Address Contract Verified
Address
0xCf7625A2fb60B0822444E5964b4Ce80c148e7Fad
Balance
0 ETH
Nonce
1
Code Size
6639 bytes
Creator
0xf0743c87...7cA1 at tx 0x3cad6fb1...a86ffb
Indexed Transactions
0
Contract Bytecode
6639 bytes
0x608080604052600436101561001357600080fd5b600090813560e01c90816301ffc9a7146110695750806341b874dc1461056d5780635437988d14610529578063715018a6146104cf57806384b0196e146103d55780638da5cb5b146103ae578063bc197c8114610325578063c66485b2146102e5578063ca2dfd0a146102a4578063da8c229e14610265578063e0dba60f146101e2578063f0f44260146101a2578063f23a6e61146101485763f2fde38b146100bb57600080fd5b34610145576020366003190112610145576100d46110f0565b6100dc611511565b6001600160a01b0390811690811561012c57600054826001600160601b0360a01b821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b604051631e4fbdf760e01b815260048101849052602490fd5b80fd5b50346101455760a0366003190112610145576101626110f0565b5061016b611106565b506084356001600160401b03811161019e5761018b90369060040161129a565b5060405163f23a6e6160e01b8152602090f35b5080fd5b5034610145576020366003190112610145576101bc6110f0565b6101c4611511565b60018060a01b03166001600160601b0360a01b600654161760065580f35b5034610145576040366003190112610145576101fc6110f0565b602435908115158092036102615760207f4c97694570a07277810af7e5669ffd5f6a2d6b74b6e9a274b8b870fd5114cf8791610236611511565b6001600160a01b0316808552600182526040808620805460ff191660ff87161790555193845292a280f35b8280fd5b50346101455760203660031901126101455760209060ff906040906001600160a01b036102906110f0565b168152600184522054166040519015158152f35b5034610145576020366003190112610145576102be6110f0565b6102c6611511565b6001600160a01b03168152600460205260408120805460ff1916905580f35b5034610145576020366003190112610145576102ff6110f0565b610307611511565b60018060a01b03166001600160601b0360a01b600954161760095580f35b50346101455760a03660031901126101455761033f6110f0565b50610348611106565b506001600160401b03604435818111610261576103699036906004016111e8565b50606435818111610261576103829036906004016111e8565b5060843590811161019e5761039b90369060040161129a565b5060405163bc197c8160e01b8152602090f35b5034610145578060031936011261014557546040516001600160a01b039091168152602090f35b5034610145578060031936011261014557610472906104137f6e616d657370616365000000000000000000000000000000000000000000000961153d565b9061043d7f3100000000000000000000000000000000000000000000000000000000000001611666565b906040519161044b83611164565b818352610480602091604051968796600f60f81b885260e0602089015260e088019061113f565b90868203604088015261113f565b904660608601523060808601528260a086015284820360c0860152602080855193848152019401925b8281106104b857505050500390f35b8351855286955093810193928101926001016104a9565b50346101455780600319360112610145576104e8611511565b600080546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b5034610145576020366003190112610145576105436110f0565b61054b611511565b6001600160a01b03168152600460205260408120805460ff1916600117905580f35b5060031960803682011261019e576001600160401b036004351161019e576101409060043536030112610145576024356001600160401b03811161019e576105b99036906004016110be565b6001600160401b036044351161026157366023604435011215610261576001600160401b036044356004013511610261573660246044356004013560051b604435010111610261576064356001600160401b038111610d0b576106209036906004016110be565b9190924260e46004350135111561103057610640610104600435016112b8565b336001600160a01b0390911603610ff5576106656024600435016004356004016112cc565b610688602060405183819483830196873781018a838201520380845201826111b0565b5190206106996004356004016112b8565b6106a760a4600435016112b8565b6001600160401b036106bd60c460043501611473565b6106cc610104600435016112b8565b926106dc61012460043501611462565b604080517f6a58a09f4a99dcd45f7c8a919203e758b0ba34688d2df3f9ae8aafc46bf4aa2d602082015290810197909752600435604481013560608901526001600160a01b039687166080890152606481013560a0890152608481013560c089015291861660e08801529290911661010086015260e40135610120850152911661014083015263ffffffff166101608083019190915281526001600160401b03610180820190811190821117610fe157916107d16107d7926042856101806107e09701604052602081519101206107b16117ff565b906040519161190160f01b83526002830152602282015220923691611263565b9061173e565b9092919261177a565b6001600160a01b031683526004602052604083205460ff1615610fa85761080c6044600435013561131f565b6004604435013515610ed4576007546001600160a01b03166020610838600480356024810191016112cc565b9092600954918761084e61012460043501611462565b9561089f61086060c460043501611473565b6040516309306bd160e21b81529889978896879560a083901c6001600160401b0316926001600160a01b03169130916004803560440135908a01611487565b03925af1908115610d00578491610ea2575b5060018060a01b036009541684604051809263e32954eb60e01b825260448201856004840152604060248401526044356004013590526064820160646044356004013560051b8401019060246044350190855b604435600401358110610e33575050508383809203925af18015610e2857610d0f575b506008546001600160a01b031690849061094460048035016112b8565b926040519161095283611164565b838352813b15610d0b57604051637921219560e11b81523060048201526001600160a01b03909516602486015260448501526001606485015260a0608485015283918290849082906109a89060a483019061113f565b03925af18015610d0057610cd1575b505b6109c760a4600435016112b8565b6084600435013560646004350135016064600435013511610cbd576084600435013560646004350135013410610c8157839060646004350135610bfb575b505060846004350135610b86575b34608460043501356064600435013501340311610b72576084600435013560646004350135013403610afc575b7f0c87962bc6b148332aa7de5f5eb4d6b2ddacbd3744ce205a95b0658a3de296a991610af6610a796024600435016004356004016112cc565b929093610a8a60a4600435016112b8565b91610a996004356004016112b8565b610abc60405197889760446004350135895260e060208a015260e08901916112fe565b600435606481013560408901526084013560608801526001600160a01b039485166080880152931660a086015284830360c08601526112fe565b0390a180f35b828080806084600435013560646004350135013403335af1610b1c6114e1565b50610a405760405162461bcd60e51b8152602060048201526024808201527f436f756c64206e6f74207472616e736665722045544820746f206d73672e7365604482015263373232b960e11b6064820152608490fd5b634e487b7160e01b83526011600452602483fd5b828080806084600435013560018060a01b03600654165af1610ba66114e1565b50610a135760405162461bcd60e51b815260206004820152602260248201527f436f756c64206e6f74207472616e736665722045544820746f20747265617375604482015261727960f01b6064820152608490fd5b81908190819060043560640135906001600160a01b03165af1610c1c6114e1565b5015610c29578238610a05565b60405162461bcd60e51b815260206004820152602a60248201527f436f756c64206e6f74207472616e736665722045544820746f207061796d656e6044820152693a103932b1b2b4bb32b960b11b6064820152608490fd5b60405162461bcd60e51b8152602060048201526014602482015273496e73756666696369656e742062616c616e636560601b6044820152606490fd5b634e487b7160e01b84526011600452602484fd5b6001600160401b038194929411610cec5760405291386109b7565b634e487b7160e01b82526041600452602482fd5b6040513d86823e3d90fd5b8380fd5b3d8086833e610d1e81836111b0565b6020828281010312610e24578151916001600160401b038311610e2057818101601f848301011215610e205782810151916020610d5a846111d1565b610d6760405191826111b0565b848152019381830160208560051b838601010111610e1c57602081840101945b60208560051b83860101018610610da2575050505050610927565b85516001600160401b038111610e185782850101838501603f82011215610e18576020810151610dd181611248565b92610ddf60405194856111b0565b81845285870160408385010111610e145783610e07602095938695604087809701910161111c565b8152019601959050610d87565b8c80fd5b8a80fd5b8880fd5b8680fd5b8580fd5b6040513d87823e3d90fd5b87840360631901825293955090935091908335604435360360421901811215610e18576044350190604460248301359201916001600160401b038111610e9e578036038313610e9e57610e8c60209283926001956112fe565b950193019101918593918a9593610904565b8b80fd5b90506020813d602011610ecc575b81610ebd602093836111b0565b81010312610d0b5751386108b1565b3d9150610eb0565b6007546001600160a01b03166020610ef4600480356024810191016112cc565b92610f036004356004016112b8565b8760095495610f68610f1a61012460043501611462565b610f2860c460043501611473565b6040516309306bd160e21b8152998a988997889693949360a084901c6001600160401b0316936001600160a01b0316926004803560440135908a01611487565b03925af18015610d0057610f7d575b506109b9565b602090813d8311610fa1575b610f9381836111b0565b810103126102615738610f77565b503d610f89565b60405162461bcd60e51b8152602060048201526011602482015270496e76616c6964207369676e617475726560781b6044820152606490fd5b634e487b7160e01b86526041600452602486fd5b60405162461bcd60e51b81526020600482015260136024820152722737ba103b32b934b334b2b21036b4b73a32b960691b6044820152606490fd5b60405162461bcd60e51b815260206004820152601160248201527014da59db985d1d5c9948195e1c1a5c9959607a1b6044820152606490fd5b90503461019e57602036600319011261019e5760043563ffffffff60e01b81168091036102615760209250630271189760e51b81149081156110ad575b5015158152f35b6301ffc9a760e01b149050386110a6565b9181601f840112156110eb578235916001600160401b0383116110eb57602083818601950101116110eb57565b600080fd5b600435906001600160a01b03821682036110eb57565b602435906001600160a01b03821682036110eb57565b60005b83811061112f5750506000910152565b818101518382015260200161111f565b906020916111588151809281855285808601910161111c565b601f01601f1916010190565b602081019081106001600160401b0382111761117f57604052565b634e487b7160e01b600052604160045260246000fd5b604081019081106001600160401b0382111761117f57604052565b90601f801991011681019081106001600160401b0382111761117f57604052565b6001600160401b03811161117f5760051b60200190565b9080601f830112156110eb576020908235611202816111d1565b9361121060405195866111b0565b81855260208086019260051b8201019283116110eb57602001905b828210611239575050505090565b8135815290830190830161122b565b6001600160401b03811161117f57601f01601f191660200190565b92919261126f82611248565b9161127d60405193846111b0565b8294818452818301116110eb578281602093846000960137010152565b9080601f830112156110eb578160206112b593359101611263565b90565b356001600160a01b03811681036110eb5790565b903590601e19813603018212156110eb57018035906001600160401b0382116110eb576020019181360383136110eb57565b908060209392818452848401376000828201840152601f01601f1916010190565b600081815260206005815260409260ff848420541661145c5760085484516356fa4b0560e11b815260048101839052600160248201526001600160a01b039184908290604490829086165afa90811561145257908592918391611412575b5015611398575b50526005905220805460ff19166001179055565b839060075416604487518094819363100a41bf60e21b8352876004840152600160248401525af18015611408576113d1575b8390611384565b8281813d8311611401575b6113e681836111b0565b81010312610d0b575163ffffffff81160361026157386113ca565b503d6113dc565b85513d86823e3d90fd5b80929350858092503d831161144b575b61142c81836111b0565b8101031261144757518015158103611447579084913861137d565b8480fd5b503d611422565b86513d87823e3d90fd5b50505050565b3563ffffffff811681036110eb5790565b356001600160401b03811681036110eb5790565b96916114ae9063ffffffff9460c098979b9a96938a5260e060208b015260e08a01916112fe565b6001600160a01b039182166040890152981660608701526001600160401b0393841660808701521660a085015216910152565b3d1561150c573d906114f282611248565b9161150060405193846111b0565b82523d6000602084013e565b606090565b6000546001600160a01b0316330361152557565b60405163118cdaa760e01b8152336004820152602490fd5b60ff811461157b5760ff811690601f8211611569576040519161155f83611195565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b5060405160006002549060018260011c906001841693841561165c575b6020948584108114611648578387528694939291811561162857506001146115c9575b50506112b5925003826111b0565b9093915060026000527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace936000915b8183106116105750506112b5935082010138806115bb565b855487840185015294850194869450918301916115f8565b9150506112b594925060ff191682840152151560051b82010138806115bb565b634e487b7160e01b85526022600452602485fd5b91607f1691611598565b60ff81146116885760ff811690601f8211611569576040519161155f83611195565b5060405160006003549060018260011c9060018416938415611734575b6020948584108114611648578387528694939291811561162857506001146116d55750506112b5925003826111b0565b9093915060036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b936000915b81831061171c5750506112b5935082010138806115bb565b85548784018501529485019486945091830191611704565b91607f16916116a5565b815191906041830361176f5761176892506020820151906060604084015193015160001a90611929565b9192909190565b505060009160029190565b60048110156117e9578061178c575050565b600181036117a65760405163f645eedf60e01b8152600490fd5b600281036117c75760405163fce698f760e01b815260048101839052602490fd5b6003146117d15750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b600052602160045260246000fd5b307f000000000000000000000000cf7625a2fb60b0822444e5964b4ce80c148e7fad6001600160a01b03161480611900575b1561185a577f32d9509c92c7e5edc0ed49354a58a856584aad41d480568f2c1e04c95563116d90565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f300f800aee223ec4f0f7f13ec0e9fb1b8a8186bbfdb275780ce621887215518960408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c081018181106001600160401b0382111761117f5760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000014614611831565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084116119ad57926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa156119a15780516001600160a01b0381161561199857918190565b50809160019190565b604051903d90823e3d90fd5b5050506000916003919056fea26469706673582212204c34bab95ffb187a3a69b6bfb1a886400e0de6b5c4a435fe37a8623d7e41326264736f6c63430008180033
Verified Source Code Full Match
Compiler: v0.8.24+commit.e11b9ed9
EVM: paris
Optimization: Yes (200 runs)
IMulticallable.sol 13 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
interface IMulticallable {
function multicall(
bytes[] calldata data
) external returns (bytes[] memory results);
function multicallWithNodeCheck(
bytes32,
bytes[] calldata data
) external returns (bytes[] memory results);
}
Multicallable.sol 53 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "./IMulticallable.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
abstract contract Multicallable is IMulticallable, ERC165 {
function _multicall(
bytes32 nodehash,
bytes[] calldata data
) internal returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
if (nodehash != bytes32(0)) {
bytes32 txNamehash = bytes32(data[i][4:36]);
require(
txNamehash == nodehash,
"multicall: All records must have a matching namehash"
);
}
(bool success, bytes memory result) = address(this).delegatecall(
data[i]
);
require(success);
results[i] = result;
}
return results;
}
// This function provides an extra security check when called
// from priviledged contracts (such as EthRegistrarController)
// that can set records on behalf of the node owners
function multicallWithNodeCheck(
bytes32 nodehash,
bytes[] calldata data
) external returns (bytes[] memory results) {
return _multicall(nodehash, data);
}
function multicall(
bytes[] calldata data
) public override returns (bytes[] memory results) {
return _multicall(bytes32(0), data);
}
function supportsInterface(
bytes4 interfaceID
) public view virtual override returns (bool) {
return
interfaceID == type(IMulticallable).interfaceId ||
super.supportsInterface(interfaceID);
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
IERC1155.sol 127 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}
IERC1155Receiver.sol 59 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
ERC1155Holder.sol 42 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/utils/ERC1155Holder.sol)
pragma solidity ^0.8.20;
import {IERC165, ERC165} from "../../../utils/introspection/ERC165.sol";
import {IERC1155Receiver} from "../IERC1155Receiver.sol";
/**
* @dev Simple implementation of `IERC1155Receiver` that will allow a contract to hold ERC1155 tokens.
*
* IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be
* stuck.
*/
abstract contract ERC1155Holder is ERC165, IERC1155Receiver {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId);
}
function onERC1155Received(
address,
address,
uint256,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155Received.selector;
}
function onERC1155BatchReceived(
address,
address,
uint256[] memory,
uint256[] memory,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC1155BatchReceived.selector;
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
ERC165.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
ShortStrings.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
StorageSlot.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Controllable.sol 25 lines
//SPDX-License-Identifier: MIT
pragma solidity ~0.8.20;
import "@openzeppelin/contracts/access/Ownable.sol";
contract Controllable is Ownable {
mapping(address => bool) public controllers;
event ControllerChanged(address indexed controller, bool enabled);
constructor() Ownable(msg.sender) {}
modifier onlyController() {
require(
controllers[msg.sender],
"Controllable: Caller is not a controller"
);
_;
}
function setController(address controller, bool enabled) public onlyOwner {
controllers[controller] = enabled;
emit ControllerChanged(controller, enabled);
}
}
INameWrapper.sol 40 lines
//SPDX-License-Identifier: MIT
pragma solidity ~0.8.20;
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
uint32 constant CANNOT_UNWRAP = 1;
interface INameWrapper is IERC1155 {
error Unauthorised(bytes32 node, address addr);
error IncompatibleParent();
error IncorrectTokenType();
error LabelMismatch(bytes32 labelHash, bytes32 expectedLabelhash);
error LabelTooShort();
error LabelTooLong(string label);
error IncorrectTargetOwner(address owner);
error CannotUpgrade();
error OperationProhibited(bytes32 node);
error NameIsNotWrapped();
error NameIsStillExpired();
function ownerOf(uint256 id) external view returns (address owner);
function setSubnodeRecord(
bytes32 node,
string calldata label,
address owner,
address resolver,
uint64 ttl,
uint32 fuses,
uint64 expiry
) external returns (bytes32);
function setFuses(
bytes32 node,
uint16 ownerControlledFuses
) external returns (uint32 newFuses);
function allFusesBurned(
bytes32 node,
uint32 fuseMask
) external view returns (bool);
}
MintController.sol 218 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import {MintContext, MINT_CONTEXT} from "./Types.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ERC1155Holder} from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol";
import {Controllable} from "../controllers/Controllable.sol";
import {IMulticallable} from "@ensdomains/ens-contracts/contracts/resolvers/Multicallable.sol";
import {INameWrapper, CANNOT_UNWRAP} from "../ens/INameWrapper.sol";
contract MintController is Controllable, EIP712, ERC1155Holder {
mapping(address => bool) private verifiers;
mapping(bytes32 => bool) private fuseBurned;
address private treasury;
address private wrapperProxy;
address private nameWrapper;
address private publicResolver;
uint64 private TTL = 0;
event SubnameMinted(
bytes32 parentNode,
string label,
uint256 price,
uint256 fee,
address paymentReceiver,
address owner,
bytes extraData
);
constructor(
address _verifier,
address _treasury,
address _wrapperProxy,
address _nameWrapper,
address _publicResolver
) EIP712("namespace", "1") {
verifiers[_verifier] = true;
treasury = _treasury;
wrapperProxy = _wrapperProxy;
nameWrapper = _nameWrapper;
publicResolver = _publicResolver;
}
function mint(
MintContext calldata ctx,
bytes calldata sig,
bytes[] calldata resolverData,
bytes calldata extraData
) public payable {
verifySignature(ctx, sig);
ensureCannotUnwrapFuseBurned(ctx.parentNode);
if (resolverData.length > 0) {
mintWithData(ctx, resolverData);
} else {
mintSimple(ctx);
}
transferFunds(ctx.paymentReceiver, ctx.price, ctx.fee);
emit SubnameMinted(
ctx.parentNode,
ctx.label,
ctx.price,
ctx.fee,
ctx.paymentReceiver,
ctx.owner,
extraData
);
}
function mintWithData(
MintContext calldata context,
bytes[] calldata resolverData
) internal {
bytes32 subnameNode = INameWrapper(wrapperProxy).setSubnodeRecord(
context.parentNode,
context.label,
address(this),
publicResolver,
TTL,
context.fuses,
context.expiry
);
_setRecords(publicResolver, subnameNode, resolverData);
INameWrapper(nameWrapper).safeTransferFrom(
address(this),
context.owner,
uint256(subnameNode),
1,
bytes("")
);
}
function mintSimple(MintContext calldata context) internal {
INameWrapper(wrapperProxy).setSubnodeRecord(
context.parentNode,
context.label,
context.owner,
publicResolver,
TTL,
context.fuses,
context.expiry
);
}
function verifySignature(
MintContext calldata context,
bytes calldata signature
) internal view {
require(context.signatureExpiry > block.timestamp, "Signature expired");
require(context.verifiedMinter == msg.sender, "Not verified minter");
bytes32 signatureDigest = _createSignatureDigest(context);
address extractedSigner = ECDSA.recover(signatureDigest, signature);
require(verifiers[extractedSigner], "Invalid signature");
}
function transferFunds(
address paymentReceiver,
uint256 price,
uint256 fees
) internal {
uint256 totalPrice = price + fees;
uint256 ethAmmount = msg.value;
require(ethAmmount >= totalPrice, "Insufficient balance");
if (price > 0) {
(bool sentToPaymentReceiver, ) = payable(paymentReceiver).call{
value: price
}("");
require(
sentToPaymentReceiver,
"Could not transfer ETH to payment receiver"
);
}
if (fees > 0) {
(bool sentToTreasury, ) = payable(treasury).call{value: fees}("");
require(sentToTreasury, "Could not transfer ETH to treasury");
}
uint256 remainder = ethAmmount - totalPrice;
if (remainder > 0) {
(bool remainderSent, ) = payable(msg.sender).call{value: remainder}(
""
);
require(remainderSent, "Could not transfer ETH to msg.sender");
}
}
function _createSignatureDigest(
MintContext calldata context
) internal view returns (bytes32) {
return
_hashTypedDataV4(
keccak256(
abi.encode(
MINT_CONTEXT,
keccak256(abi.encodePacked(context.label)),
context.parentNode,
context.owner,
context.price,
context.fee,
context.paymentReceiver,
context.expiry,
context.signatureExpiry,
context.verifiedMinter,
context.fuses
)
)
);
}
function ensureCannotUnwrapFuseBurned(bytes32 name) internal {
if (fuseBurned[name]) {
return;
}
if (!INameWrapper(nameWrapper).allFusesBurned(name, CANNOT_UNWRAP)) {
INameWrapper(wrapperProxy).setFuses(name, uint16(CANNOT_UNWRAP));
}
fuseBurned[name] = true;
}
function _setRecords(
address resolverAddress,
bytes32 subnameNode,
bytes[] calldata data
) internal {
IMulticallable(resolverAddress).multicallWithNodeCheck(
subnameNode,
data
);
}
function setVerifier(address verifier) external onlyOwner {
verifiers[verifier] = true;
}
function removeVerifier(address verifier) external onlyOwner {
verifiers[verifier] = false;
}
function setDefaultResolver(address resolver) external onlyOwner {
publicResolver = resolver;
}
function setTreasury(address _treasury) external onlyOwner {
treasury = _treasury;
}
}
Types.sol 19 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
bytes32 constant MINT_CONTEXT = keccak256(
"MintContext(string label,bytes32 parentNode,address owner,uint256 price,uint256 fee,address paymentReceiver,uint256 expiry,uint256 signatureExpiry,address verifiedMinter,uint32 fuses)"
);
struct MintContext {
address owner;
string label;
bytes32 parentNode;
uint256 price;
uint256 fee;
address paymentReceiver;
uint64 expiry;
uint256 signatureExpiry;
address verifiedMinter;
uint32 fuses;
}
Read Contract
controllers 0xda8c229e → bool
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
owner 0x8da5cb5b → address
supportsInterface 0x01ffc9a7 → bool
Write Contract 10 functions
These functions modify contract state and require a wallet transaction to execute.
mint 0x1e3c4692
tuple ctx
bytes sig
bytes[] resolverData
bytes extraData
onERC1155BatchReceived 0xbc197c81
address
address
uint256[]
uint256[]
bytes
returns: bytes4
onERC1155Received 0xf23a6e61
address
address
uint256
uint256
bytes
returns: bytes4
removeVerifier 0xca2dfd0a
address verifier
renounceOwnership 0x715018a6
No parameters
setController 0xe0dba60f
address controller
bool enabled
setDefaultResolver 0xc66485b2
address resolver
setTreasury 0xf0f44260
address _treasury
setVerifier 0x5437988d
address verifier
transferOwnership 0xf2fde38b
address newOwner
Recent Transactions
No transactions found for this address