Address Contract Verified
Address
0xE5d383FC43F6c370DdD3975cf9e363Ad42367697
Balance
0 ETH
Nonce
1
Code Size
11276 bytes
Creator
0x2C3B135c...4278 at tx 0xb6a90029...273890
Indexed Transactions
0
Contract Bytecode
11276 bytes
0x608060405234801561000f575f80fd5b506004361061021e575f3560e01c80637d37a8521161012a578063c4f59f9b116100b4578063e18b702911610079578063e18b7029146104e1578063f93edfb0146104e9578063f940e385146104fc578063fa78668f1461050f578063fc0c345e14610518575f80fd5b8063c4f59f9b1461048b578063cc37be2d146104a0578063ce500cc6146104b3578063d8dfcea0146104c6578063dd62ed3e146104ce575f80fd5b806395d89b41116100fa57806395d89b411461043c5780639c0aea70146104445780639e57c97514610457578063a8c62e761461046a578063a9059cbb1461047d575f80fd5b80637d37a852146103fa5780637deb8b021461040d57806387c9f9fc146104205780638a8a759e14610433575f80fd5b80632552aa1f116101ab5780635de9a1371161017b5780635de9a1371461035d57806370a08231146103a6578063730143c6146103b95780637bb7bed1146103d45780637c823447146103e7575f80fd5b80632552aa1f14610303578063313ce5671461031657806338d52e0f1461032b5780634a7d036914610355575f80fd5b80630efe6a8b116101f15780630efe6a8b1461028c57806318160ddd1461029f5780631e83409a146102c657806321344d27146102db57806323b872dd146102f0575f80fd5b806306fdde031461022257806308b71c2414610240578063095ea7b3146102615780630b4501fd14610284575b5f80fd5b61022a61052b565b6040516102379190612436565b60405180910390f35b61025361024e366004612483565b6105eb565b604051908152602001610237565b61027461026f366004612483565b610616565b6040519015158152602001610237565b610253600a81565b61025361029a3660046124ab565b61062f565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0254610253565b6102d96102d43660046124db565b61087c565b005b6102e3610891565b60405161023791906124f4565b6102746102fe366004612537565b6108e7565b6102e36103113660046124db565b61091f565b600b5460405160ff9091168152602001610237565b5f5461033d906001600160a01b031681565b6040516001600160a01b039091168152602001610237565b6102d9610988565b61038b61036b3660046124db565b60056020525f908152604090208054600182015460029092015490919083565b60408051938452602084019290925290820152606001610237565b6102536103b43660046124db565b610a6d565b61033d7347fd36abceeb9954ae9ea1581295ce9a8308655e81565b61033d6103e2366004612570565b610a93565b6102d96103f5366004612483565b610abb565b6102d96104083660046124db565b610caf565b6102d961041b366004612587565b610e10565b6102d961042e3660046126a7565b61106f565b61025360085481565b61022a61151c565b610253610452366004612570565b61155a565b610253610465366004612570565b611579565b60015461033d906001600160a01b031681565b6102746102fe366004612483565b61049361160d565b60405161023791906127be565b6102536104ae366004612483565b61166c565b6102536104c1366004612570565b611685565b6102e3611694565b6102536104dc3660046127fe565b6116e8565b600254610253565b6102e36104f73660046124db565b611731565b61025361050a3660046127fe565b611798565b61025360035481565b61025361052636600461282f565b611ac9565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0380546060915f80516020612bb7833981519152916105699061284f565b80601f01602080910402602001604051908101604052809291908181526020018280546105959061284f565b80156105e05780601f106105b7576101008083540402835291602001916105e0565b820191905f5260205f20905b8154815290600101906020018083116105c357829003601f168201915b505050505091505090565b6007602052815f5260405f208181548110610604575f80fd5b905f5260205f20015f91509150505481565b5f33610623818585611b19565b60019150505b92915050565b6001600160a01b0383165f90815260056020526040812054156106875760405162461bcd60e51b815260206004820152600b60248201526a4c4f434b5f45584953545360a81b60448201526064015b60405180910390fd5b5f806106938585611b26565b5f5491935091506106af906001600160a01b0316333088611b8c565b6001546001600160a01b03161561073457600154604051636e553f6560e01b8152600481018790523060248201526001600160a01b0390911690636e553f65906044016020604051808303815f875af115801561070e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107329190612887565b505b61073e8683611bf3565b6002545f5b818110156107bd576001600160a01b0388165f90815260076020526040902060098054839081106107765761077661289e565b5f91825260208083209091015483546001818101865594845282842001556001600160a01b038b168252600681526040822080548085018255908352908220015501610743565b50604051806060016040528086426107d591906128c6565b8152602080820189905260409182018590526001600160a01b038a165f90815260058252828120845181559184015160018301559290910151600290910155600880548492906108269084906128c6565b909155505060408051878152602081018790526001600160a01b038916917f167357c41e38a45e1950f61b1f5accf902c878d83f1685f7f72fb666203ce047910160405180910390a250909150505b9392505050565b61088581610caf565b61088e81611c2b565b50565b606060098054806020026020016040519081016040528092919081815260200182805480156108dd57602002820191905f5260205f20905b8154815260200190600101908083116108c9575b5050505050905090565b60405162461bcd60e51b815260206004820152600b60248201526a2727902a2920a729a322a960a91b60448201525f9060640161067e565b6001600160a01b0381165f9081526006602090815260409182902080548351818402810184019094528084526060939283018282801561097c57602002820191905f5260205f20905b815481526020019060010190808311610968575b50505050509050919050565b5f60048054806020026020016040519081016040528092919081815260200182805480156109d357602002820191905f5260205f20905b8154815260200190600101908083116109bf575b5050505050905060045f6109e791906123ea565b80515f5b81811015610a68575f838281518110610a0657610a0661289e565b602002602001015190505f811115610a5f57610a5f7347fd36abceeb9954ae9ea1581295ce9a8308655e8260028581548110610a4457610a4461289e565b5f918252602090912001546001600160a01b03169190611d8b565b506001016109eb565b505050565b6001600160a01b03165f9081525f80516020612bb7833981519152602052604090205490565b60028181548110610aa2575f80fd5b5f918252602090912001546001600160a01b0316905081565b610ac482610caf565b6001600160a01b0382165f9081526005602052604081206001015490819003610b195760405162461bcd60e51b81526020600482015260076024820152664e4f5f4c4f434b60c81b604482015260640161067e565b6001600160a01b0383165f908152600560205260408120548190610b49908590610b449042906128d9565b611b26565b5f549193509150610b65906001600160a01b0316333087611b8c565b6001546001600160a01b031615610bea57600154604051636e553f6560e01b8152600481018690523060248201526001600160a01b0390911690636e553f65906044016020604051808303815f875af1158015610bc4573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610be89190612887565b505b610bf48583611bf3565b6001600160a01b0385165f9081526005602052604081206001018054869290610c1e9084906128c6565b90915550506001600160a01b0385165f9081526005602052604081206002018054839290610c4d9084906128c6565b925050819055508060085f828254610c6591906128c6565b90915550506040518481526001600160a01b038616907f1dc1df36082c19310b0a7e251e78f3faa1411d0851f47c41324f9985aae3997f9060200160405180910390a25050505050565b6001600160a01b0381165f9081526005602052604081206002015490819003610cd6575050565b6002545f5b81811015610e0a576001600160a01b0384165f908152600760205260408120805483908110610d0c57610d0c61289e565b905f5260205f20015460098381548110610d2857610d2861289e565b905f5260205f200154610d3b91906128d9565b905060098281548110610d5057610d5061289e565b905f5260205f20015460075f876001600160a01b03166001600160a01b031681526020019081526020015f208381548110610d8d57610d8d61289e565b5f91825260209091200155600b54610da99060ff16600a6129cc565b610db382866129da565b610dbd9190612a05565b6001600160a01b0386165f908152600660205260409020805484908110610de657610de661289e565b905f5260205f20015f828254610dfc91906128c6565b909155505050600101610cdb565b50505050565b60025481908114610e535760405162461bcd60e51b815260206004820152600d60248201526c57524f4e475f414d4f554e545360981b604482015260640161067e565b5f805b82811015611032575f612710600a878785818110610e7657610e7661289e565b90506020020135610e8791906129da565b610e919190612a05565b90508060048381548110610ea757610ea761289e565b905f5260205f20015f828254610ebd91906128c6565b9091555050600b545f90610f0990610ed99060ff16600a6129cc565b6008545f858b8b89818110610ef057610ef061289e565b90506020020135610f0191906128d9565b929190611dbc565b9050801561102857610f5e3330898987818110610f2857610f2861289e565b9050602002013560028781548110610f4257610f4261289e565b5f918252602090912001546001600160a01b0316929190611b8c565b8060098481548110610f7257610f7261289e565b905f5260205f20015f828254610f8891906128c6565b90915550610f98905081856128c6565b9350336001600160a01b03167fed6f7c40d324299c755005b332afad16d7c18d133512db2d10c2734c9eed882460028581548110610fd857610fd861289e565b5f918252602090912001546001600160a01b0316898987818110610ffe57610ffe61289e565b604080516001600160a01b0390951685526020918202939093013590840152500160405180910390a25b5050600101610e56565b505f8111610e0a5760405162461bcd60e51b815260206004820152600a6024820152691313d5d7d05353d5539560b21b604482015260640161067e565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156110b45750825b90505f8267ffffffffffffffff1660011480156110d05750303b155b9050811580156110de575080155b156110fc5760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561112657845460ff60401b1916600160401b1785555b6111308787611e07565b8a6001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561116c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111909190612a18565b600b805460ff191660ff929092169190911790558951806111e35760405162461bcd60e51b815260206004820152600d60248201526c5245574152445f544f4b454e5360981b604482015260640161067e565b6001600160a01b038c166112215760405162461bcd60e51b81526020600482015260056024820152641054d4d15560da1b604482015260640161067e565b5f89116112605760405162461bcd60e51b815260206004820152600d60248201526c4d41585f4c4f434b5f54494d4560981b604482015260640161067e565b5f80546001600160a01b0319166001600160a01b038e1617815560038a90555b818110156113a0575f6001600160a01b03168c82815181106112a4576112a461289e565b60200260200101516001600160a01b0316036112eb5760405162461bcd60e51b8152602060048201526006602482015265149155d0549160d21b604482015260640161067e565b60028c82815181106112ff576112ff61289e565b6020908102919091018101518254600180820185555f9485529284200180546001600160a01b0319166001600160a01b03909216919091179055600980548083019091557f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af018290556004805480830182559083527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b019190915501611280565b506001600160a01b038a16156114c857600180546001600160a01b0319166001600160a01b038c169081179091556040805163313ce56760e01b815290515f929163313ce5679160048083019260209291908290030181865afa158015611409573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061142d9190612a18565b60ff1690506012811115611455576114466012826128d9565b61145190600a612a38565b600a555b60405163095ea7b360e01b81526001600160a01b038c811660048301525f1960248301528e169063095ea7b3906044016020604051808303815f875af11580156114a1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114c59190612a43565b50505b50831561150f57845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050505050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0480546060915f80516020612bb7833981519152916105699061284f565b60098181548110611569575f80fd5b5f91825260209091200154905081565b6001545f906001600160a01b03161561160957600a5460015460405163ef8b30f760e01b8152600481018590526001600160a01b039091169063ef8b30f790602401602060405180830381865afa1580156115d6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115fa9190612887565b6116049190612a05565b610629565b5090565b606060028054806020026020016040519081016040528092919081815260200182805480156108dd57602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311611645575050505050905090565b6006602052815f5260405f208181548110610604575f80fd5b60048181548110611569575f80fd5b606060048054806020026020016040519081016040528092919081815260200182805480156108dd57602002820191905f5260205f20908154815260200190600101908083116108c9575050505050905090565b6001600160a01b039182165f9081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace016020908152604080832093909416825291909152205490565b6001600160a01b0381165f9081526007602090815260409182902080548351818402810184019094528084526060939283018282801561097c57602002820191905f5260205f20908154815260200190600101908083116109685750505050509050919050565b5f806117a384610a6d565b9050805f036117de5760405162461bcd60e51b81526020600482015260076024820152664e4f5f4c4f434b60c81b604482015260640161067e565b6001600160a01b0384165f90815260056020526040902054421161182d5760405162461bcd60e51b81526020600482015260066024820152651313d0d2d15160d21b604482015260640161067e565b336001600160a01b0385161461184857611848843383611e19565b61185184610caf565b61185a84611c2b565b5f6118837f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025490565b905061188f8583611e76565b6001600160a01b0385165f9081526005602052604081206002015460088054919290916118bd9084906128d9565b90915550506001600160a01b0385165f90815260056020908152604080832083815560018101849055600201839055600790915281206118fc916123ea565b6001546001600160a01b031615611a04576001546040516370a0823160e01b8152306004820152611982916001600160a01b0316906370a0823190602401602060405180830381865afa158015611955573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119799190612887565b8390835f611dbc565b600154604051635d043b2960e11b8152600481018390526001600160a01b03878116602483015230604483015292955091169063ba087652906064016020604051808303815f875af11580156119da573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119fe9190612887565b50611a7e565b5f5460405163a9059cbb60e01b81526001600160a01b0386811660048301526024820185905293945084939091169063a9059cbb906044016020604051808303815f875af1158015611a58573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a7c9190612a43565b505b846001600160a01b03167f7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b6584604051611ab991815260200190565b60405180910390a2505092915050565b5f600354821115611b085760405162461bcd60e51b81526020600482015260096024820152684c4f434b5f54494d4560b81b604482015260640161067e565b60035461087590849084905f611dbc565b610a688383836001611eaa565b5f80611b3184611579565b9150611b3d8484611ac9565b90505f82118015611b4d57505f81115b611b855760405162461bcd60e51b81526020600482015260096024820152684e4f5f53484152455360b81b604482015260640161067e565b9250929050565b6040516001600160a01b038481166024830152838116604483015260648201839052610e0a9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050611f8e565b6001600160a01b038216611c1c5760405163ec442f0560e01b81525f600482015260240161067e565b611c275f8383611fef565b5050565b6001600160a01b0381165f90815260066020908152604080832080548251818502810185019093528083529192909190830182828015611c8857602002820191905f5260205f20905b815481526020019060010190808311611c74575b50506002549394505f925050505b81811015610e0a575f838281518110611cb157611cb161289e565b6020026020010151905060065f866001600160a01b03166001600160a01b031681526020019081526020015f208281548110611cef57611cef61289e565b5f9182526020822001558015611d8257611d17858260028581548110610a4457610a4461289e565b336001600160a01b03167ff7a40077ff7a04c7e61f6f26fb13774259ddf1b6bce9ecf26a8276cdd399268360028481548110611d5557611d5561289e565b5f9182526020918290200154604080516001600160a01b0390921682529181018590520160405180910390a25b50600101611c96565b6040516001600160a01b03838116602483015260448201839052610a6891859182169063a9059cbb90606401611bc1565b5f611de9611dc983612128565b8015611de457505f8480611ddf57611ddf6129f1565b868809115b151590565b611df4868686612154565b611dfe91906128c6565b95945050505050565b611e0f612211565b611c27828261225c565b5f611e2484846116e8565b90505f198114610e0a5781811015611e6857604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161067e565b610e0a84848484035f611eaa565b6001600160a01b038216611e9f57604051634b637e8f60e11b81525f600482015260240161067e565b611c27825f83611fef565b5f80516020612bb78339815191526001600160a01b038516611ee15760405163e602df0560e01b81525f600482015260240161067e565b6001600160a01b038416611f0a57604051634a1406b160e11b81525f600482015260240161067e565b6001600160a01b038086165f90815260018301602090815260408083209388168352929052208390558115611f8757836001600160a01b0316856001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92585604051611f7e91815260200190565b60405180910390a35b5050505050565b5f611fa26001600160a01b038416836122ac565b905080515f14158015611fc6575080806020019051810190611fc49190612a43565b155b15610a6857604051635274afe760e01b81526001600160a01b038416600482015260240161067e565b5f80516020612bb78339815191526001600160a01b0384166120295781816002015f82825461201e91906128c6565b909155506120999050565b6001600160a01b0384165f908152602082905260409020548281101561207b5760405163391434e360e21b81526001600160a01b0386166004820152602481018290526044810184905260640161067e565b6001600160a01b0385165f9081526020839052604090209083900390555b6001600160a01b0383166120b75760028101805483900390556120d5565b6001600160a01b0383165f9081526020829052604090208054830190555b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161211a91815260200190565b60405180910390a350505050565b5f600282600381111561213d5761213d612a62565b6121479190612a76565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f036121885783828161217e5761217e6129f1565b0492505050610875565b8084116121a6576121a6841561219f5760116122b9565b60126122b9565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff1661225a57604051631afcd79f60e31b815260040160405180910390fd5b565b612264612211565b5f80516020612bb78339815191527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0361229d8482612adb565b5060048101610e0a8382612adb565b606061087583835f6122cc565b634e487b7160e01b5f528060045260245ffd5b6060814710156122f15760405163cd78605960e01b815230600482015260240161067e565b5f80856001600160a01b0316848660405161230c9190612b9b565b5f6040518083038185875af1925050503d805f8114612346576040519150601f19603f3d011682016040523d82523d5f602084013e61234b565b606091505b509150915061235b868383612365565b9695505050505050565b60608261237a57612375826123c1565b610875565b815115801561239157506001600160a01b0384163b155b156123ba57604051639996b31560e01b81526001600160a01b038516600482015260240161067e565b5080610875565b8051156123d15780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b5080545f8255905f5260205f209081019061088e91905b80821115611609575f8155600101612401565b5f5b8381101561242e578181015183820152602001612416565b50505f910152565b602081525f8251806020840152612454816040850160208701612414565b601f01601f19169190910160400192915050565b80356001600160a01b038116811461247e575f80fd5b919050565b5f8060408385031215612494575f80fd5b61249d83612468565b946020939093013593505050565b5f805f606084860312156124bd575f80fd5b6124c684612468565b95602085013595506040909401359392505050565b5f602082840312156124eb575f80fd5b61087582612468565b602080825282518282018190525f9190848201906040850190845b8181101561252b5783518352928401929184019160010161250f565b50909695505050505050565b5f805f60608486031215612549575f80fd5b61255284612468565b925061256060208501612468565b9150604084013590509250925092565b5f60208284031215612580575f80fd5b5035919050565b5f8060208385031215612598575f80fd5b823567ffffffffffffffff808211156125af575f80fd5b818501915085601f8301126125c2575f80fd5b8135818111156125d0575f80fd5b8660208260051b85010111156125e4575f80fd5b60209290920196919550909350505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff81118282101715612633576126336125f6565b604052919050565b5f82601f83011261264a575f80fd5b813567ffffffffffffffff811115612664576126646125f6565b612677601f8201601f191660200161260a565b81815284602083860101111561268b575f80fd5b816020850160208301375f918101602001919091529392505050565b5f805f805f8060c087890312156126bc575f80fd5b6126c587612468565b955060208088013567ffffffffffffffff808211156126e2575f80fd5b818a0191508a601f8301126126f5575f80fd5b813581811115612707576127076125f6565b8060051b61271685820161260a565b918252838101850191858101908e84111561272f575f80fd5b948601945b838610156127545761274586612468565b82529486019490860190612734565b9a506127669250505060408b01612468565b965060608a0135955060808a0135925080831115612782575f80fd5b61278e8b848c0161263b565b945060a08a01359250808311156127a3575f80fd5b50506127b189828a0161263b565b9150509295509295509295565b602080825282518282018190525f9190848201906040850190845b8181101561252b5783516001600160a01b0316835292840192918401916001016127d9565b5f806040838503121561280f575f80fd5b61281883612468565b915061282660208401612468565b90509250929050565b5f8060408385031215612840575f80fd5b50508035926020909101359150565b600181811c9082168061286357607f821691505b60208210810361288157634e487b7160e01b5f52602260045260245ffd5b50919050565b5f60208284031215612897575f80fd5b5051919050565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b80820180821115610629576106296128b2565b81810381811115610629576106296128b2565b600181815b8085111561292657815f190482111561290c5761290c6128b2565b8085161561291957918102915b93841c93908002906128f1565b509250929050565b5f8261293c57506001610629565b8161294857505f610629565b816001811461295e576002811461296857612984565b6001915050610629565b60ff841115612979576129796128b2565b50506001821b610629565b5060208310610133831016604e8410600b84101617156129a7575081810a610629565b6129b183836128ec565b805f19048211156129c4576129c46128b2565b029392505050565b5f61087560ff84168361292e565b8082028115828204841417610629576106296128b2565b634e487b7160e01b5f52601260045260245ffd5b5f82612a1357612a136129f1565b500490565b5f60208284031215612a28575f80fd5b815160ff81168114610875575f80fd5b5f610875838361292e565b5f60208284031215612a53575f80fd5b81518015158114610875575f80fd5b634e487b7160e01b5f52602160045260245ffd5b5f60ff831680612a8857612a886129f1565b8060ff84160691505092915050565b601f821115610a6857805f5260205f20601f840160051c81016020851015612abc5750805b601f840160051c820191505b81811015611f87575f8155600101612ac8565b815167ffffffffffffffff811115612af557612af56125f6565b612b0981612b03845461284f565b84612a97565b602080601f831160018114612b3c575f8415612b255750858301515b5f19600386901b1c1916600185901b178555612b93565b5f85815260208120601f198616915b82811015612b6a57888601518255948401946001909101908401612b4b565b5085821015612b8757878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b5f8251612bac818460208701612414565b919091019291505056fe52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00a264697066735822122064f48cdbb420e96f8e9778e80b1b7dccc785a2cac9fc632ab7dd52e724417f4f64736f6c63430008190033
Verified Source Code Full Match
Compiler: v0.8.25+commit.b61c2a91
EVM: shanghai
Optimization: Yes (200 runs)
LockVault.sol 375 lines
// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.15
pragma solidity ^0.8.15;
import {ERC4626Upgradeable, IERC20Metadata, ERC20Upgradeable as ERC20, IERC4626, IERC20} from "openzeppelin-contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol";
import {Math} from "openzeppelin-contracts/utils/math/Math.sol";
import {SafeERC20} from "openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
struct Lock {
uint256 unlockTime;
uint256 amount;
uint256 rewardShares;
}
contract LockVault is ERC20 {
using SafeERC20 for IERC20;
using Math for uint256;
IERC20 public asset;
IERC4626 public strategy;
IERC20[] public rewardTokens;
uint256 public MAX_LOCK_TIME;
address public constant PROTOCOL_FEE_RECIPIENT =
0x47fd36ABcEeb9954ae9eA1581295Ce9A8308655E;
uint256 public constant PROTOCOL_FEE = 10;
uint256[] public protocolFees;
mapping(address => Lock) public locks;
mapping(address => uint256[]) public accruedRewards;
mapping(address => uint256[]) public rewardIndices;
uint256 public totalRewardSupply;
uint256[] public currIndices;
uint256 internal toShareDivider = 1;
uint8 internal _decimals;
event LockCreated(address indexed user, uint256 amount, uint256 lockTime);
event Withdrawal(address indexed user, uint256 amount);
event IncreaseLockTime(address indexed user, uint256 newLockTime);
event IncreaseLockAmount(address indexed user, uint256 amount);
event Claimed(address indexed user, IERC20 rewardToken, uint256 amount);
event DistributeRewards(
address indexed distributor,
IERC20 rewardToken,
uint256 amount
);
// constructor() {
// _disableInitializers();
// }
function initialize(
address _asset,
address[] memory _rewardTokens,
address _strategy,
uint256 _maxLockTime,
string memory _name,
string memory _symbol
) external initializer {
__ERC20_init(_name, _symbol);
_decimals = IERC20Metadata(_asset).decimals();
uint256 len = _rewardTokens.length;
require(len > 0, "REWARD_TOKENS");
require(_asset != address(0), "ASSET");
require(_maxLockTime > 0, "MAX_LOCK_TIME");
asset = IERC20(_asset);
MAX_LOCK_TIME = _maxLockTime;
for (uint256 i; i < len; i++) {
require(_rewardTokens[i] != address(0), "REWARD");
rewardTokens.push(IERC20(_rewardTokens[i]));
currIndices.push(0);
protocolFees.push(0);
}
if (_strategy != address(0)) {
strategy = IERC4626(_strategy);
uint256 stratDecimals = strategy.decimals();
if (stratDecimals > 18) toShareDivider = 10 ** (stratDecimals - 18);
IERC20(_asset).approve(_strategy, type(uint256).max);
}
}
/*//////////////////////////////////////////////////////////////
VIEWS
//////////////////////////////////////////////////////////////*/
function decimals() public view override returns (uint8) {
return _decimals;
}
function getRewardLength() external view returns (uint256) {
return rewardTokens.length;
}
function getRewardTokens() external view returns (IERC20[] memory) {
return rewardTokens;
}
function getCurrIndices() external view returns (uint256[] memory) {
return currIndices;
}
function getUserIndices(
address user
) external view returns (uint256[] memory) {
return rewardIndices[user];
}
function getAccruedRewards(
address user
) external view returns (uint256[] memory) {
return accruedRewards[user];
}
function getProtocolFees() external view returns (uint256[] memory) {
return protocolFees;
}
/*//////////////////////////////////////////////////////////////
ACCOUNTING LOGIC
//////////////////////////////////////////////////////////////*/
function toRewardShares(
uint256 amount,
uint256 lockTime
) public view returns (uint256) {
require(lockTime <= MAX_LOCK_TIME, "LOCK_TIME");
return amount.mulDiv(lockTime, MAX_LOCK_TIME, Math.Rounding.Floor);
}
function toShares(uint256 amount) public view returns (uint256) {
return
address(strategy) == address(0)
? amount
: strategy.previewDeposit(amount) / toShareDivider;
}
/*//////////////////////////////////////////////////////////////
DEPOSIT / WITHDRAW
//////////////////////////////////////////////////////////////*/
function deposit(
address recipient,
uint256 amount,
uint256 lockTime
) external returns (uint256) {
require(locks[recipient].unlockTime == 0, "LOCK_EXISTS");
(uint256 shares, uint256 rewardShares) = _getShares(amount, lockTime);
asset.safeTransferFrom(msg.sender, address(this), amount);
if (address(strategy) != address(0))
strategy.deposit(amount, address(this));
_mint(recipient, shares);
uint256 len = rewardTokens.length;
for (uint256 i; i < len; i++) {
rewardIndices[recipient].push(currIndices[i]);
accruedRewards[recipient].push(0);
}
locks[recipient] = Lock({
unlockTime: block.timestamp + lockTime,
amount: amount,
rewardShares: rewardShares
});
totalRewardSupply += rewardShares;
emit LockCreated(recipient, amount, lockTime);
return shares;
}
function withdraw(
address owner,
address recipient
) external returns (uint256 amount) {
uint256 shares = balanceOf(owner);
require(shares != 0, "NO_LOCK");
require(block.timestamp > locks[owner].unlockTime, "LOCKED");
if (msg.sender != owner) {
_spendAllowance(owner, msg.sender, shares);
}
accrueUser(owner);
_claim(owner);
uint256 _totalSupply = totalSupply();
_burn(owner, shares);
totalRewardSupply -= locks[owner].rewardShares;
delete locks[owner];
delete rewardIndices[owner];
if (address(strategy) != address(0)) {
amount = shares.mulDiv(
strategy.balanceOf(address(this)),
_totalSupply,
Math.Rounding.Floor
);
strategy.redeem(amount, recipient, address(this));
} else {
amount = shares;
asset.transfer(recipient, amount);
}
emit Withdrawal(owner, amount);
}
function _getShares(
uint256 amount,
uint256 lockTime
) internal returns (uint256 shares, uint256 rewardShares) {
shares = toShares(amount);
rewardShares = toRewardShares(amount, lockTime);
require(shares > 0 && rewardShares > 0, "NO_SHARES");
}
/*//////////////////////////////////////////////////////////////
LOCK MANAGEMENT
//////////////////////////////////////////////////////////////*/
function increaseLockAmount(address recipient, uint256 amount) external {
accrueUser(recipient);
uint256 currAmount = locks[recipient].amount;
require(currAmount != 0, "NO_LOCK");
(uint256 shares, uint256 newRewardShares) = _getShares(
amount,
locks[recipient].unlockTime - block.timestamp
);
asset.safeTransferFrom(msg.sender, address(this), amount);
if (address(strategy) != address(0))
strategy.deposit(amount, address(this));
_mint(recipient, shares);
locks[recipient].amount += amount;
locks[recipient].rewardShares += newRewardShares;
totalRewardSupply += newRewardShares;
emit IncreaseLockAmount(recipient, amount);
}
/*//////////////////////////////////////////////////////////////
REWARDS LOGIC
//////////////////////////////////////////////////////////////*/
function distributeRewards(uint256[] calldata amounts) external {
uint256 len = amounts.length;
require(len == rewardTokens.length, "WRONG_AMOUNTS");
uint256 totalDelta;
for (uint256 i; i < len; i++) {
uint256 fee = (amounts[i] * PROTOCOL_FEE) / 10_000;
protocolFees[i] += fee;
// amount of reward tokens that will be distributed per share
uint256 delta = (amounts[i] - fee).mulDiv(
10 ** _decimals,
totalRewardSupply,
Math.Rounding.Floor
);
if (delta > 0) {
IERC20(rewardTokens[i]).safeTransferFrom(
msg.sender,
address(this),
amounts[i]
);
currIndices[i] += delta;
totalDelta += delta;
emit DistributeRewards(msg.sender, rewardTokens[i], amounts[i]);
}
}
/// @dev if totalDelta == 0, no one will receive any rewards.
require(totalDelta > 0, "LOW_AMOUNT");
}
function accrueUser(address user) public {
uint256 rewardShares = locks[user].rewardShares;
if (rewardShares == 0) return;
uint256 len = rewardTokens.length;
for (uint256 i; i < len; i++) {
uint256 delta = currIndices[i] - rewardIndices[user][i];
rewardIndices[user][i] = currIndices[i];
accruedRewards[user][i] +=
(rewardShares * delta) /
(10 ** _decimals);
}
}
function claim(address user) external {
accrueUser(user);
_claim(user);
}
function _claim(address user) internal {
uint256[] memory rewards = accruedRewards[user];
uint256 len = rewardTokens.length;
for (uint256 i; i < len; i++) {
uint256 reward = rewards[i];
delete accruedRewards[user][i];
if (reward > 0) {
rewardTokens[i].safeTransfer(user, reward);
emit Claimed(msg.sender, rewardTokens[i], reward);
}
}
}
/*//////////////////////////////////////////////////////////////
FEE LOGIC
//////////////////////////////////////////////////////////////*/
function claimProtocolFees() external {
uint256[] memory fees = protocolFees;
delete protocolFees;
uint256 len = fees.length;
for (uint256 i; i < len; i++) {
uint256 fee = fees[i];
if (fee > 0)
rewardTokens[i].safeTransfer(PROTOCOL_FEE_RECIPIENT, fee);
}
}
/*//////////////////////////////////////////////////////////////
TRANSFER LOGIC
//////////////////////////////////////////////////////////////*/
function transfer(
address to,
uint256 value
) public override returns (bool) {
revert("NO TRANSFER");
}
function transferFrom(
address from,
address to,
uint256 value
) public override returns (bool) {
revert("NO TRANSFER");
}
}
Panic.sol 55 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, shl(0xe0, 0x4e487b71))
mstore(0x04, code)
revert(0x00, 0x24)
}
}
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
Math.sol 656 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
IERC20.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
IERC165.sol 6 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC1363.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
IERC4626.sol 230 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
SafeCast.sol 1163 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
SafeERC20.sol 173 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
ContextUpgradeable.sol 34 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Initializable.sol 228 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
ERC20Upgradeable.sol 341 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the ERC may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
/// @custom:storage-location erc7201:openzeppelin.storage.ERC20
struct ERC20Storage {
mapping(address account => uint256) _balances;
mapping(address account => mapping(address spender => uint256)) _allowances;
uint256 _totalSupply;
string _name;
string _symbol;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
function _getERC20Storage() private pure returns (ERC20Storage storage $) {
assembly {
$.slot := ERC20StorageLocation
}
}
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
ERC20Storage storage $ = _getERC20Storage();
$._name = name_;
$._symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
ERC20Storage storage $ = _getERC20Storage();
return $._name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
ERC20Storage storage $ = _getERC20Storage();
return $._symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
ERC20Storage storage $ = _getERC20Storage();
return $._allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the ERC. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
ERC20Storage storage $ = _getERC20Storage();
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
$._totalSupply += value;
} else {
uint256 fromBalance = $._balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
$._balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
$._totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
$._balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
ERC20Storage storage $ = _getERC20Storage();
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
$._allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
ERC4626Upgradeable.sol 307 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
* The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
* and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
* itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
* offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
* of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
* With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
* underlying math can be found xref:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*/
abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626 {
using Math for uint256;
/// @custom:storage-location erc7201:openzeppelin.storage.ERC4626
struct ERC4626Storage {
IERC20 _asset;
uint8 _underlyingDecimals;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC4626")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC4626StorageLocation = 0x0773e532dfede91f04b12a73d3d2acd361424f41f76b4fb79f090161e36b4e00;
function _getERC4626Storage() private pure returns (ERC4626Storage storage $) {
assembly {
$.slot := ERC4626StorageLocation
}
}
/**
* @dev Attempted to deposit more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);
/**
* @dev Attempted to mint more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);
/**
* @dev Attempted to withdraw more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
/**
* @dev Attempted to redeem more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
*/
function __ERC4626_init(IERC20 asset_) internal onlyInitializing {
__ERC4626_init_unchained(asset_);
}
function __ERC4626_init_unchained(IERC20 asset_) internal onlyInitializing {
ERC4626Storage storage $ = _getERC4626Storage();
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
$._underlyingDecimals = success ? assetDecimals : 18;
$._asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool, uint8) {
(bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
abi.encodeCall(IERC20Metadata.decimals, ())
);
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20Metadata, ERC20Upgradeable) returns (uint8) {
ERC4626Storage storage $ = _getERC4626Storage();
return $._underlyingDecimals + _decimalsOffset();
}
/** @dev See {IERC4626-asset}. */
function asset() public view virtual returns (address) {
ERC4626Storage storage $ = _getERC4626Storage();
return address($._asset);
}
/** @dev See {IERC4626-totalAssets}. */
function totalAssets() public view virtual returns (uint256) {
ERC4626Storage storage $ = _getERC4626Storage();
return $._asset.balanceOf(address(this));
}
/** @dev See {IERC4626-convertToShares}. */
function convertToShares(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-convertToAssets}. */
function convertToAssets(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxDeposit}. */
function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxMint}. */
function maxMint(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxWithdraw}. */
function maxWithdraw(address owner) public view virtual returns (uint256) {
return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxRedeem}. */
function maxRedeem(address owner) public view virtual returns (uint256) {
return balanceOf(owner);
}
/** @dev See {IERC4626-previewDeposit}. */
function previewDeposit(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-previewMint}. */
function previewMint(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewWithdraw}. */
function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewRedeem}. */
function previewRedeem(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-deposit}. */
function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
uint256 maxAssets = maxDeposit(receiver);
if (assets > maxAssets) {
revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
}
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/** @dev See {IERC4626-mint}. */
function mint(uint256 shares, address receiver) public virtual returns (uint256) {
uint256 maxShares = maxMint(receiver);
if (shares > maxShares) {
revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
}
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/** @dev See {IERC4626-withdraw}. */
function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
uint256 maxAssets = maxWithdraw(owner);
if (assets > maxAssets) {
revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
}
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/** @dev See {IERC4626-redeem}. */
function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
uint256 maxShares = maxRedeem(owner);
if (shares > maxShares) {
revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
}
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
ERC4626Storage storage $ = _getERC4626Storage();
// If _asset is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20.safeTransferFrom($._asset, caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual {
ERC4626Storage storage $ = _getERC4626Storage();
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20.safeTransfer($._asset, receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
}
Read Contract
MAX_LOCK_TIME 0xfa78668f → uint256
PROTOCOL_FEE 0x0b4501fd → uint256
PROTOCOL_FEE_RECIPIENT 0x730143c6 → address
accruedRewards 0xcc37be2d → uint256
allowance 0xdd62ed3e → uint256
asset 0x38d52e0f → address
balanceOf 0x70a08231 → uint256
currIndices 0x9c0aea70 → uint256
decimals 0x313ce567 → uint8
getAccruedRewards 0x2552aa1f → uint256[]
getCurrIndices 0x21344d27 → uint256[]
getProtocolFees 0xd8dfcea0 → uint256[]
getRewardLength 0xe18b7029 → uint256
getRewardTokens 0xc4f59f9b → address[]
getUserIndices 0xf93edfb0 → uint256[]
locks 0x5de9a137 → uint256, uint256, uint256
name 0x06fdde03 → string
protocolFees 0xce500cc6 → uint256
rewardIndices 0x08b71c24 → uint256
rewardTokens 0x7bb7bed1 → address
strategy 0xa8c62e76 → address
symbol 0x95d89b41 → string
toRewardShares 0xfc0c345e → uint256
toShares 0x9e57c975 → uint256
totalRewardSupply 0x8a8a759e → uint256
totalSupply 0x18160ddd → uint256
Write Contract 11 functions
These functions modify contract state and require a wallet transaction to execute.
accrueUser 0x7d37a852
address user
approve 0x095ea7b3
address spender
uint256 value
returns: bool
claim 0x1e83409a
address user
claimProtocolFees 0x4a7d0369
No parameters
deposit 0x0efe6a8b
address recipient
uint256 amount
uint256 lockTime
returns: uint256
distributeRewards 0x7deb8b02
uint256[] amounts
increaseLockAmount 0x7c823447
address recipient
uint256 amount
initialize 0x87c9f9fc
address _asset
address[] _rewardTokens
address _strategy
uint256 _maxLockTime
string _name
string _symbol
transfer 0xa9059cbb
address to
uint256 value
returns: bool
transferFrom 0x23b872dd
address from
address to
uint256 value
returns: bool
withdraw 0xf940e385
address owner
address recipient
returns: uint256
Recent Transactions
No transactions found for this address