 * @notice A stateless orchestrator for all reward claims, inheriting funding logic.
 * @dev This contract holds no state about users' claims. It reads from storage contracts,
 *      executes business logic from strategy contracts, and coordinates payments and state updates.
 */
contract RewardManagerV1_1 is
    FundingManager,
    Pausable,
    RewardErrors,
    ReentrancyGuard
{
    using SafeERC20 for IERC20;

    // --- Immutable contract dependencies ---

    IStakingStorage public immutable stakingStorage;
    ClaimsJournal public claimsJournal;
    PoolManager public immutable poolManager;

    mapping(uint256 poolId => mapping(uint256 strategyId => uint256))
        public rewardAssignedToPool;

    event RewardClaimed(
        address indexed user,
        bytes32 stakeId,
        uint256 indexed poolId,
        uint256 indexed strategyId,
        uint256 rewardAmount,
        uint16 claimDay
    );

    constructor(
        address _admin,
        address _manager,
        address _multisig,
        IStakingStorage _stakingStorage,
        StrategiesRegistry _strategiesRegistry,
        ClaimsJournal _claimsJournal,
        PoolManager _poolManager
    ) FundingManager(_admin, _manager, _multisig, _strategiesRegistry) {
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
        _grantRole(MANAGER_ROLE, _manager);

        stakingStorage = _stakingStorage;
        claimsJournal = _claimsJournal;
        poolManager = _poolManager;
    }

    function setClaimsJournal(
        ClaimsJournal _newClaimsJournal
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        claimsJournal = _newClaimsJournal;
    }

    function assignRewardToPool(
        uint256 _poolId,
        uint256 _strategyId,
        uint256 _amount
    ) external onlyRole(MANAGER_ROLE) {
        require(
            !poolManager.hasAnnounced(_poolId),
            RewardErrors.PoolHasAlreadyBeenAnnounced()
        );
        rewardAssignedToPool[_poolId][_strategyId] = _amount;
    }

    function pause() external onlyRole(MANAGER_ROLE) {
        _pause();
    }

    function unpause() external onlyRole(MANAGER_ROLE) {
        _unpause();
    }

    function batchClaimReward(
        bytes32[] calldata stakeIds,
        uint256[] calldata poolIds,
        uint256[] calldata strategyIds
    ) external {
        require(
            stakeIds.length == poolIds.length &&
                stakeIds.length == strategyIds.length,
            RewardErrors.InvalidInputArrays()
        );

        for (uint256 i = 0; i < stakeIds.length; i++) {
            claimReward(stakeIds[i], poolIds[i], strategyIds[i]);
        }
    }

    function batchCalculateReward(
        bytes32[] calldata stakeIds,
        uint256[] calldata poolIds,
        uint256[] calldata strategyIds
    ) external view returns (uint256[] memory) {
        uint256[] memory estimatedAmounts = new uint256[](stakeIds.length);
        for (uint256 i = 0; i < stakeIds.length; i++) {
            (estimatedAmounts[i]) = _calculateReward(
                _getStakerFromId(stakeIds[i]),
                stakeIds[i],
                poolIds[i],
                strategyIds[i]
            );
        }
        return estimatedAmounts;
    }

    // ===================================================================
    //                      USER CLAIM FUNCTIONS
    // ===================================================================
    function claimReward(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId
    ) public nonReentrant whenNotPaused {
        // --- 1. Data Fetching and Validation ---
        (
            address staker,
            address strategyAddress,
            uint256 layerId
        ) = _getDataAndValidate(stakeId, poolId, strategyId);

        // --- 2. Reward Calculation ---
        uint256 rewardAmount = _calculateReward(
            staker,
            stakeId,
            poolId,
            strategyId
        );
        require(rewardAmount > 0, RewardErrors.NoRewardToClaim());

        // --- 3. Record Keeping ---
        _recordClaim(staker, poolId, strategyId, layerId, stakeId);

        // --- 4. Payout ---
        _payout(staker, poolId, strategyId, strategyAddress, rewardAmount);

        // --- 5. Emit Event ---
        emit RewardClaimed(
            staker,
            stakeId,
            poolId,
            strategyId,
            rewardAmount,
            _getCurrentDay()
        );
    }

    function calculateReward(
        address staker,
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId
    ) external view returns (uint256) {
        return _calculateReward(staker, stakeId, poolId, strategyId);
    }

    /**
     * @notice This function is to be called by FrontEnd UI (mostly),
     * in order to display list of Pool/stake pairs,
     * and against each pair, the rewards the user can claim.
     * Pools can have multiple layers, each layer can have multiple strategies.
     * Some strategies on the same layer can be exclusive to each other.
     * UI displays to the user a reward which can be claimed for each strategy.
     * In case of exclusive strategies, UI displays two or more rewards,
     * and when user clicks on the reward, FE disable other rewards,
     * that can not be claimed after user confirmed the selection.
     * Confirming selection will call `claimReward()` function for the
     * chosen strategy.
     *
     *  Use case example:
     *  For Pool 1 (cycle 1, 30 days) we have just 1 strategy:
     *  StandardRewardStrategy on layer 1:
     *  [1],
     *  [100], // amount of reward for pool
     *  [NORMAL]
     *
     *  For Pool 4 (90 days) we have just 2 strategies on layer 0:
     *  FullStaking and Whitelisted:
     *  [4,5],
     *  [100,100], // Even if the rewards is the same, the conditions could be different
     *  [NORMAL, EXCLUSIVE]
     *
     * @param stakeId The ID of the stake.
     * @param poolId The ID of the pool.
     * @param layerId The ID of the layer.
     * @return strategyIds An array of strategy IDs.
     * @return amounts An array of amounts for each strategy.
     * @return _exclusivity An array of exclusivity for each strategy.
     */
    function calculateRewardsForPool(
        bytes32 stakeId,
        uint256 poolId,
        uint256 layerId
    )
        external
        view
        returns (
            uint256[] memory,
            uint256[] memory,
            PoolManager.StrategyExclusivity[] memory
        )
    {
        (
            uint256[] memory _strategyIds,
            PoolManager.StrategyExclusivity[] memory _exclusivity
        ) = poolManager.getStrategiesFromLayer(poolId, layerId);
        uint256[] memory amounts = new uint256[](_strategyIds.length);
        address staker = _getStakerFromId(stakeId);

        for (uint256 i = 0; i < _strategyIds.length; ++i) {
            uint256 strategyId = _strategyIds[i];
            (amounts[i]) = _calculateReward(
                staker,
                stakeId,
                poolId,
                strategyId
            );
        }
        return (_strategyIds, amounts, _exclusivity);
    }

    function getCurrentDay() external view returns (uint16) {
        return _getCurrentDay();
    }

    // ===================================================================
    //                      V1.1 Functions
    // ===================================================================

    function batchClaimRewardWithSignature(
        bytes32[] calldata stakeIds,
        uint256[] calldata poolIds,
        uint256[] calldata strategyIds,
        bytes[] calldata signatures
    ) external {
        require(
            stakeIds.length == poolIds.length &&
                stakeIds.length == strategyIds.length,
            RewardErrors.InvalidInputArrays()
        );

        for (uint256 i = 0; i < stakeIds.length; i++) {
            claimRewardWithSignature(
                stakeIds[i],
                poolIds[i],
                strategyIds[i],
                signatures[i]
            );
        }
    }

    function batchCalculateRewardWithSignature(
        bytes32[] calldata stakeIds,
        uint256[] calldata poolIds,
        uint256[] calldata strategyIds,
        bytes[] calldata signatures
    ) external view returns (uint256[] memory) {
        uint256[] memory estimatedAmounts = new uint256[](stakeIds.length);
        for (uint256 i = 0; i < stakeIds.length; i++) {
            (estimatedAmounts[i]) = _calculateRewardWithSignature(
                stakeIds[i],
                poolIds[i],
                strategyIds[i],
                signatures[i]
            );
        }
        return estimatedAmounts;
    }

    function claimRewardWithSignature(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId,
        bytes calldata signature
    ) public nonReentrant whenNotPaused {
        // --- 1. Data Fetching and Validation ---
        // we validate:
        // - stake belongs to the caller
        // - strategy exists
        // - the stake doesn't violate the exclusivity rules
        // - pool has started
        // - (if pool is size dependent) pool is calculated
        (
            address staker,
            address strategyAddress,
            uint256 layerId
        ) = _getDataAndValidate(stakeId, poolId, strategyId);

        // --- 2. Reward Calculation ---
        // we validate (in the strategy contract):
        // - signature is valid
        // - stake has not been claimed yet
        uint256 rewardAmount = _calculateRewardWithSignature(
            stakeId,
            poolId,
            strategyId,
            signature
        );

        require(rewardAmount > 0, RewardErrors.NoRewardToClaim());

        // --- 3. Record Keeping ---
        _recordClaim(staker, poolId, strategyId, layerId, stakeId);

        // --- 4. Payout ---
        _payout(staker, poolId, strategyId, strategyAddress, rewardAmount);

        // --- 5. Emit Event ---
        emit RewardClaimed(
            staker,
            stakeId,
            poolId,
            strategyId,
            rewardAmount,
            _getCurrentDay()
        );
    }

    function calculateRewardWithSignature(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId,
        bytes calldata signature
    ) external view returns (uint256) {
        return
            _calculateRewardWithSignature(
                stakeId,
                poolId,
                strategyId,
                signature
            );
    }

    /**
     * @notice This function is to be called by FrontEnd UI (mostly),
     * in order to display list of Pool/stake pairs,
     * and against each pair, the rewards the user can claim.
     * Pools can have multiple layers, each layer can have multiple strategies.
     * Some strategies on the same layer can be exclusive to each other.
     * UI displays to the user a reward which can be claimed for each strategy.
     * In case of exclusive strategies, UI displays two or more rewards,
     * and when user clicks on the reward, FE disable other rewards,
     * that can not be claimed after user confirmed the selection.
     * Confirming selection will call `claimReward()` function for the
     * chosen strategy.
     *
     *  Use case example:
     *  For Pool 1 (cycle 1, 30 days) we have just 1 strategy:
     *  StandardRewardStrategy on layer 1:
     *  [1],
     *  [100], // amount of reward for pool
     *  [NORMAL]
     *
     *  For Pool 4 (90 days) we have just 2 strategies on layer 0:
     *  FullStaking and Whitelisted:
     *  [4,5],
     *  [100,100], // Even if the rewards is the same, the conditions could be different
     *  [NORMAL, EXCLUSIVE]
     *
     * @param stakeId The ID of the stake.
     * @param poolId The ID of the pool.
     * @param layerId The ID of the layer.
     * @return strategyIds An array of strategy IDs.
     * @return amounts An array of amounts for each strategy.
     * @return _exclusivity An array of exclusivity for each strategy.
     */
    function calculateRewardsWithSignatureForPool(
        bytes32 stakeId,
        uint256 poolId,
        uint256 layerId,
        bytes calldata signature
    )
        external
        view
        returns (
            uint256[] memory,
            uint256[] memory,
            PoolManager.StrategyExclusivity[] memory
        )
    {
        (
            uint256[] memory _strategyIds,
            PoolManager.StrategyExclusivity[] memory _exclusivity
        ) = poolManager.getStrategiesFromLayer(poolId, layerId);
        uint256[] memory amounts = new uint256[](_strategyIds.length);

        for (uint256 i = 0; i < _strategyIds.length; ++i) {
            uint256 strategyId = _strategyIds[i];
            (amounts[i]) = _calculateRewardWithSignature(
                stakeId,
                poolId,
                strategyId,
                signature
            );
        }
        return (_strategyIds, amounts, _exclusivity);
    }

    function getPayloadForTesting(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId
    ) external view returns (bytes memory) {
        IStakingStorage.Stake memory stake = stakingStorage.getStake(stakeId);
        PoolManager.Pool memory pool = poolManager.getPool(poolId);

        uint16 lastClaimDay = claimsJournal.getLastClaimDay(
            stakeId,
            poolId,
            strategyId
        );

        IRewardStrategyV1_1.PoolData memory poolData = IRewardStrategyV1_1
            .PoolData({
                weight: pool.totalPoolWeight > 0
                    ? pool.totalPoolWeight
                    : poolManager.poolLiveWeight(poolId),
                reward: rewardAssignedToPool[poolId][strategyId],
                startDay: pool.startDay,
                endDay: pool.endDay
            });

        return abi.encode(stakeId, stake, poolData, lastClaimDay);
    }

    /**
     * @notice We calculate the reward for a stake with a signature.
     *
     * @dev We get the strategy contract & last claim day,
     * @dev pack the data, and pass it to the strategy contract
     * @dev to receive the calculated reward.
     *
     * @param stakeId The ID of the stake.
     * @param poolId The ID of the pool.
     * @param strategyId The ID of the strategy.
     * @param signature The signature of the stake.
     * @return estimatedAmount The estimated amount of reward.
     */
    function _calculateRewardWithSignature(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId,
        bytes calldata signature
    ) internal view returns (uint256 estimatedAmount) {
        IRewardStrategyV1_1 strategyContract = IRewardStrategyV1_1(
            strategiesRegistry.getStrategyAddress(strategyId)
        );
        uint16 lastClaimDay = claimsJournal.getLastClaimDay(
            stakeId,
            poolId,
            strategyId
        );

        bytes memory payload = _encodeCalculationData(
            stakeId,
            poolId,
            strategyId,
            lastClaimDay
        );

        estimatedAmount = strategyContract.calculateReward(payload, signature);
    }

    function _encodeCalculationData(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId,
        uint16 lastClaimDay
    ) internal view returns (bytes memory) {
        IStakingStorage.Stake memory stake = stakingStorage.getStake(stakeId);
        PoolManager.Pool memory pool = poolManager.getPool(poolId);

        IRewardStrategyV1_1.PoolData memory poolData = IRewardStrategyV1_1
            .PoolData({
                weight: pool.totalPoolWeight > 0
                    ? pool.totalPoolWeight
                    : poolManager.poolLiveWeight(poolId),
                reward: rewardAssignedToPool[poolId][strategyId],
                startDay: pool.startDay,
                endDay: pool.endDay
            });

        return abi.encode(stakeId, stake, poolData, lastClaimDay);
    }

    // ===================================================================
    //                      Internal Functions
    // ===================================================================

    /**
     * @notice We extract and return data for further use,
     * @notice but before that, we validate that stake:
     * - belongs to the caller
     * - strategy exists
     * - the stake doesn't violate the exclusivity rules
     * - pool has started
     * - (if pool size dependent) pool is calculated
     * @param stakeId The ID of the stake.
     * @param poolId The ID of the pool.
     * @param strategyId The ID of the strategy.
     * @return staker
     * @return strategyAddress
     * @return layerId
     */
    function _getDataAndValidate(
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId
    )
        internal
        view
        returns (address staker, address strategyAddress, uint256 layerId)
    {
        staker = _getStakerFromId(stakeId);
        require(
            staker == _msgSender(),
            RewardErrors.NotStakeOwner(_msgSender(), staker)
        );

        strategyAddress = strategiesRegistry.getStrategyAddress(strategyId);
        require(
            strategyAddress != address(0),
            RewardErrors.StrategyNotExist(strategyId)
        );

        layerId = poolManager.getStrategyLayer(poolId, strategyId);
        _validateExclusivity(stakeId, poolId, layerId, strategyId);

        IRewardStrategy.StrategyType strategyType = IRewardStrategy(
            strategyAddress
        ).getStrategyType();

        if (strategyType == IRewardStrategy.StrategyType.POOL_SIZE_DEPENDENT) {
            require(
                poolManager.isPoolCalculated(poolId),
                RewardErrors.PoolNotInitializedOrCalculated(poolId)
            );
        } else {
            require(
                poolManager.hasStarted(poolId),
                RewardErrors.PoolNotStarted(poolId)
            );
        }
    }

    /**
     * @notice We validate that the stake doesn't violate the exclusivity rules:
     * - if the strategy is exclusive, the stake doesn't have a claim yet
     * - if the strategy is semi exclusive, the stake doesn't have a semi exclusive claim yet
     * - if the strategy is normal, the stake doesn't have an exclusive or semi exclusive claim yet
     * @dev one stake can have multiple stakes, so we validate each stakeId
     * @param stakeId The ID of the stake.
     * @param poolId The ID of the pool.
     * @param layerId The ID of the layer.
     * @param strategyId The ID of the strategy.
     */
    function _validateExclusivity(
        bytes32 stakeId,
        uint256 poolId,
        uint256 layerId,
        uint256 strategyId
    ) internal view {
        PoolManager.StrategyExclusivity strategyType = poolManager
            .getStrategyExclusivity(poolId, layerId, strategyId);
        ClaimsJournal.LayerClaimType layerClaimState = claimsJournal
            .getLayerClaimState(_getStakerFromId(stakeId), poolId, layerId);

        if (strategyType == PoolManager.StrategyExclusivity.EXCLUSIVE) {
            require(
                layerClaimState == ClaimsJournal.LayerClaimType.NORMAL,
                RewardErrors.LayerAlreadyHasClaim(
                    layerId,
                    claimsJournal.getLastClaimDay(stakeId, poolId, strategyId)
                )
            );
        } else {
            require(
                layerClaimState != ClaimsJournal.LayerClaimType.EXCLUSIVE,
                RewardErrors.LayerAlreadyHasExclusiveClaim(
                    layerId,
                    claimsJournal.getLastClaimDay(stakeId, poolId, strategyId)
                )
            );
            if (
                strategyType == PoolManager.StrategyExclusivity.SEMI_EXCLUSIVE
            ) {
                require(
                    layerClaimState !=
                        ClaimsJournal.LayerClaimType.SEMI_EXCLUSIVE,
                    RewardErrors.LayerAlreadyHasSemiExclusiveClaim(
                        layerId,
                        claimsJournal.getLastClaimDay(
                            stakeId,
                            poolId,
                            strategyId
                        )
                    )
                );
            }
        }
    }

    function _calculateReward(
        address staker,
        bytes32 stakeId,
        uint256 poolId,
        uint256 strategyId
    ) internal view returns (uint256 estimatedAmount) {
        IRewardStrategy strategyContract = IRewardStrategy(
            strategiesRegistry.getStrategyAddress(strategyId)
        );
        IStakingStorage.Stake memory stake = stakingStorage.getStake(stakeId);
        PoolManager.Pool memory pool = poolManager.getPool(poolId);

        uint16 lastClaimDay = claimsJournal.getLastClaimDay(
            stakeId,
            poolId,
            strategyId
        );

        uint256 liveWeight = poolManager.poolLiveWeight(poolId);

        if (liveWeight == 0 && pool.totalPoolWeight == 0) return 0;

        uint256 poolWeight = pool.totalPoolWeight > 0
            ? pool.totalPoolWeight
            : liveWeight;

        estimatedAmount = strategyContract.calculateReward(
            staker,
            stake,
            poolWeight,
            rewardAssignedToPool[poolId][strategyId],
            pool.startDay,
            pool.endDay,
            lastClaimDay
        );
    }

    function _payout(
        address staker,
        uint256 poolId,
        uint256 strategyId,
        address strategyAddress,
        uint256 rewardAmount
    ) internal {
        _decreaseStrategyBalance(poolId, strategyId, rewardAmount);

        address rewardToken = IRewardStrategy(strategyAddress).getRewardToken();
        IERC20(rewardToken).safeTransfer(staker, rewardAmount);
    }

    function _recordClaim(
        address staker,
        uint256 poolId,
        uint256 strategyId,
        uint256 layerId,
        bytes32 stakeId
    ) internal {
        PoolManager.StrategyExclusivity strategyType = poolManager
            .getStrategyExclusivity(poolId, layerId, strategyId);

        ClaimsJournal.LayerClaimType claimType;
        if (strategyType == PoolManager.StrategyExclusivity.NORMAL) {
            claimType = ClaimsJournal.LayerClaimType.NORMAL;
        } else if (
            strategyType == PoolManager.StrategyExclusivity.SEMI_EXCLUSIVE
        ) {
            claimType = ClaimsJournal.LayerClaimType.SEMI_EXCLUSIVE;
        } else {
            claimType = ClaimsJournal.LayerClaimType.EXCLUSIVE;
        }

        claimsJournal.recordClaim(
            staker,
            poolId,
            layerId,
            strategyId,
            stakeId,
            claimType,
            _getCurrentDay()
        );
    }

    function _getStakerFromId(bytes32 stakeId) internal pure returns (address) {
        return address(uint160(uint256(stakeId) >> 96));
    }

    function _getCurrentDay() internal view returns (uint16) {
        return uint16(block.timestamp / 1 days);
    }
}
AccessControl.sol 207 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
Pausable.sol 112 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
SafeERC20.sol 212 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
ReentrancyGuard.sol 87 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
IStakingStorage.sol 109 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.30;

/**
 * @title IStakingStorage Interface
 * @notice Unified interface for consolidated staking storage
 */
interface IStakingStorage {
    enum Sign {
        POSITIVE,
        NEGATIVE
    }
    struct Stake {
        uint128 amount;
        uint16 stakeDay;
        uint16 unstakeDay;
        uint16 daysLock;
        uint16 flags; // 2 bytes - pack multiple booleans
    }

    struct StakerInfo {
        uint128 totalStaked;
        uint128 totalRewarded; // TODO: remove?
        uint128 totalClaimed; // TODO: remove?
        uint16 stakesCounter;
        uint16 activeStakesNumber;
        uint16 lastCheckpointDay;
    }

    struct DailySnapshot {
        uint128 totalStakedAmount;
        uint16 totalStakesCount;
    }

    // Events
    event Staked(
        address indexed staker,
        bytes32 indexed stakeId,
        uint128 amount,
        uint16 indexed stakeDay,
        uint16 daysLock,
        uint16 flags
    );

    event Unstaked(
        address indexed staker,
        bytes32 indexed stakeId,
        uint16 indexed unstakeDay,
        uint128 amount
    );

    event CheckpointCreated(
        address indexed staker,
        uint16 indexed day,
        uint128 balance,
        uint16 stakesCount
    );

    // Stake Management
    function createStake(
        address staker,
        uint128 amount,
        uint16 daysLock,
        uint16 flags
    ) external returns (bytes32 stakeId);

    function removeStake(address staker, bytes32 stakeId) external;

    function getStake(bytes32 stakeId) external view returns (Stake memory);

    function isActiveStake(bytes32 stakeId) external view returns (bool);

    // Staker Management
    function getStakerInfo(
        address staker
    ) external view returns (StakerInfo memory);

    function getStakerBalance(address staker) external view returns (uint128);

    function getStakerBalanceAt(
        address staker,
        uint16 targetDay
    ) external view returns (uint128);

    function batchGetStakerBalances(
        address[] calldata stakers,
        uint16 targetDay
    ) external view returns (uint128[] memory);

    // Global Statistics
    function getDailySnapshot(
        uint16 day
    ) external view returns (DailySnapshot memory);

    function getCurrentTotalStaked() external view returns (uint128);

    // Pagination
    function getStakersPaginated(
        uint256 offset,
        uint256 limit
    ) external view returns (address[] memory);

    function getTotalStakersCount() external view returns (uint256);

    function getStakerStakeIds(
        address staker
    ) external view returns (bytes32[] memory);
}
IStakingVault.sol 19 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.30;

interface IStakingVault {
  // Core functions
  function stake(uint128 amount, uint16 daysLock) external returns (bytes32 stakeId);

  function unstake(bytes32 stakeId) external;

  /**
   * @notice Stake tokens from a claim with a timelock period in days
   * @param staker The address of the staker
   * @param amount The amount to stake
   * @param daysLock The timelock period in days
   * @return stakeId The ID of the created stake
   */
  function stakeFromClaim(address staker, uint128 amount, uint16 daysLock) external returns (bytes32 stakeId);
}
IRewardStrategy.sol 30 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import {IStakingStorage} from "../staking/IStakingStorage.sol";

interface IRewardStrategy {
    enum StrategyType {
        POOL_SIZE_INDEPENDENT, // Can calculate anytime (APR-style)
        POOL_SIZE_DEPENDENT // Requires BE calculation after pool ends - how much were staked during the pool
    }

    // --- CONFIGURATION VIEW FUNCTIONS ---

    function getName() external view returns (string memory);
    function getRewardToken() external view returns (address);
    function getStrategyType() external view returns (StrategyType);

    /**
     * @notice Calculates reward for POOL_SIZE_DEPENDENT strategies.
     */
    function calculateReward(
        address user,
        IStakingStorage.Stake calldata stake,
        uint256 totalPoolWeight,
        uint256 totalRewardAmount,
        uint16 poolStartDay,
        uint16 poolEndDay,
        uint16 lastClaimDay
    ) external view returns (uint256);
}
IRewardStrategyV1.1.sol 41 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import {IStakingStorage} from "../staking/IStakingStorage.sol";

interface IRewardStrategyV1_1 {
    enum StrategyType {
        POOL_SIZE_INDEPENDENT, // Can calculate anytime (APR-style)
        POOL_SIZE_DEPENDENT // Requires BE calculation after pool ends - how much were staked during the pool
    }

    struct PoolData {
        uint256 weight;
        uint256 reward;
        uint16 startDay;
        uint16 endDay;
    }

    // --- CONFIGURATION VIEW FUNCTIONS ---

    function getName() external view returns (string memory);

    function getRewardToken() external view returns (address);

    function getStrategyType() external view returns (StrategyType);

    function calculateReward(
        bytes calldata payload,
        bytes calldata signature
    ) external view returns (uint256);

    function calculateReward(
        address staker,
        IStakingStorage.Stake calldata stake,
        uint256 totalPoolWeight,
        uint256 totalRewardAmount,
        uint16 poolStartDay,
        uint16 poolEndDay,
        uint16 lastClaimDay
    ) external view returns (uint256);
}
ClaimsJournal.sol 125 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import "@openzeppelin/contracts/access/AccessControl.sol";

import "../interfaces/reward/RewardErrors.sol";

/**
 * @title ClaimsJournal
 * @notice Stores all user claim history for both DIRECT and SHARED_POOL rewards.
 * @dev This contract is the single source of truth for the RewardManager to determine
 *      if a user is eligible for a future claim based on their past actions.
 *      It knows nothing about reward logic; it is a simple, append-only ledger.
 */
contract ClaimsJournal is AccessControl, RewardErrors {
    bytes32 constant REWARD_MANAGER_ROLE = keccak256("REWARD_MANAGER_ROLE");

    enum LayerClaimType {
        NORMAL,
        EXCLUSIVE,
        SEMI_EXCLUSIVE
    }

    event LayerStateUpdated(
        address indexed user,
        uint256 indexed poolId,
        uint256 indexed layerId,
        LayerClaimType newStateType
    );

    event ClaimRecorded(
        bytes32 indexed stakeId,
        uint256 indexed strategyId,
        uint256 claimDay
    );

    // Tracks the state of a user's claim on a specific layer of a pool.
    // User Address => Pool ID => Layer ID => Claim Type
    mapping(address userAddress => mapping(uint256 poolId => mapping(uint256 layerId => LayerClaimType)))
        public layerClaimState;

    // Tracks the last day a reward was claimed for a specific stake and a DIRECT strategy.
    // Stake ID => Strategy ID => Day
    mapping(bytes32 stakeId => mapping(uint256 poolId => mapping(uint256 strategyId => uint16 claimDay)))
        public claimDates;

    constructor(address _admin) {
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
    }

    /**
     * @notice Records a claim, updating the state for the given user, pool, and strategy.
     * @dev To be called ONLY by the RewardManager after a successful reward payment.
     */
    function recordClaim(
        address _user,
        uint256 _poolId,
        uint256 _layerId,
        uint256 _strategyId,
        bytes32 _stakeId,
        LayerClaimType _claimType,
        uint16 _claimDay
    ) external onlyRole(REWARD_MANAGER_ROLE) {
        LayerClaimType currentLayerState = layerClaimState[_user][_poolId][
            _layerId
        ];

        if (_claimType == LayerClaimType.EXCLUSIVE) {
            require(
                currentLayerState == LayerClaimType.NORMAL,
                LayerAlreadyHasClaim(_layerId, _claimDay)
            );
        } else {
            // NORMAL or SEMI_EXCLUSIVE
            require(
                currentLayerState != LayerClaimType.EXCLUSIVE,
                LayerAlreadyHasExclusiveClaim(_layerId, _claimDay)
            );
            if (_claimType == LayerClaimType.SEMI_EXCLUSIVE) {
                require(
                    currentLayerState != LayerClaimType.SEMI_EXCLUSIVE,
                    LayerAlreadyHasSemiExclusiveClaim(_layerId, _claimDay)
                );
            }
        }

        // if current state is absent or normal,
        // update it to the new claim type (normal, semi-exclusive or exclusive)
        if (currentLayerState == LayerClaimType.NORMAL) {
            layerClaimState[_user][_poolId][_layerId] = _claimType; // TODO BUG: Should be stakeId, not user
            emit LayerStateUpdated(_user, _poolId, _layerId, _claimType);
        }
        // if current state is exclusive, update it to the max-level
        // this will override the normal or semi-exclusive claim
        // if it is already exclusive, it is redundant but safe to rewrite
        // but cheaper in terms of gas (no extra checks on all updates)
        if (_claimType == LayerClaimType.EXCLUSIVE) {
            layerClaimState[_user][_poolId][_layerId] = _claimType;
            emit LayerStateUpdated(_user, _poolId, _layerId, _claimType);
        }

        claimDates[_stakeId][_poolId][_strategyId] = _claimDay;
        emit ClaimRecorded(_stakeId, _strategyId, _claimDay);
    }

    // ===================================================================
    //                           VIEW FUNCTIONS
    // ===================================================================

    function getLayerClaimState(
        address _user,
        uint256 _poolId,
        uint256 _layerId
    ) external view returns (LayerClaimType) {
        return layerClaimState[_user][_poolId][_layerId];
    }

    function getLastClaimDay(
        bytes32 _stakeId,
        uint256 _poolId,
        uint256 _strategyId
    ) external view returns (uint16) {
        return claimDates[_stakeId][_poolId][_strategyId];
    }
}
PoolManager.sol 377 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

contract PoolManager is AccessControl {
    using EnumerableSet for EnumerableSet.UintSet;
    bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");
    bytes32 public constant CONTROLLER_ROLE = keccak256("CONTROLLER_ROLE");

    enum StrategyExclusivity {
        NORMAL, // can be combined with any other
        EXCLUSIVE, // excludes all other on the layer
        SEMI_EXCLUSIVE // excludes only other SEMI_EXCLUSIVE and EXCLUSIVE
    }

    struct Pool {
        bool hasAnnounced; // if false it is possible to setup pools in the past
        bool toSkipInUI;
        uint16 startDay;
        uint16 endDay;
        uint256 totalPoolWeight;
        uint256 parentPoolId;
    }

    uint256 public nextPoolId;

    mapping(uint256 poolId => Pool) public pools;
    // poolLiveWeight is used to calculate the preliminary rewards for the pool
    mapping(uint256 poolId => uint256) public poolLiveWeight;
    mapping(uint256 poolId => EnumerableSet.UintSet) internal _poolLayers;
    mapping(uint256 poolId => EnumerableSet.UintSet) internal _poolStrategies;
    mapping(uint256 poolId => mapping(uint256 layer => EnumerableSet.UintSet))
        internal _poolLayerStrategies;
    mapping(uint256 poolId => mapping(uint256 layer => mapping(uint256 strategyId => StrategyExclusivity)))
        public exclusivity;

    mapping(uint256 poolId => mapping(uint256 layer => EnumerableSet.UintSet))
        private _ignoredStrategies; // ignored strategies for UI

    // Cache for quick search of strategy layer
    mapping(uint256 poolId => mapping(uint256 strategyId => uint256))
        public strategyLayer;

    mapping(uint256 poolId => mapping(uint256 layer => bool))
        public hasExclusiveStrategies;

    event PoolUpserted(
        uint256 indexed poolId,
        uint16 startDay,
        uint16 endDay,
        uint256 totalPoolWeight,
        uint256 indexed parentPoolId
    );
    event StrategyAddedToLayer(
        uint256 poolId,
        uint256 layer,
        uint256 strategyId
    );
    event AnnouncePool(uint256 indexed poolId, uint16 startDay, uint16 endDay);
    event StrategyRemovedFromLayer(
        uint256 indexed poolId,
        uint256 layer,
        uint256 strategyId
    );

    error PoolNotEnded();
    error PoolAlreadyCalculated();
    error InvalidDates();
    error ParentPoolIsSelf();
    error PoolDoesNotExist(uint256 poolId);
    error PoolAlreadyAnnounced();

    constructor(address admin, address manager, address controller) {
        _grantRole(DEFAULT_ADMIN_ROLE, admin);
        _grantRole(MANAGER_ROLE, manager);
        _grantRole(CONTROLLER_ROLE, controller);
        nextPoolId = 1;
    }

    /** ------------------------------------------------
     *  ! Pool Management
     * ------------------------------------------------ */

    function upsertPool(
        uint256 _poolId, // 0 for new pool
        uint16 _startDay,
        uint16 _endDay,
        uint256 _parentPoolId
    ) external onlyRole(MANAGER_ROLE) returns (uint256 poolId) {
        require(!_hasAnnounced(_poolId), PoolAlreadyAnnounced()); // never revert for new pools as poolIds start from 1

        if (_poolId == 0) {
            poolId = nextPoolId;
            nextPoolId++;
        } else {
            poolId = _poolId;
            require(
                pools[poolId].startDay > 0 || pools[poolId].endDay > 0,
                PoolDoesNotExist(poolId)
            );
        }

        require(_parentPoolId != poolId, ParentPoolIsSelf());
        require(_startDay < _endDay, InvalidDates());

        Pool storage p = pools[poolId];
        p.startDay = _startDay;
        p.endDay = _endDay;
        p.parentPoolId = _parentPoolId;

        emit PoolUpserted(poolId, p.startDay, p.endDay, 0, p.parentPoolId);
    }

    function announcePool(uint256 poolId) external onlyRole(MANAGER_ROLE) {
        pools[poolId].hasAnnounced = true;
        emit AnnouncePool(poolId, pools[poolId].startDay, pools[poolId].endDay);
    }

    function setPoolTotalStakeWeight(
        uint256 poolId,
        uint256 totalPoolWeight
    ) external onlyRole(CONTROLLER_ROLE) {
        require(_hasEnded(poolId), PoolNotEnded());
        require(!_isCalculated(poolId), PoolAlreadyCalculated());

        Pool storage p = pools[poolId];

        p.totalPoolWeight = totalPoolWeight;
        emit PoolUpserted(
            poolId,
            p.startDay,
            p.endDay,
            p.totalPoolWeight,
            p.parentPoolId
        );
    }

    function setPoolLiveWeight(
        uint256 poolId,
        uint256 liveWeight
    ) external onlyRole(CONTROLLER_ROLE) {
        poolLiveWeight[poolId] = liveWeight;
    }

    /**
     * Assigns a strategy to a pool layer.
     * @notice The strategy can be assigned even to an active or calculated pool, retroactively
     * @param poolId The ID of the pool to assign the strategy to.
     * @param layer The layer to assign the strategy to.
     * @param strategyId The ID of the strategy to assign.
     * @param strategyExclusivity The exclusivity of the strategy.
     */
    function assignStrategyToPool(
        uint256 poolId,
        uint256 layer,
        uint256 strategyId,
        StrategyExclusivity strategyExclusivity
    ) external onlyRole(MANAGER_ROLE) {
        _poolLayers[poolId].add(layer);
        _poolLayerStrategies[poolId][layer].add(strategyId);
        exclusivity[poolId][layer][strategyId] = strategyExclusivity;
        strategyLayer[poolId][strategyId] = layer;
        _poolStrategies[poolId].add(strategyId);
    }

    function removeLayer(
        uint256 poolId,
        uint8 layer
    ) external onlyRole(MANAGER_ROLE) {
        if (_hasAnnounced(poolId)) revert PoolAlreadyAnnounced();
        _poolLayers[poolId].remove(layer);
    }

    // We are not allowing to alter announced pools,
    // but we can mark those strategies which are not in use by UI.
    // The same time, since we can't alter them, we can guarantee
    // that users will always be able to claim their rewards (e.g. via Etherscan's UI).

    function markStrategyAsIgnored(
        uint256 poolId,
        uint256 layer,
        uint256 strategyId
    ) external onlyRole(MANAGER_ROLE) {
        _ignoredStrategies[poolId][layer].add(strategyId);
    }

    function unmarkStrategyAsIgnored(
        uint256 poolId,
        uint256 layer,
        uint256 strategyId
    ) external onlyRole(MANAGER_ROLE) {
        _ignoredStrategies[poolId][layer].remove(strategyId);
    }

    function removeStrategyFromPool(
        uint256 poolId,
        uint256 layer,
        uint256 strategyId
    ) external onlyRole(MANAGER_ROLE) {
        if (_hasAnnounced(poolId)) revert PoolAlreadyAnnounced();

        delete strategyLayer[poolId][strategyId];
        delete exclusivity[poolId][layer][strategyId];
        _poolStrategies[poolId].remove(strategyId);
        _poolLayerStrategies[poolId][layer].remove(strategyId);
        emit StrategyRemovedFromLayer(poolId, layer, strategyId);
    }

    /** ------------------------------------------------
     *  ! Getters
     * ------------------------------------------------ */

    function getPoolsByDateRange(
        uint16 _fromDay,
        uint16 _toDay
    ) public view returns (uint256[] memory poolIds) {
        // This can be gas-intensive if there are many pools.
        uint256[] memory tempPools = new uint256[](nextPoolId - 1);
        uint256 count = 0;
        for (uint256 i = 1; i < nextPoolId; i++) {
            if (pools[i].startDay <= _toDay && pools[i].endDay >= _fromDay) {
                tempPools[count] = i;
                count++;
            }
        }

        poolIds = new uint256[](count);
        for (uint256 i = 0; i < count; i++) {
            poolIds[i] = tempPools[i];
        }
    }

    function getPoolsCount() external view returns (uint256) {
        return nextPoolId - 1;
    }

    function getPools(
        uint256[] memory poolIds
    ) external view returns (Pool[] memory result) {
        result = new Pool[](poolIds.length);
        for (uint256 i = 0; i < poolIds.length; i++) {
            result[i] = pools[poolIds[i]];
        }
    }

    function getPool(uint256 poolId) external view returns (Pool memory) {
        require(
            pools[poolId].startDay != 0 && pools[poolId].endDay != 0,
            PoolDoesNotExist(poolId)
        );
        return pools[poolId];
    }

    function getPoolLayers(
        uint256 poolId // it is uint256 because of EnumerableSet.UintSet. We don't convert to save gas
    ) external view returns (uint256[] memory) {
        return _poolLayers[poolId].values();
    }

    function getLayerStrategies(
        uint256 poolId,
        uint8 layerId
    ) external view returns (uint256[] memory) {
        return _poolLayerStrategies[poolId][layerId].values();
    }

    function getAllStrategiesForPool(
        uint256 poolId
    ) external view returns (uint256[] memory) {
        return _poolStrategies[poolId].values();
    }

    function getStrategyLayer(
        uint256 poolId,
        uint256 strategyId
    ) external view returns (uint256) {
        return strategyLayer[poolId][strategyId];
    }

    function getStrategyExclusivity(
        uint256 poolId,
        uint256 layerId,
        uint256 strategyId
    ) external view returns (StrategyExclusivity) {
        return exclusivity[poolId][layerId][strategyId];
    }

    function getStrategiesFromLayer(
        uint256 poolId,
        uint256 layerId
    )
        public
        view
        returns (
            uint256[] memory strategyIds,
            StrategyExclusivity[] memory _exclusivity
        )
    {
        // Get the number of strategies on this pool/layer
        uint256 numStrategies = _poolLayerStrategies[poolId][layerId].length();
        // Initialize arrays to store the results
        strategyIds = new uint256[](numStrategies);
        _exclusivity = new StrategyExclusivity[](numStrategies);

        // Iterate over all strategies on this pool/layer
        for (uint256 i = 0; i < numStrategies; ++i) {
            uint256 strategyId = _poolLayerStrategies[poolId][layerId].at(i);
            strategyIds[i] = strategyId;
            _exclusivity[i] = exclusivity[poolId][layerId][strategyId];
        }
    }

    /** ------------------------------------------------
     *  ! Helpers
     * ------------------------------------------------ */

    function isPoolActive(uint256 poolId) external view returns (bool) {
        return _isActive(poolId);
    }

    function isPoolEnded(uint256 poolId) external view returns (bool) {
        return _hasEnded(poolId);
    }

    function isPoolCalculated(uint256 poolId) external view returns (bool) {
        return _isCalculated(poolId);
    }

    function hasLayer(
        uint256 poolId,
        uint256 layer
    ) external view returns (bool) {
        return _poolLayers[poolId].contains(layer);
    }

    function hasStarted(uint256 poolId) external view returns (bool) {
        return _hasStarted(poolId);
    }

    function hasAnnounced(uint256 poolId) external view returns (bool) {
        return _hasAnnounced(poolId);
    }

    /** ------------------------------------------------
     *  ! Internal Helpers
     * ------------------------------------------------ */

    function _hasStarted(uint256 poolId) internal view returns (bool) {
        return
            _getCurrentDay() >= pools[poolId].startDay &&
            pools[poolId].startDay > 0;
    }

    function _hasAnnounced(uint256 poolId) internal view returns (bool) {
        return pools[poolId].hasAnnounced;
    }

    function _hasEnded(uint256 poolId) internal view returns (bool) {
        return
            _getCurrentDay() > pools[poolId].endDay &&
            pools[poolId].endDay != 0;
    }

    function _isActive(uint256 poolId) internal view returns (bool) {
        return _hasStarted(poolId) && !_hasEnded(poolId);
    }

    function _isCalculated(uint256 poolId) internal view returns (bool) {
        return pools[poolId].totalPoolWeight > 0;
    }

    function _getCurrentDay() internal view virtual returns (uint16) {
        return uint16(block.timestamp / 1 days);
    }
}
FundingManager.sol 152 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.30;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./StrategiesRegistry.sol";
import "../interfaces/reward/IRewardStrategy.sol";
import "../interfaces/reward/RewardErrors.sol";

/**
 * @title FundingManager
 * @author @Tudmotu & Gemini
 * @notice An abstract contract to manage funding for PRE_FUNDED strategies.
 * @dev Intended to be inherited by RewardManager. It handles deposits and withdrawals for strategy-specific budgets.
 */
contract FundingManager is AccessControl {
    using SafeERC20 for IERC20;

    bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");
    bytes32 public constant MULTISIG_ROLE = keccak256("MULTISIG_ROLE");

    StrategiesRegistry public immutable strategiesRegistry;

    // Balance tracking for PRE_FUNDED direct strategies
    mapping(uint256 poolId => mapping(uint256 strategyId => uint256))
        public strategyBalances;

    event StrategyFunded(
        uint256 indexed poolId,
        uint256 indexed strategyId,
        uint256 amount
    );
    event StrategyWithdrawn(
        uint256 indexed poolId,
        uint256 indexed strategyId,
        uint256 amount
    );

    constructor(
        address admin,
        address manager,
        address multisig,
        StrategiesRegistry _strategiesRegistry
    ) {
        _grantRole(DEFAULT_ADMIN_ROLE, admin);
        _grantRole(MANAGER_ROLE, manager);
        _grantRole(MULTISIG_ROLE, multisig);
        strategiesRegistry = _strategiesRegistry;
    }

    /**
     * @notice Deposits funds for a PRE_FUNDED direct reward strategy.
     * @dev The caller must have pre-approved this contract to spend the tokens.
     * @param _poolId The ID of the pool to fund.
     * @param _strategyId The ID of the strategy to fund.
     * @param _amount The amount of reward tokens to deposit.
     */
    function fundStrategy(
        uint256 _poolId,
        uint256 _strategyId,
        uint256 _amount
    ) external onlyRole(MANAGER_ROLE) {
        address strategyAddress = strategiesRegistry.getStrategyAddress(
            _strategyId
        );
        require(
            strategyAddress != address(0),
            RewardErrors.StrategyNotExist(_strategyId)
        );

        IRewardStrategy strategy = IRewardStrategy(strategyAddress);

        require(_amount > 0, RewardErrors.AmountMustBeGreaterThanZero());

        address rewardToken = strategy.getRewardToken();

        strategyBalances[_poolId][_strategyId] += _amount;
        IERC20(rewardToken).safeTransferFrom(
            msg.sender,
            address(this),
            _amount
        );
        emit StrategyFunded(_poolId, _strategyId, _amount);
    }

    function withdrawStrategy(
        uint256 _poolId,
        uint256 _strategyId,
        uint256 _amount,
        address _to
    ) external onlyRole(MULTISIG_ROLE) {
        _decreaseStrategyBalance(_poolId, _strategyId, _amount);
        address rewardToken = IRewardStrategy(
            strategiesRegistry.getStrategyAddress(_strategyId)
        ).getRewardToken();

        IERC20(rewardToken).safeTransfer(_to, _amount);

        emit StrategyWithdrawn(_poolId, _strategyId, _amount);
    }

    function transferStrategyBalance(
        uint256 _poolId,
        uint256 _fromStrategyId,
        uint256 _toStrategyId,
        uint256 _amount
    ) external onlyRole(MANAGER_ROLE) {
        // require they have the same reward token
        address fromStrategyAddress = strategiesRegistry.getStrategyAddress(
            _fromStrategyId
        );
        address fromRewardToken = IRewardStrategy(fromStrategyAddress)
            .getRewardToken();
        address toStrategyAddress = strategiesRegistry.getStrategyAddress(
            _toStrategyId
        );
        address toRewardToken = IRewardStrategy(toStrategyAddress)
            .getRewardToken();

        require(fromRewardToken == toRewardToken, "Different reward tokens");

        _decreaseStrategyBalance(_poolId, _fromStrategyId, _amount);
        _increaseStrategyBalance(_poolId, _toStrategyId, _amount);
    }

    /**
     * @dev Internal function to check balance and withdraw funds for a reward payment.
     * @param _strategyId The ID of the strategy.
     * @param _amount The amount to withdraw.
     */
    function _decreaseStrategyBalance(
        uint256 _poolId,
        uint256 _strategyId,
        uint256 _amount
    ) internal {
        uint256 currentBalance = strategyBalances[_poolId][_strategyId];
        require(
            currentBalance >= _amount,
            RewardErrors.InsufficientStrategyBalance()
        );
        strategyBalances[_poolId][_strategyId] = currentBalance - _amount;
    }

    function _increaseStrategyBalance(
        uint256 _poolId,
        uint256 _strategyId,
        uint256 _amount
    ) internal {
        strategyBalances[_poolId][_strategyId] += _amount;
    }
}
RewardErrors.sol 51 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

contract RewardErrors {
    error ControllerAlreadySet();
    error InvalidAddress();
    error InvalidInputArrays();

    // --- RewardManager Errors ---
    error DeclaredRewardZero();
    error DeclaredAmountLessThanDeposited(uint256 declared, uint256 deposited);
    error DepositAmountZero();
    error DepositExceedsDeclared(uint256 total, uint256 declared);
    error NotStakeOwner(address sender, address owner);
    error NoRewardToRestake();
    error NoRewardToClaim();
    error RewardAlreadyGranted();
    error InsufficientDepositedFunds(uint256 requested, uint256 available);

    // --- PooldManager Errors ---
    error PoolDoesNotExist(uint256 poolId);
    error PoolNotSetUp(uint256 poolId);
    error PoolNotFullyFunded(uint256 poolId);
    error PoolNotInitializedOrCalculated(uint256 poolId);
    error PoolAlreadyActiveOrFinalized(uint256 poolId);
    error PoolNotDeclared(uint256 poolId);
    error InvalidPoolDates();
    error PoolNotEnded(uint256 poolId);
    error PoolAlreadyCalculated(uint256 poolId);
    error UserNotEligibleForPool();
    error TotalEligibleWeightIsZero();
    error PoolHasAlreadyBeenAnnounced();
    error PoolNotStarted(uint256 poolId);

    // --- Stacking Policy Errors ---
    error LayerIsLocked(uint256 layer, uint16 day);

    // --- Strategy Errors ---
    error StrategyExist(uint256 strategyId);
    error StrategyNotExist(uint256 strategyId);
    error StrategyNotPreFunded(uint256 strategyId);
    error StrategyCannotBeChanged();
    error AmountMustBeGreaterThanZero();
    error InsufficientStrategyBalance();
    error CallerIsNotManager();

    // --- ClaimsJournal Errors ---
    error LayerAlreadyHasClaim(uint256 layer, uint16 day);
    error LayerAlreadyHasSemiExclusiveClaim(uint256 layer, uint16 day);
    error LayerAlreadyHasExclusiveClaim(uint256 layer, uint16 day);
}
IAccessControl.sol 98 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
ERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
IERC1363.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
EnumerableSet.sol 792 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * The following types are supported:
 *
 * - `bytes32` (`Bytes32Set`) since v3.3.0
 * - `address` (`AddressSet`) since v3.3.0
 * - `uint256` (`UintSet`) since v3.3.0
 * - `string` (`StringSet`) since v5.4.0
 * - `bytes` (`BytesSet`) since v5.4.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
     * using it may render the function uncallable if the set grows to the point where clearing it consumes too much
     * gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
        unchecked {
            end = Math.min(end, _length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes32[] memory result = new bytes32[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    struct StringSet {
        // Storage of set values
        string[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(string value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(StringSet storage set, string memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(StringSet storage set, string memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                string memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(StringSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(StringSet storage set, string memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(StringSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(StringSet storage set, uint256 index) internal view returns (string memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set) internal view returns (string[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            string[] memory result = new string[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    struct BytesSet {
        // Storage of set values
        bytes[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(BytesSet storage set, bytes memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(BytesSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(BytesSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set) internal view returns (bytes[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes[] memory result = new bytes[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }
}
StrategiesRegistry.sol 116 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "../interfaces/reward/RewardErrors.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

/**
 * @title StrategiesRegistry
 * @author @Tudmotu
 * @notice A simple registry for mapping a strategy ID to a contract address.
 */
contract StrategiesRegistry is RewardErrors, AccessControl {
    using EnumerableSet for EnumerableSet.UintSet;
    bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");

    uint256 public nextStrategyId;

    mapping(uint256 id => address contractAddress) public strategies;
    EnumerableSet.UintSet internal _enabledStrategies;

    event StrategyDisabled(
        uint256 indexed strategyId,
        address indexed strategyAddress
    );
    event StrategyEnabled(
        uint256 indexed strategyId,
        address indexed strategyAddress
    );

    constructor(address _admin, address _manager) {
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
        _grantRole(MANAGER_ROLE, _manager);
    }

    /**
     * @notice Registers a new strategy or updates an existing one.
     * @param _strategyAddress The address of the deployed strategy contract.
     */
    function registerStrategy(
        address _strategyAddress
    ) external onlyRole(MANAGER_ROLE) returns (uint256) {
        require(_strategyAddress != address(0), RewardErrors.InvalidAddress());
        strategies[nextStrategyId] = _strategyAddress;
        _enabledStrategies.add(nextStrategyId);
        emit StrategyEnabled(nextStrategyId, _strategyAddress);
        return nextStrategyId++;
    }

    /**
     * @notice Removes a strategy from the registry.
     * @param _strategyId The ID of the strategy to remove.
     */
    function disableStrategy(
        uint256 _strategyId
    ) external onlyRole(MANAGER_ROLE) {
        require(
            strategies[_strategyId] != address(0),
            RewardErrors.StrategyNotExist(_strategyId)
        );
        _enabledStrategies.remove(_strategyId);
        emit StrategyDisabled(_strategyId, strategies[_strategyId]);
    }

    function enableStrategy(
        uint256 _strategyId
    ) external onlyRole(MANAGER_ROLE) {
        require(
            strategies[_strategyId] != address(0),
            RewardErrors.StrategyNotExist(_strategyId)
        );
        _enabledStrategies.add(_strategyId);
        emit StrategyEnabled(_strategyId, strategies[_strategyId]);
    }

    /**
     * @notice Gets the address of a registered strategy.
     * @param _strategyId The ID of the strategy.
     * @return The contract address of the strategy.
     */
    function getStrategyAddress(
        uint256 _strategyId
    ) external view returns (address) {
        return strategies[_strategyId];
    }

    /**
     * @notice Checks if a strategy is registered.
     * @param _strategyId The ID of the strategy to check.
     * @return True if the strategy is registered, false otherwise.
     */
    function isStrategyRegistered(
        uint256 _strategyId
    ) external view returns (bool) {
        return strategies[_strategyId] != address(0);
    }

    function getStrategyStatus(
        uint256 _strategyId
    ) external view returns (bool) {
        return _enabledStrategies.contains(_strategyId);
    }

    function getListOfActiveStrategies()
        external
        view
        returns (uint256[] memory)
    {
        uint256 count = _enabledStrategies.length();
        uint256[] memory activeStrategies = new uint256[](count);
        for (uint256 i = 0; i < count; i++) {
            activeStrategies[i] = _enabledStrategies.at(i);
        }
        return activeStrategies;
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
IERC20.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";
IERC165.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";
Arrays.sol 552 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytesSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getStringSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(string[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}
Math.sol 749 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
Comparators.sol 19 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}
SlotDerivation.sol 155 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}
StorageSlot.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}
Panic.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

Read Contract

DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
MANAGER_ROLE 0xec87621c → bytes32
MULTISIG_ROLE 0xe328400c → bytes32
batchCalculateReward 0xa1f7aeb7 → uint256[]
batchCalculateRewardWithSignature 0x557db098 → uint256[]
calculateReward 0xf26a1a47 → uint256
calculateRewardWithSignature 0xee9d610f → uint256
calculateRewardsForPool 0x14160e83 → uint256[], uint256[], uint8[]
calculateRewardsWithSignatureForPool 0x64685022 → uint256[], uint256[], uint8[]
claimsJournal 0xed43d3ad → address
getCurrentDay 0x3e6968b6 → uint16
getPayloadForTesting 0x3d012189 → bytes
getRoleAdmin 0x248a9ca3 → bytes32
hasRole 0x91d14854 → bool
paused 0x5c975abb → bool
poolManager 0xdc4c90d3 → address
rewardAssignedToPool 0x0c003a98 → uint256
stakingStorage 0xb518a00e → address
strategiesRegistry 0x2fcb3972 → address
strategyBalances 0x70676ca2 → uint256
supportsInterface 0x01ffc9a7 → bool

Write Contract 14 functions

These functions modify contract state and require a wallet transaction to execute.

assignRewardToPool 0xc36536a7
uint256 _poolId
uint256 _strategyId
uint256 _amount
batchClaimReward 0x69535fe7
bytes32[] stakeIds
uint256[] poolIds
uint256[] strategyIds
batchClaimRewardWithSignature 0xf481dc2c
bytes32[] stakeIds
uint256[] poolIds
uint256[] strategyIds
bytes[] signatures
claimReward 0x96c684dd
bytes32 stakeId
uint256 poolId
uint256 strategyId
claimRewardWithSignature 0x2f65788c
bytes32 stakeId
uint256 poolId
uint256 strategyId
bytes signature
fundStrategy 0x5ccafcd5
uint256 _poolId
uint256 _strategyId
uint256 _amount
grantRole 0x2f2ff15d
bytes32 role
address account
pause 0x8456cb59
No parameters
renounceRole 0x36568abe
bytes32 role
address callerConfirmation
revokeRole 0xd547741f
bytes32 role
address account
setClaimsJournal 0x12e7f17c
address _newClaimsJournal
transferStrategyBalance 0x5c69ae64
uint256 _poolId
uint256 _fromStrategyId
uint256 _toStrategyId
uint256 _amount
unpause 0x3f4ba83a
No parameters
withdrawStrategy 0xfe016586
uint256 _poolId
uint256 _strategyId
uint256 _amount
address _to

Recent Transactions

No transactions found for this address