Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xb0311A13d66Ab8E03D9C8D2B93Fe75420EA00BDC
Balance 0 ETH
Nonce 1
Code Size 3481 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

3481 bytes
0x6080604052600436106100b55760003560e01c8063810ec23b11610069578063961325211161004e57806396132521146101ee5780639852595c14610203578063be9a65551461023957600080fd5b8063810ec23b146101b957806386d1a69f146101d957600080fd5b8063191655871161009a578063191655871461013157806338af3eed146101535780635a48c0b01461019757600080fd5b80630a17b06b146100c15780630fb5a6b4146100f457600080fd5b366100bc57005b600080fd5b3480156100cd57600080fd5b506100e16100dc366004610bc4565b610276565b6040519081526020015b60405180910390f35b34801561010057600080fd5b507f00000000000000000000000000000000000000000000000000000000093e748067ffffffffffffffff166100e1565b34801561013d57600080fd5b5061015161014c366004610b3b565b61029a565b005b34801561015f57600080fd5b506040516001600160a01b037f000000000000000000000000767a68e43252b05a41db3bbd5e17743a52da62c91681526020016100eb565b3480156101a357600080fd5b506101ac610366565b6040516100eb9190610bfb565b3480156101c557600080fd5b506100e16101d4366004610b56565b6103f2565b3480156101e557600080fd5b506101516104b0565b3480156101fa57600080fd5b506001546100e1565b34801561020f57600080fd5b506100e161021e366004610b3b565b6001600160a01b031660009081526002602052604090205490565b34801561024557600080fd5b507f0000000000000000000000000000000000000000000000000000000062e7178067ffffffffffffffff166100e1565b600061029461028460015490565b61028e9047610c7c565b83610547565b92915050565b6001600160a01b0381166000908152600260205260408120546102bd83426103f2565b6102c79190610cd5565b6001600160a01b0383166000908152600260205260408120805492935083929091906102f4908490610c7c565b90915550506040518181526001600160a01b038316907fc0e523490dd523c33b1878c9eb14ff46991e3f5b2cd33710918618f2a39cba1b9060200160405180910390a2610362827f000000000000000000000000767a68e43252b05a41db3bbd5e17743a52da62c983610553565b5050565b606060008054806020026020016040519081016040528092919081815260200182805480156103e857602002820191906000526020600020906000905b82829054906101000a900467ffffffffffffffff1667ffffffffffffffff16815260200190600801906020826007010492830192600103820291508084116103a35790505b5050505050905090565b6001600160a01b0382166000908152600260205260408120546104a9906040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526001600160a01b038616906370a082319060240160206040518083038186803b15801561046757600080fd5b505afa15801561047b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061049f9190610bab565b61028e9190610c7c565b9392505050565b60006104bb60015490565b6104c442610276565b6104ce9190610cd5565b905080600160008282546104e29190610c7c565b90915550506040518181527fda9d4e5f101b8b9b1c5b76d0c5a9f7923571acfc02376aa076b75a8c080c956b9060200160405180910390a16105447f000000000000000000000000767a68e43252b05a41db3bbd5e17743a52da62c9826105d8565b50565b60006104a983836106f6565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fa9059cbb000000000000000000000000000000000000000000000000000000001790526105d390849061088a565b505050565b8047101561062d5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e636500000060448201526064015b60405180910390fd5b6000826001600160a01b03168260405160006040518083038185875af1925050503d806000811461067a576040519150601f19603f3d011682016040523d82523d6000602084013e61067f565b606091505b50509050806105d35760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d617920686176652072657665727465640000000000006064820152608401610624565b600080600080548060200260200160405190810160405280929190818152602001828054801561077957602002820191906000526020600020906000905b82829054906101000a900467ffffffffffffffff1667ffffffffffffffff16815260200190600801906020826007010492830192600103820291508084116107345790505b505050505090508060008151811061079357610793610d4d565b602002602001015167ffffffffffffffff168367ffffffffffffffff1610156107c0576000915050610294565b60005481906107d190600190610cd5565b815181106107e1576107e1610d4d565b602002602001015167ffffffffffffffff168367ffffffffffffffff161061080c5783915050610294565b6000805b82518110156108685782818151811061082b5761082b610d4d565b602002602001015167ffffffffffffffff168567ffffffffffffffff16101561085657809150610868565b8061086081610d1c565b915050610810565b50808251866108779190610c94565b6108819190610cb6565b92505050610294565b60006108df826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661096f9092919063ffffffff16565b8051909150156105d357808060200190518101906108fd9190610b89565b6105d35760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610624565b606061097e8484600085610986565b949350505050565b6060824710156109fe5760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610624565b6001600160a01b0385163b610a555760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610624565b600080866001600160a01b03168587604051610a719190610bdf565b60006040518083038185875af1925050503d8060008114610aae576040519150601f19603f3d011682016040523d82523d6000602084013e610ab3565b606091505b5091509150610ac3828286610ace565b979650505050505050565b60608315610add5750816104a9565b825115610aed5782518084602001fd5b8160405162461bcd60e51b81526004016106249190610c49565b80356001600160a01b0381168114610b1e57600080fd5b919050565b803567ffffffffffffffff81168114610b1e57600080fd5b600060208284031215610b4d57600080fd5b6104a982610b07565b60008060408385031215610b6957600080fd5b610b7283610b07565b9150610b8060208401610b23565b90509250929050565b600060208284031215610b9b57600080fd5b815180151581146104a957600080fd5b600060208284031215610bbd57600080fd5b5051919050565b600060208284031215610bd657600080fd5b6104a982610b23565b60008251610bf1818460208701610cec565b9190910192915050565b6020808252825182820181905260009190848201906040850190845b81811015610c3d57835167ffffffffffffffff1683529284019291840191600101610c17565b50909695505050505050565b6020815260008251806020840152610c68816040850160208701610cec565b601f01601f19169190910160400192915050565b60008219821115610c8f57610c8f610d37565b500190565b600082610cb157634e487b7160e01b600052601260045260246000fd5b500490565b6000816000190483118215151615610cd057610cd0610d37565b500290565b600082821015610ce757610ce7610d37565b500390565b60005b83811015610d07578181015183820152602001610cef565b83811115610d16576000848401525b50505050565b6000600019821415610d3057610d30610d37565b5060010190565b634e487b7160e01b600052601160045260246000fd5b634e487b7160e01b600052603260045260246000fdfea2646970667358221220de5a4f191addc9f8eec423cfcb661e98be9a93ab792cb093f33841716f6d930e64736f6c63430008050033

Verified Source Code Full Match

Compiler: v0.8.5+commit.a4f2e591 EVM: berlin Optimization: Yes (1000 runs)
LinearCheckpointVesting.sol 71 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.5;

/**
 * @title LinearCheckpointVesting
 * @dev Implements a vesting schedule that linearly releases chunks of the vested amount according to a schedule given
 *  by checkpoints (as timestamps). At each checkpoint, (total amount) / (number of checkpoints) is released.
 */
abstract contract LinearCheckpointVesting {

    /**
     * @dev The timestamps (in seconds) at which chunks of the vested amount are released.
     */
    uint64[] private _checkpoints;

    /**
     * @dev Sets the checkpoint timestamps.
     * @param checkpointTimestamps A list of UNIX timestamps, sorted ascending.
     */
    constructor(uint64[] memory checkpointTimestamps) {
        require(checkpointTimestamps.length > 0, "Checkpoints must not be empty");
        // For the calculations in checkpointVestingSchedule to work the timestamps have to be sorted ascending.
        for (uint i = 0; i < checkpointTimestamps.length - 1; i++) {
            require(checkpointTimestamps[i] < checkpointTimestamps[i + 1], "Checkpoints must be sorted ascending");
        }
        _checkpoints = checkpointTimestamps;
    }

    /**
     * @dev Getter for the checkpoints
     */
    function checkpoints() public view returns (uint64[] memory) {
        return _checkpoints;
    }

    /**
     * @dev Implements a checkpointed vesting schedule.
     * @param totalAllocation The total allocation for the vesting
     * @param timestamp The current timestamp
     */
    function checkpointVestingSchedule(
        uint256 totalAllocation,
        uint64 timestamp
    ) internal view returns (uint256) {
        // Use a copy of the state variable as this safes gas costs
        uint64[] memory checkpointsCopy = _checkpoints;
        if (timestamp < checkpointsCopy[0]) {
            // If the vesting hasn't started yet, return 0
            return 0;
        } else if (timestamp >= checkpointsCopy[_checkpoints.length - 1]) {
            // If the final timestamp has been reached, return everything
            return totalAllocation;
        } else {
            // Find out what checkpoint we are currently at
            uint currentCheckpoint = 0;
            for (uint i = 0; i < checkpointsCopy.length; i++) {
                // Find the first checkpoint we haven't reached yet, its index is the amount of passed checkpoints
                if (timestamp < checkpointsCopy[i]) {
                    currentCheckpoint = i;
                    break;
                }
            }
            // We can ignore rounding here. The full allocation will always be accessible after
            // the duration has been exceeded.
            // Do the division first to avoid integer overflows in extreme situations. This will add
            // some more possibility for rounding errors, but with a low number of checkpoints that
            // does not matter.
            return (totalAllocation / checkpointsCopy.length) * currentCheckpoint;
        }
    }
}
LinearCheckpointVestingWallet.sol 32 lines
// SPDX-License-Identifier: UNLICENSED
import "../openzeppelin-contracts/contracts/finance/VestingWallet.sol";
import "./LinearCheckpointVesting.sol";
pragma solidity 0.8.5;

/**
 * @title LinearCheckpointVestingWallet
 *
 * @dev Implements a vesting wallet that releases "chunks" of the vested amount linearly according to some defined
 *  checkpoints.
 */
contract LinearCheckpointVestingWallet is LinearCheckpointVesting, VestingWallet  {

    /**
     * @dev Calls the {VestingWallet} {LinearCheckpointVesting} constructors
     * @param beneficiaryAddress The address that will be allowed to release tokens from this
     *  contract
     * @param checkpoints @inheritdoc
     */
    constructor(
        address beneficiaryAddress,
        uint64[] memory checkpoints
    ) VestingWallet(beneficiaryAddress, checkpoints[0], checkpoints[checkpoints.length - 1] - checkpoints[0])
        LinearCheckpointVesting(checkpoints) {}

    /**
     * @dev Delegates to the {CheckpointVesting} implementation
     */
    function _vestingSchedule(uint256 totalAllocation, uint64 timestamp) override internal view returns (uint256) {
        return LinearCheckpointVesting.checkpointVestingSchedule(totalAllocation, timestamp);
     }
}
Address.sol 222 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}
Context.sol 24 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
Math.sol 226 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}
IERC20.sol 82 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}
VestingWallet.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (finance/VestingWallet.sol)
pragma solidity ^0.8.0;

import "../token/ERC20/utils/SafeERC20.sol";
import "../utils/Address.sol";
import "../utils/Context.sol";
import "../utils/math/Math.sol";

/**
 * @title VestingWallet
 * @dev This contract handles the vesting of Eth and ERC20 tokens for a given beneficiary. Custody of multiple tokens
 * can be given to this contract, which will release the token to the beneficiary following a given vesting schedule.
 * The vesting schedule is customizable through the {vestedAmount} function.
 *
 * Any token transferred to this contract will follow the vesting schedule as if they were locked from the beginning.
 * Consequently, if the vesting has already started, any amount of tokens sent to this contract will (at least partly)
 * be immediately releasable.
 */
contract VestingWallet is Context {
    event EtherReleased(uint256 amount);
    event ERC20Released(address indexed token, uint256 amount);

    uint256 private _released;
    mapping(address => uint256) private _erc20Released;
    address private immutable _beneficiary;
    uint64 private immutable _start;
    uint64 private immutable _duration;

    /**
     * @dev Set the beneficiary, start timestamp and vesting duration of the vesting wallet.
     */
    constructor(
        address beneficiaryAddress,
        uint64 startTimestamp,
        uint64 durationSeconds
    ) {
        require(beneficiaryAddress != address(0), "VestingWallet: beneficiary is zero address");
        _beneficiary = beneficiaryAddress;
        _start = startTimestamp;
        _duration = durationSeconds;
    }

    /**
     * @dev The contract should be able to receive Eth.
     */
    receive() external payable virtual {}

    /**
     * @dev Getter for the beneficiary address.
     */
    function beneficiary() public view virtual returns (address) {
        return _beneficiary;
    }

    /**
     * @dev Getter for the start timestamp.
     */
    function start() public view virtual returns (uint256) {
        return _start;
    }

    /**
     * @dev Getter for the vesting duration.
     */
    function duration() public view virtual returns (uint256) {
        return _duration;
    }

    /**
     * @dev Amount of eth already released
     */
    function released() public view virtual returns (uint256) {
        return _released;
    }

    /**
     * @dev Amount of token already released
     */
    function released(address token) public view virtual returns (uint256) {
        return _erc20Released[token];
    }

    /**
     * @dev Release the native token (ether) that have already vested.
     *
     * Emits a {EtherReleased} event.
     */
    function release() public virtual {
        uint256 releasable = vestedAmount(uint64(block.timestamp)) - released();
        _released += releasable;
        emit EtherReleased(releasable);
        Address.sendValue(payable(beneficiary()), releasable);
    }

    /**
     * @dev Release the tokens that have already vested.
     *
     * Emits a {ERC20Released} event.
     */
    function release(address token) public virtual {
        uint256 releasable = vestedAmount(token, uint64(block.timestamp)) - released(token);
        _erc20Released[token] += releasable;
        emit ERC20Released(token, releasable);
        SafeERC20.safeTransfer(IERC20(token), beneficiary(), releasable);
    }

    /**
     * @dev Calculates the amount of ether that has already vested. Default implementation is a linear vesting curve.
     */
    function vestedAmount(uint64 timestamp) public view virtual returns (uint256) {
        return _vestingSchedule(address(this).balance + released(), timestamp);
    }

    /**
     * @dev Calculates the amount of tokens that has already vested. Default implementation is a linear vesting curve.
     */
    function vestedAmount(address token, uint64 timestamp) public view virtual returns (uint256) {
        return _vestingSchedule(IERC20(token).balanceOf(address(this)) + released(token), timestamp);
    }

    /**
     * @dev Virtual implementation of the vesting formula. This returns the amount vested, as a function of time, for
     * an asset given its total historical allocation.
     */
    function _vestingSchedule(uint256 totalAllocation, uint64 timestamp) internal view virtual returns (uint256) {
        if (timestamp < start()) {
            return 0;
        } else if (timestamp > start() + duration()) {
            return totalAllocation;
        } else {
            return (totalAllocation * (timestamp - start())) / duration();
        }
    }
}
SafeERC20.sol 116 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
draft-IERC20Permit.sol 60 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Read Contract

beneficiary 0x38af3eed → address
checkpoints 0x5a48c0b0 → uint64[]
duration 0x0fb5a6b4 → uint256
released 0x96132521 → uint256
released 0x9852595c → uint256
start 0xbe9a6555 → uint256
vestedAmount 0x0a17b06b → uint256
vestedAmount 0x810ec23b → uint256

Write Contract 2 functions

These functions modify contract state and require a wallet transaction to execute.

release 0x19165587
address token
release 0x86d1a69f
No parameters

Recent Transactions

No transactions found for this address