Address Contract Verified
Address
0xbA162d0Bc3b06250C550102208A52ac4AC58FFb3
Balance
0 ETH
Nonce
1
Code Size
13069 bytes
Creator
0x332570f3...FB7B at tx 0x44040a65...7c557a
Indexed Transactions
0
Contract Bytecode
13069 bytes
0x6080604052600436106101ed575f3560e01c80637ec4a6591161010c578063b88d4fde1161009f578063dc33e6811161006e578063dc33e6811461067b578063e150007e146106b7578063e985e9c5146106e1578063efbd73f41461071d578063f2fde38b14610745576101ed565b8063b88d4fde146105cf578063c19d93fb146105eb578063c87b56dd14610615578063d5abeb0114610651576101ed565b806395d89b41116100db57806395d89b4114610539578063a0712d6814610563578063a22cb4651461057f578063b071401b146105a7576101ed565b80637ec4a659146104935780638693da20146104bb5780638da5cb5b146104e557806394354fd01461050f576101ed565b806342842e0e116101845780636352211e116101535780636352211e146103dd5780636f8b44b01461041957806370a0823114610441578063715018a61461047d576101ed565b806342842e0e14610333578063438b63001461034f57806356de96db1461038b57806362b99ad4146103b3576101ed565b806318160ddd116101c057806318160ddd146102af57806322284de6146102d957806323b872dd146103015780633ccfd60b1461031d576101ed565b806301ffc9a7146101f157806306fdde031461022d578063081812fc14610257578063095ea7b314610293575b5f80fd5b3480156101fc575f80fd5b5061021760048036038101906102129190612204565b61076d565b6040516102249190612249565b60405180910390f35b348015610238575f80fd5b506102416107fe565b60405161024e91906122d2565b60405180910390f35b348015610262575f80fd5b5061027d60048036038101906102789190612325565b61088e565b60405161028a919061238f565b60405180910390f35b6102ad60048036038101906102a891906123d2565b6108e7565b005b3480156102ba575f80fd5b506102c36108f7565b6040516102d0919061241f565b60405180910390f35b3480156102e4575f80fd5b506102ff60048036038101906102fa9190612325565b610942565b005b61031b60048036038101906103169190612438565b610954565b005b348015610328575f80fd5b50610331610bff565b005b61034d60048036038101906103489190612438565b610cd1565b005b34801561035a575f80fd5b5061037560048036038101906103709190612488565b610cf0565b604051610382919061256a565b60405180910390f35b348015610396575f80fd5b506103b160048036038101906103ac91906125ad565b610dee565b005b3480156103be575f80fd5b506103c7610e23565b6040516103d491906122d2565b60405180910390f35b3480156103e8575f80fd5b5061040360048036038101906103fe9190612325565b610eaf565b604051610410919061238f565b60405180910390f35b348015610424575f80fd5b5061043f600480360381019061043a9190612325565b610ec0565b005b34801561044c575f80fd5b5061046760048036038101906104629190612488565b610f16565b604051610474919061241f565b60405180910390f35b348015610488575f80fd5b50610491610faa565b005b34801561049e575f80fd5b506104b960048036038101906104b49190612704565b610fbd565b005b3480156104c6575f80fd5b506104cf610fd8565b6040516104dc919061241f565b60405180910390f35b3480156104f0575f80fd5b506104f9610fde565b604051610506919061238f565b60405180910390f35b34801561051a575f80fd5b50610523611006565b604051610530919061241f565b60405180910390f35b348015610544575f80fd5b5061054d61100c565b60405161055a91906122d2565b60405180910390f35b61057d60048036038101906105789190612325565b61109c565b005b34801561058a575f80fd5b506105a560048036038101906105a09190612775565b61124e565b005b3480156105b2575f80fd5b506105cd60048036038101906105c89190612325565b611354565b005b6105e960048036038101906105e49190612851565b611366565b005b3480156105f6575f80fd5b506105ff6113b7565b60405161060c9190612944565b60405180910390f35b348015610620575f80fd5b5061063b60048036038101906106369190612325565b6113ca565b60405161064891906122d2565b60405180910390f35b34801561065c575f80fd5b50610665611451565b604051610672919061241f565b60405180910390f35b348015610686575f80fd5b506106a1600480360381019061069c9190612488565b611457565b6040516106ae919061241f565b60405180910390f35b3480156106c2575f80fd5b506106cb611468565b6040516106d8919061241f565b60405180910390f35b3480156106ec575f80fd5b506107076004803603810190610702919061295d565b61146e565b6040516107149190612249565b60405180910390f35b348015610728575f80fd5b50610743600480360381019061073e919061299b565b6114fc565b005b348015610750575f80fd5b5061076b60048036038101906107669190612488565b611569565b005b5f6301ffc9a760e01b827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614806107c757506380ac58cd60e01b827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b806107f75750635b5e139f60e01b827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b9050919050565b60606002805461080d90612a06565b80601f016020809104026020016040519081016040528092919081815260200182805461083990612a06565b80156108845780601f1061085b57610100808354040283529160200191610884565b820191905f5260205f20905b81548152906001019060200180831161086757829003601f168201915b5050505050905090565b5f610898826115ed565b6108ad576108ac63cf4700e460e01b611690565b5b60065f8381526020019081526020015f205f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b6108f382826001611698565b5050565b5f6109006117c2565b6001545f54030390507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6109326117c6565b1461093f57600854810190505b90565b61094a6117ed565b80600b8190555050565b5f61095e82611874565b905073ffffffffffffffffffffffffffffffffffffffff8473ffffffffffffffffffffffffffffffffffffffff161693508373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146109d3576109d263a114810060e01b611690565b5b5f806109de84611983565b915091506109f481876109ef6119a6565b6119ad565b610a1f57610a0986610a046119a6565b61146e565b610a1e57610a1d6359c896be60e01b611690565b5b5b610a2c86868660016119f0565b8015610a36575f82555b60055f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8154600190039190508190555060055f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815460010191905081905550610afe85610ada8888876119f6565b7c020000000000000000000000000000000000000000000000000000000017611a1d565b60045f8681526020019081526020015f20819055505f7c0200000000000000000000000000000000000000000000000000000000841603610b7a575f6001850190505f60045f8381526020019081526020015f205403610b78575f548114610b77578360045f8381526020019081526020015f20819055505b5b505b5f73ffffffffffffffffffffffffffffffffffffffff8673ffffffffffffffffffffffffffffffffffffffff161690508481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a45f8103610be957610be863ea553b3460e01b611690565b5b610bf68787876001611a47565b50505050505050565b610c076117ed565b5f4790505f6001905073332570f372784ad39430835dbc217510d12bfb7b73ffffffffffffffffffffffffffffffffffffffff1682604051610c4890612a63565b5f6040518083038185875af1925050503d805f8114610c82576040519150601f19603f3d011682016040523d82523d5f602084013e610c87565b606091505b50508091505080610ccd576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610cc490612ac1565b60405180910390fd5b5050565b610ceb83838360405180602001604052805f815250611366565b505050565b60605f610cfc83610f16565b90505f8167ffffffffffffffff811115610d1957610d186125e0565b5b604051908082528060200260200182016040528015610d475781602001602082028036833780820191505090505b5090505f80610d546117c2565b90505b610d5f6108f7565b8111610de2578573ffffffffffffffffffffffffffffffffffffffff16610d8582610eaf565b73ffffffffffffffffffffffffffffffffffffffff1603610dcf5780838381518110610db457610db3612adf565b5b6020026020010181815250508180610dcb90612b39565b9250505b8080610dda90612b39565b915050610d57565b50819350505050919050565b610df66117ed565b80600960146101000a81548160ff02191690836001811115610e1b57610e1a6128d1565b5b021790555050565b600a8054610e3090612a06565b80601f0160208091040260200160405190810160405280929190818152602001828054610e5c90612a06565b8015610ea75780601f10610e7e57610100808354040283529160200191610ea7565b820191905f5260205f20905b815481529060010190602001808311610e8a57829003601f168201915b505050505081565b5f610eb982611874565b9050919050565b610ec86117ed565b600d548110610f0c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f0390612bca565b60405180910390fd5b80600d8190555050565b5f8073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f5b57610f5a638f4eb60460e01b611690565b5b67ffffffffffffffff60055f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054169050919050565b610fb26117ed565b610fbb5f611a4d565b565b610fc56117ed565b80600a9081610fd49190612d85565b5050565b600b5481565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600e5481565b60606003805461101b90612a06565b80601f016020809104026020016040519081016040528092919081815260200182805461104790612a06565b80156110925780601f1061106957610100808354040283529160200191611092565b820191905f5260205f20905b81548152906001019060200180831161107557829003601f168201915b5050505050905090565b805f811180156110ae5750600e548111155b6110ed576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110e490612e9e565b60405180910390fd5b600d54816110f96108f7565b6111039190612ebc565b1115611144576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161113b90612f39565b60405180910390fd5b600180811115611157576111566128d1565b5b600960149054906101000a900460ff166001811115611179576111786128d1565b5b146111b9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111b090612fa1565b60405180910390fd5b600c54826111c56108f7565b6111cf9190612ebc565b111561122a5781600b546111e39190612fbf565b341015611225576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161121c9061304a565b60405180910390fd5b611240565b600e5461123633611457565b1061123f575f80fd5b5b61124a3383611b10565b5050565b8060075f61125a6119a6565b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff166113036119a6565b73ffffffffffffffffffffffffffffffffffffffff167f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31836040516113489190612249565b60405180910390a35050565b61135c6117ed565b80600e8190555050565b611371848484610954565b5f8373ffffffffffffffffffffffffffffffffffffffff163b146113b15761139b84848484611b2d565b6113b0576113af63d1a57ed660e01b611690565b5b5b50505050565b600960149054906101000a900460ff1681565b60606113d5826115ed565b611414576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161140b906130d8565b60405180910390fd5b5f61141d611c57565b90508061142984611ce7565b60405160200161143a92919061317a565b604051602081830303815290604052915050919050565b600d5481565b5f61146182611db1565b9050919050565b600c5481565b5f60075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16905092915050565b6115046117ed565b600d54826115106108f7565b61151a9190612ebc565b111561155b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161155290612f39565b60405180910390fd5b6115658183611b10565b5050565b6115716117ed565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036115e1575f6040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081526004016115d8919061238f565b60405180910390fd5b6115ea81611a4d565b50565b5f816115f76117c2565b1161168a576116046117c6565b82111561162c5761162560045f8481526020019081526020015f2054611e05565b905061168b565b5f54821015611689575f5b5f60045f8581526020019081526020015f205491508103611663578261165c906131a8565b9250611637565b5f7c01000000000000000000000000000000000000000000000000000000008216149150505b5b5b919050565b805f5260045ffd5b5f6116a283610eaf565b90508180156116e457508073ffffffffffffffffffffffffffffffffffffffff166116cb6119a6565b73ffffffffffffffffffffffffffffffffffffffff1614155b15611710576116fa816116f56119a6565b61146e565b61170f5761170e63cfb3b94260e01b611690565b5b5b8360065f8581526020019081526020015f205f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550828473ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a450505050565b5f90565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff905090565b6117f5611e45565b73ffffffffffffffffffffffffffffffffffffffff16611813610fde565b73ffffffffffffffffffffffffffffffffffffffff161461187257611836611e45565b6040517f118cdaa7000000000000000000000000000000000000000000000000000000008152600401611869919061238f565b60405180910390fd5b565b5f8161187e6117c2565b1161196d5760045f8381526020019081526020015f2054905061189f6117c6565b8211156118c4576118af81611e05565b61197e576118c363df2d9b4260e01b611690565b5b5f8103611945575f5482106118e4576118e363df2d9b4260e01b611690565b5b5b60045f836001900393508381526020019081526020015f205490505f810315611940575f7c01000000000000000000000000000000000000000000000000000000008216031561197e5761193f63df2d9b4260e01b611690565b5b6118e5565b5f7c01000000000000000000000000000000000000000000000000000000008216031561197e575b61197d63df2d9b4260e01b611690565b5b919050565b5f805f60065f8581526020019081526020015f2090508092508254915050915091565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff8316925073ffffffffffffffffffffffffffffffffffffffff821691508382148383141790509392505050565b50505050565b5f8060e883901c905060e8611a0c868684611e4c565b62ffffff16901b9150509392505050565b5f73ffffffffffffffffffffffffffffffffffffffff83169250814260a01b178317905092915050565b50505050565b5f60095f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160095f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b611b29828260405180602001604052805f815250611e54565b5050565b5f8373ffffffffffffffffffffffffffffffffffffffff1663150b7a02611b526119a6565b8786866040518563ffffffff1660e01b8152600401611b749493929190613221565b6020604051808303815f875af1925050508015611baf57506040513d601f19601f82011682018060405250810190611bac919061327f565b60015b611c04573d805f8114611bdd576040519150601f19603f3d011682016040523d82523d5f602084013e611be2565b606091505b505f815103611bfc57611bfb63d1a57ed660e01b611690565b5b805181602001fd5b63150b7a0260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916817bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614915050949350505050565b6060600a8054611c6690612a06565b80601f0160208091040260200160405190810160405280929190818152602001828054611c9290612a06565b8015611cdd5780601f10611cb457610100808354040283529160200191611cdd565b820191905f5260205f20905b815481529060010190602001808311611cc057829003601f168201915b5050505050905090565b60605f6001611cf584611eca565b0190505f8167ffffffffffffffff811115611d1357611d126125e0565b5b6040519080825280601f01601f191660200182016040528015611d455781602001600182028036833780820191505090505b5090505f82602001820190505b600115611da6578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581611d9b57611d9a6132aa565b5b0494505f8503611d52575b819350505050919050565b5f67ffffffffffffffff604060055f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054901c169050919050565b5f7c0100000000000000000000000000000000000000000000000000000000821673ffffffffffffffffffffffffffffffffffffffff8316119050919050565b5f33905090565b5f9392505050565b611e5e838361201b565b5f8373ffffffffffffffffffffffffffffffffffffffff163b14611ec5575f805490505f83820390505b611e9a5f868380600101945086611b2d565b611eaf57611eae63d1a57ed660e01b611690565b5b818110611e8857815f5414611ec2575f80fd5b50505b505050565b5f805f90507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310611f26577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381611f1c57611f1b6132aa565b5b0492506040810190505b6d04ee2d6d415b85acef81000000008310611f63576d04ee2d6d415b85acef81000000008381611f5957611f586132aa565b5b0492506020810190505b662386f26fc100008310611f9257662386f26fc100008381611f8857611f876132aa565b5b0492506010810190505b6305f5e1008310611fbb576305f5e1008381611fb157611fb06132aa565b5b0492506008810190505b6127108310611fe0576127108381611fd657611fd56132aa565b5b0492506004810190505b606483106120035760648381611ff957611ff86132aa565b5b0492506002810190505b600a8310612012576001810190505b80915050919050565b5f805490505f82036120385761203763b562e8dd60e01b611690565b5b6120445f8483856119f0565b612062836120535f865f6119f6565b61205c8561218f565b17611a1d565b60045f8381526020019081526020015f2081905550600160406001901b17820260055f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505f73ffffffffffffffffffffffffffffffffffffffff8473ffffffffffffffffffffffffffffffffffffffff161690505f810361211357612112632e07630060e01b611690565b5b5f83830190505f8390506121256117c6565b6001830311156121405761213f6381647e3a60e01b611690565b5b5b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a481816001019150810361214157815f8190555050505061218a5f848385611a47565b505050565b5f6001821460e11b9050919050565b5f604051905090565b5f80fd5b5f80fd5b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6121e3816121af565b81146121ed575f80fd5b50565b5f813590506121fe816121da565b92915050565b5f60208284031215612219576122186121a7565b5b5f612226848285016121f0565b91505092915050565b5f8115159050919050565b6122438161222f565b82525050565b5f60208201905061225c5f83018461223a565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f6122a482612262565b6122ae818561226c565b93506122be81856020860161227c565b6122c78161228a565b840191505092915050565b5f6020820190508181035f8301526122ea818461229a565b905092915050565b5f819050919050565b612304816122f2565b811461230e575f80fd5b50565b5f8135905061231f816122fb565b92915050565b5f6020828403121561233a576123396121a7565b5b5f61234784828501612311565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61237982612350565b9050919050565b6123898161236f565b82525050565b5f6020820190506123a25f830184612380565b92915050565b6123b18161236f565b81146123bb575f80fd5b50565b5f813590506123cc816123a8565b92915050565b5f80604083850312156123e8576123e76121a7565b5b5f6123f5858286016123be565b925050602061240685828601612311565b9150509250929050565b612419816122f2565b82525050565b5f6020820190506124325f830184612410565b92915050565b5f805f6060848603121561244f5761244e6121a7565b5b5f61245c868287016123be565b935050602061246d868287016123be565b925050604061247e86828701612311565b9150509250925092565b5f6020828403121561249d5761249c6121a7565b5b5f6124aa848285016123be565b91505092915050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b6124e5816122f2565b82525050565b5f6124f683836124dc565b60208301905092915050565b5f602082019050919050565b5f612518826124b3565b61252281856124bd565b935061252d836124cd565b805f5b8381101561255d57815161254488826124eb565b975061254f83612502565b925050600181019050612530565b5085935050505092915050565b5f6020820190508181035f830152612582818461250e565b905092915050565b60028110612596575f80fd5b50565b5f813590506125a78161258a565b92915050565b5f602082840312156125c2576125c16121a7565b5b5f6125cf84828501612599565b91505092915050565b5f80fd5b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6126168261228a565b810181811067ffffffffffffffff82111715612635576126346125e0565b5b80604052505050565b5f61264761219e565b9050612653828261260d565b919050565b5f67ffffffffffffffff821115612672576126716125e0565b5b61267b8261228a565b9050602081019050919050565b828183375f83830152505050565b5f6126a86126a384612658565b61263e565b9050828152602081018484840111156126c4576126c36125dc565b5b6126cf848285612688565b509392505050565b5f82601f8301126126eb576126ea6125d8565b5b81356126fb848260208601612696565b91505092915050565b5f60208284031215612719576127186121a7565b5b5f82013567ffffffffffffffff811115612736576127356121ab565b5b612742848285016126d7565b91505092915050565b6127548161222f565b811461275e575f80fd5b50565b5f8135905061276f8161274b565b92915050565b5f806040838503121561278b5761278a6121a7565b5b5f612798858286016123be565b92505060206127a985828601612761565b9150509250929050565b5f67ffffffffffffffff8211156127cd576127cc6125e0565b5b6127d68261228a565b9050602081019050919050565b5f6127f56127f0846127b3565b61263e565b905082815260208101848484011115612811576128106125dc565b5b61281c848285612688565b509392505050565b5f82601f830112612838576128376125d8565b5b81356128488482602086016127e3565b91505092915050565b5f805f8060808587031215612869576128686121a7565b5b5f612876878288016123be565b9450506020612887878288016123be565b935050604061289887828801612311565b925050606085013567ffffffffffffffff8111156128b9576128b86121ab565b5b6128c587828801612824565b91505092959194509250565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b6002811061290f5761290e6128d1565b5b50565b5f81905061291f826128fe565b919050565b5f61292e82612912565b9050919050565b61293e81612924565b82525050565b5f6020820190506129575f830184612935565b92915050565b5f8060408385031215612973576129726121a7565b5b5f612980858286016123be565b9250506020612991858286016123be565b9150509250929050565b5f80604083850312156129b1576129b06121a7565b5b5f6129be85828601612311565b92505060206129cf858286016123be565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f6002820490506001821680612a1d57607f821691505b602082108103612a3057612a2f6129d9565b5b50919050565b5f81905092915050565b50565b5f612a4e5f83612a36565b9150612a5982612a40565b5f82019050919050565b5f612a6d82612a43565b9150819050919050565b7f5472616e73666572206661696c656400000000000000000000000000000000005f82015250565b5f612aab600f8361226c565b9150612ab682612a77565b602082019050919050565b5f6020820190508181035f830152612ad881612a9f565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f612b43826122f2565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612b7557612b74612b0c565b5b600182019050919050565b7f43616e6e6f7420696e6372656173652074686520737570706c790000000000005f82015250565b5f612bb4601a8361226c565b9150612bbf82612b80565b602082019050919050565b5f6020820190508181035f830152612be181612ba8565b9050919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f60088302612c447fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82612c09565b612c4e8683612c09565b95508019841693508086168417925050509392505050565b5f819050919050565b5f612c89612c84612c7f846122f2565b612c66565b6122f2565b9050919050565b5f819050919050565b612ca283612c6f565b612cb6612cae82612c90565b848454612c15565b825550505050565b5f90565b612cca612cbe565b612cd5818484612c99565b505050565b5b81811015612cf857612ced5f82612cc2565b600181019050612cdb565b5050565b601f821115612d3d57612d0e81612be8565b612d1784612bfa565b81016020851015612d26578190505b612d3a612d3285612bfa565b830182612cda565b50505b505050565b5f82821c905092915050565b5f612d5d5f1984600802612d42565b1980831691505092915050565b5f612d758383612d4e565b9150826002028217905092915050565b612d8e82612262565b67ffffffffffffffff811115612da757612da66125e0565b5b612db18254612a06565b612dbc828285612cfc565b5f60209050601f831160018114612ded575f8415612ddb578287015190505b612de58582612d6a565b865550612e4c565b601f198416612dfb86612be8565b5f5b82811015612e2257848901518255600182019150602085019450602081019050612dfd565b86831015612e3f5784890151612e3b601f891682612d4e565b8355505b6001600288020188555050505b505050505050565b7f496e76616c6964206d696e7420616d6f756e74000000000000000000000000005f82015250565b5f612e8860138361226c565b9150612e9382612e54565b602082019050919050565b5f6020820190508181035f830152612eb581612e7c565b9050919050565b5f612ec6826122f2565b9150612ed1836122f2565b9250828201905080821115612ee957612ee8612b0c565b5b92915050565b7f4d617820737570706c79206578636565646564000000000000000000000000005f82015250565b5f612f2360138361226c565b9150612f2e82612eef565b602082019050919050565b5f6020820190508181035f830152612f5081612f17565b9050919050565b7f5075626c6963206d696e742069732064697361626c65640000000000000000005f82015250565b5f612f8b60178361226c565b9150612f9682612f57565b602082019050919050565b5f6020820190508181035f830152612fb881612f7f565b9050919050565b5f612fc9826122f2565b9150612fd4836122f2565b9250828202612fe2816122f2565b91508282048414831517612ff957612ff8612b0c565b5b5092915050565b7f496e73756666696369656e742066756e647300000000000000000000000000005f82015250565b5f61303460128361226c565b915061303f82613000565b602082019050919050565b5f6020820190508181035f83015261306181613028565b9050919050565b7f4552433732314d657461646174613a2055524920717565727920666f72206e6f5f8201527f6e6578697374656e7420746f6b656e0000000000000000000000000000000000602082015250565b5f6130c2602f8361226c565b91506130cd82613068565b604082019050919050565b5f6020820190508181035f8301526130ef816130b6565b9050919050565b5f81905092915050565b5f61310a82612262565b61311481856130f6565b935061312481856020860161227c565b80840191505092915050565b7f2e6a736f6e0000000000000000000000000000000000000000000000000000005f82015250565b5f6131646005836130f6565b915061316f82613130565b600582019050919050565b5f6131858285613100565b91506131918284613100565b915061319c82613158565b91508190509392505050565b5f6131b2826122f2565b91505f82036131c4576131c3612b0c565b5b600182039050919050565b5f81519050919050565b5f82825260208201905092915050565b5f6131f3826131cf565b6131fd81856131d9565b935061320d81856020860161227c565b6132168161228a565b840191505092915050565b5f6080820190506132345f830187612380565b6132416020830186612380565b61324e6040830185612410565b818103606083015261326081846131e9565b905095945050505050565b5f81519050613279816121da565b92915050565b5f60208284031215613294576132936121a7565b5b5f6132a18482850161326b565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffdfea2646970667358221220ad396f6be1be76b3c2cdd86034dbb1c6827d221998014f6aa89c4205aced550a64736f6c63430008190033
Verified Source Code Full Match
Compiler: v0.8.25+commit.b61c2a91
EVM: cancun
Optimization: No
MoodyMelons.sol 146 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "erc721a/contracts/ERC721A.sol";
contract MoodyMelons is ERC721A, Ownable {
using Strings for uint256;
enum ContractMintState {
PAUSED,
PUBLIC
}
ContractMintState public state = ContractMintState.PUBLIC;
string public uriPrefix = "https://moody-melons.s3.us-west-2.amazonaws.com/pre-reveal/metadata/";
uint256 public publicCost = 0.0033 ether;
uint256 public freeMintSupply = 2000;
uint256 public maxSupply = 10000;
uint256 public maxMintAmountPerTx = 4;
constructor() Ownable(msg.sender) ERC721A("MoodyMelons", "MM") {}
function _baseURI() internal view virtual override returns (string memory) {
return uriPrefix;
}
modifier mintCompliance(uint256 _mintAmount) {
require(
_mintAmount > 0 && _mintAmount <= maxMintAmountPerTx,
"Invalid mint amount"
);
require(
totalSupply() + _mintAmount <= maxSupply,
"Max supply exceeded"
);
_;
}
function mint(uint256 amount) public payable mintCompliance(amount) {
require(state == ContractMintState.PUBLIC, "Public mint is disabled");
if (totalSupply() + amount > freeMintSupply) {
require(msg.value >= publicCost * amount, "Insufficient funds");
} else {
require(numberMinted(msg.sender) < maxMintAmountPerTx);
}
_safeMint(msg.sender, amount);
}
function mintForAddress(uint256 amount, address _receiver)
public
onlyOwner
{
require(totalSupply() + amount <= maxSupply, "Max supply exceeded");
_safeMint(_receiver, amount);
}
function numberMinted(address _minter) public view returns (uint256) {
return _numberMinted(_minter);
}
function tokenURI(uint256 _tokenId)
public
view
virtual
override
returns (string memory)
{
require(
_exists(_tokenId),
"ERC721Metadata: URI query for nonexistent token"
);
string memory currentBaseURI = _baseURI();
return string(
abi.encodePacked(
currentBaseURI,
_tokenId.toString(),
".json"
)
);
}
function walletOfOwner(address _owner)
public
view
returns (uint256[] memory)
{
uint256 ownerTokenCount = balanceOf(_owner);
uint256[] memory ownerTokens = new uint256[](ownerTokenCount);
uint256 ownerTokenIdx = 0;
for (
uint256 tokenIdx = _startTokenId();
tokenIdx <= totalSupply();
tokenIdx++
) {
if (ownerOf(tokenIdx) == _owner) {
ownerTokens[ownerTokenIdx] = tokenIdx;
ownerTokenIdx++;
}
}
return ownerTokens;
}
function setState(ContractMintState _state) public onlyOwner {
state = _state;
}
function setCosts(uint256 _publicCost)
public
onlyOwner
{
publicCost = _publicCost;
}
function setMaxMintAmountPerTx(uint256 _maxMintAmountPerTx)
public
onlyOwner
{
maxMintAmountPerTx = _maxMintAmountPerTx;
}
function setMaxSupply(uint256 _maxSupply) public onlyOwner {
require(_maxSupply < maxSupply, "Cannot increase the supply");
maxSupply = _maxSupply;
}
function setUriPrefix(string memory _uriPrefix) public onlyOwner {
uriPrefix = _uriPrefix;
}
function withdraw() public onlyOwner {
uint256 contractBalance = address(this).balance;
bool success = true;
(success, ) = payable(0x332570f372784Ad39430835DBC217510d12BFB7B).call{
value: contractBalance
}("");
require(success, "Transfer failed");
}
}
ERC721A.sol 1314 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* The `_sequentialUpTo()` function can be overriden to enable spot mints
* (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// The amount of tokens minted above `_sequentialUpTo()`.
// We call these spot mints (i.e. non-sequential mints).
uint256 private _spotMinted;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID for sequential mints.
*
* Override this function to change the starting token ID for sequential mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the maximum token ID (inclusive) for sequential mints.
*
* Override this function to return a value less than 2**256 - 1,
* but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _sequentialUpTo() internal view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256 result) {
// Counter underflow is impossible as `_burnCounter` cannot be incremented
// more than `_currentIndex + _spotMinted - _startTokenId()` times.
unchecked {
// With spot minting, the intermediate `result` can be temporarily negative,
// and the computation must be unchecked.
result = _currentIndex - _burnCounter - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256 result) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
result = _currentIndex - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
/**
* @dev Returns the total number of tokens that are spot-minted.
*/
function _totalSpotMinted() internal view virtual returns (uint256) {
return _spotMinted;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Returns whether the ownership slot at `index` is initialized.
* An uninitialized slot does not necessarily mean that the slot has no owner.
*/
function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
return _packedOwnerships[index] != 0;
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* @dev Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
if (_startTokenId() <= tokenId) {
packed = _packedOwnerships[tokenId];
if (tokenId > _sequentialUpTo()) {
if (_packedOwnershipExists(packed)) return packed;
_revert(OwnerQueryForNonexistentToken.selector);
}
// If the data at the starting slot does not exist, start the scan.
if (packed == 0) {
if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `tokenId` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
for (;;) {
unchecked {
packed = _packedOwnerships[--tokenId];
}
if (packed == 0) continue;
if (packed & _BITMASK_BURNED == 0) return packed;
// Otherwise, the token is burned, and we must revert.
// This handles the case of batch burned tokens, where only the burned bit
// of the starting slot is set, and remaining slots are left uninitialized.
_revert(OwnerQueryForNonexistentToken.selector);
}
}
// Otherwise, the data exists and we can skip the scan.
// This is possible because we have already achieved the target condition.
// This saves 2143 gas on transfers of initialized tokens.
// If the token is not burned, return `packed`. Otherwise, revert.
if (packed & _BITMASK_BURNED == 0) return packed;
}
_revert(OwnerQueryForNonexistentToken.selector);
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
_approve(to, tokenId, true);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool result) {
if (_startTokenId() <= tokenId) {
if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]);
if (tokenId < _currentIndex) {
uint256 packed;
while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
result = packed & _BITMASK_BURNED == 0;
}
}
}
/**
* @dev Returns whether `packed` represents a token that exists.
*/
function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
assembly {
// The following is equivalent to `owner != address(0) && burned == false`.
// Symbolically tested.
result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
}
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
// Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
from, // `from`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
if (toMasked == 0) _revert(TransferToZeroAddress.selector);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
assembly {
revert(add(32, reason), mload(reason))
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) _revert(MintZeroQuantity.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
uint256 end = startTokenId + quantity;
uint256 tokenId = startTokenId;
if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
do {
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
// The `!=` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
} while (++tokenId != end);
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) _revert(MintToZeroAddress.selector);
if (quantity == 0) _revert(MintZeroQuantity.selector);
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
} while (index < end);
// This prevents reentrancy to `_safeMint`.
// It does not prevent reentrancy to `_safeMintSpot`.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
/**
* @dev Mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* Emits a {Transfer} event for each mint.
*/
function _mintSpot(address to, uint256 tokenId) internal virtual {
if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
uint256 prevOwnershipPacked = _packedOwnerships[tokenId];
if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);
_beforeTokenTransfers(address(0), to, tokenId, 1);
// Overflows are incredibly unrealistic.
// The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
// `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `true` (as `quantity == 1`).
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
);
// Updates:
// - `balance += 1`.
// - `numberMinted += 1`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
++_spotMinted;
}
_afterTokenTransfers(address(0), to, tokenId, 1);
}
/**
* @dev Safely mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* See {_mintSpot}.
*
* Emits a {Transfer} event.
*/
function _safeMintSpot(
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_mintSpot(to, tokenId);
unchecked {
if (to.code.length != 0) {
uint256 currentSpotMinted = _spotMinted;
if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
// This prevents reentrancy to `_safeMintSpot`.
// It does not prevent reentrancy to `_safeMint`.
if (_spotMinted != currentSpotMinted) revert();
}
}
}
/**
* @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
*/
function _safeMintSpot(address to, uint256 tokenId) internal virtual {
_safeMintSpot(to, tokenId, '');
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_approve(to, tokenId, false)`.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_approve(to, tokenId, false);
}
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function _approve(
address to,
uint256 tokenId,
bool approvalCheck
) internal virtual {
address owner = ownerOf(tokenId);
if (approvalCheck && _msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
_revert(ApprovalCallerNotOwnerNorApproved.selector);
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/**
* @dev For more efficient reverts.
*/
function _revert(bytes4 errorSelector) internal pure {
assembly {
mstore(0x00, errorSelector)
revert(0x00, 0x04)
}
}
}
IERC721A.sol 307 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
/**
* `_sequentialUpTo()` must be greater than `_startTokenId()`.
*/
error SequentialUpToTooSmall();
/**
* The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
*/
error SequentialMintExceedsLimit();
/**
* Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
*/
error SpotMintTokenIdTooSmall();
/**
* Cannot mint over a token that already exists.
*/
error TokenAlreadyExists();
/**
* The feature is not compatible with spot mints.
*/
error NotCompatibleWithSpotMints();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
Read Contract
balanceOf 0x70a08231 → uint256
freeMintSupply 0xe150007e → uint256
getApproved 0x081812fc → address
isApprovedForAll 0xe985e9c5 → bool
maxMintAmountPerTx 0x94354fd0 → uint256
maxSupply 0xd5abeb01 → uint256
name 0x06fdde03 → string
numberMinted 0xdc33e681 → uint256
owner 0x8da5cb5b → address
ownerOf 0x6352211e → address
publicCost 0x8693da20 → uint256
state 0xc19d93fb → uint8
supportsInterface 0x01ffc9a7 → bool
symbol 0x95d89b41 → string
tokenURI 0xc87b56dd → string
totalSupply 0x18160ddd → uint256
uriPrefix 0x62b99ad4 → string
walletOfOwner 0x438b6300 → uint256[]
Write Contract 15 functions
These functions modify contract state and require a wallet transaction to execute.
approve 0x095ea7b3
address to
uint256 tokenId
mint 0xa0712d68
uint256 amount
mintForAddress 0xefbd73f4
uint256 amount
address _receiver
renounceOwnership 0x715018a6
No parameters
safeTransferFrom 0x42842e0e
address from
address to
uint256 tokenId
safeTransferFrom 0xb88d4fde
address from
address to
uint256 tokenId
bytes _data
setApprovalForAll 0xa22cb465
address operator
bool approved
setCosts 0x22284de6
uint256 _publicCost
setMaxMintAmountPerTx 0xb071401b
uint256 _maxMintAmountPerTx
setMaxSupply 0x6f8b44b0
uint256 _maxSupply
setState 0x56de96db
uint8 _state
setUriPrefix 0x7ec4a659
string _uriPrefix
transferFrom 0x23b872dd
address from
address to
uint256 tokenId
transferOwnership 0xf2fde38b
address newOwner
withdraw 0x3ccfd60b
No parameters
Recent Transactions
No transactions found for this address