Address Contract Verified
Address
0xE929E33FceeDb8C4a26d052A10e958d06254CB24
Balance
0 ETH
Nonce
1
Code Size
11405 bytes
Creator
0x072377fe...A9AE at tx 0xdf6910d8...54be2b
Indexed Transactions
0
Contract Bytecode
11405 bytes
0x608060405260043610610327575f3560e01c806370a08231116101a3578063a035b1fe116100f2578063d5abeb0111610092578063e5c41b381161006d578063e5c41b38146108fb578063e985e9c514610937578063f2fde38b1461097e578063f484b5211461099d575f80fd5b8063d5abeb01146108b2578063d5be9d0f146108c7578063d8caf821146108e6575f80fd5b8063bcfc53e2116100cd578063bcfc53e21461081b578063c23dc68f14610848578063c3a7199914610874578063c87b56dd14610893575f80fd5b8063a035b1fe146107d4578063a22cb465146107e9578063b88d4fde14610808575f80fd5b80638462151c1161015d57806391b7f5ed1161013857806391b7f5ed1461076f57806395d89b411461078e57806399a2557a146107a25780639f93f779146107c1575f80fd5b80638462151c14610707578063855386d5146107335780638da5cb5b14610752575f80fd5b806370a0823114610658578063715018a61461067757806371a943401461068b57806371c5ecb1146106aa57806379de186a146106c9578063818668d7146106e8575f80fd5b80632992cd64116102795780635bbb2177116102195780636352211e116101f45780636352211e146105e057806366d003ac146105ff5780636c0360eb146106255780636f8b44b014610639575f80fd5b80635bbb21771461057c5780635c975abb146105a85780636168097d146105c1575f80fd5b80634165598811610254578063416559881461051757806342842e0e146105365780635503a0e81461054957806355f804b31461055d575f80fd5b80632992cd64146104d15780633bbed4a0146104e45780633ccfd60b14610503575f80fd5b806316ba10e0116102e457806318712c21116102bf57806318712c211461046b5780631d2846a31461048a57806323b872dd1461049f57806327efc19b146104b2575f80fd5b806316ba10e01461040957806316c38b3c1461042857806318160ddd14610447575f80fd5b806301ffc9a71461032b57806306fdde031461035f578063081812fc14610380578063095ea7b3146103b75780630b78294f146103cc5780630f4161aa146103eb575b5f80fd5b348015610336575f80fd5b5061034a61034536600461241a565b6109b2565b60405190151581526020015b60405180910390f35b34801561036a575f80fd5b50610373610a03565b6040516103569190612482565b34801561038b575f80fd5b5061039f61039a366004612494565b610a93565b6040516001600160a01b039091168152602001610356565b6103ca6103c53660046124c6565b610ad5565b005b3480156103d7575f80fd5b506103ca6103e63660046124ff565b610b73565b3480156103f6575f80fd5b5060255461034a90610100900460ff1681565b348015610414575f80fd5b506103ca6104233660046125a0565b610bc8565b348015610433575f80fd5b506103ca6104423660046125f3565b610bdc565b348015610452575f80fd5b506001545f54035f19015b604051908152602001610356565b348015610476575f80fd5b506103ca61048536600461260c565b610bf7565b348015610495575f80fd5b5061045d600d5481565b6103ca6104ad36600461262c565b610c68565b3480156104bd575f80fd5b506103ca6104cc3660046124ff565b610df8565b6103ca6104df3660046126a5565b610e49565b3480156104ef575f80fd5b506103ca6104fe3660046126f3565b611182565b34801561050e575f80fd5b506103ca611207565b348015610522575f80fd5b5061045d610531366004612494565b611319565b6103ca61054436600461262c565b61132f565b348015610554575f80fd5b5061037361134e565b348015610568575f80fd5b506103ca6105773660046125a0565b6113da565b348015610587575f80fd5b5061059b61059636600461270c565b6113ee565b6040516103569190612786565b3480156105b3575f80fd5b5060255461034a9060ff1681565b3480156105cc575f80fd5b506103ca6105db366004612494565b6114b5565b3480156105eb575f80fd5b5061039f6105fa366004612494565b6114c2565b34801561060a575f80fd5b5060255461039f90630100000090046001600160a01b031681565b348015610630575f80fd5b506103736114cc565b348015610644575f80fd5b506103ca610653366004612494565b6114d9565b348015610663575f80fd5b5061045d6106723660046126f3565b61153e565b348015610682575f80fd5b506103ca61158a565b348015610696575f80fd5b506103ca6106a53660046125f3565b61159d565b3480156106b5575f80fd5b5061045d6106c4366004612494565b6115c1565b3480156106d4575f80fd5b5060255461034a9062010000900460ff1681565b3480156106f3575f80fd5b506103ca6107023660046125f3565b6115d0565b348015610712575f80fd5b506107266107213660046126f3565b6115f2565b60405161035691906127c7565b34801561073e575f80fd5b506103ca61074d366004612494565b6116f6565b34801561075d575f80fd5b506008546001600160a01b031661039f565b34801561077a575f80fd5b506103ca610789366004612494565b611703565b348015610799575f80fd5b50610373611710565b3480156107ad575f80fd5b506107266107bc3660046127fe565b61171f565b6103ca6107cf3660046124c6565b61189e565b3480156107df575f80fd5b5061045d600c5481565b3480156107f4575f80fd5b506103ca61080336600461282e565b611a3e565b6103ca61081636600461285f565b611aa9565b348015610826575f80fd5b5061083a6108353660046124c6565b611af3565b6040516103569291906128f7565b348015610853575f80fd5b50610867610862366004612494565b611c03565b6040516103569190612914565b34801561087f575f80fd5b506103ca61088e3660046124c6565b611c88565b34801561089e575f80fd5b506103736108ad366004612494565b611cc8565b3480156108bd575f80fd5b5061045d60095481565b3480156108d2575f80fd5b506103ca6108e1366004612494565b611d7c565b3480156108f1575f80fd5b5061045d600a5481565b348015610906575f80fd5b5061045d610915366004612922565b602260209081525f938452604080852082529284528284209052825290205481565b348015610942575f80fd5b5061034a610951366004612954565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b348015610989575f80fd5b506103ca6109983660046126f3565b611d89565b3480156109a8575f80fd5b5061045d600b5481565b5f6301ffc9a760e01b6001600160e01b0319831614806109e257506380ac58cd60e01b6001600160e01b03198316145b806109fd5750635b5e139f60e01b6001600160e01b03198316145b92915050565b606060028054610a129061297c565b80601f0160208091040260200160405190810160405280929190818152602001828054610a3e9061297c565b8015610a895780601f10610a6057610100808354040283529160200191610a89565b820191905f5260205f20905b815481529060010190602001808311610a6c57829003601f168201915b5050505050905090565b5f610a9d82611dc6565b610aba576040516333d1c03960e21b815260040160405180910390fd5b505f908152600660205260409020546001600160a01b031690565b5f610adf826114c2565b9050336001600160a01b03821614610b1857610afb8133610951565b610b18576040516367d9dca160e11b815260040160405180910390fd5b5f8281526006602052604080822080546001600160a01b0319166001600160a01b0387811691821790925591518593918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a4505050565b610b7b611df8565b5f5b600a811015610bc4578181600a8110610b9857610b986129b4565b6020020135600e82600a8110610bb057610bb06129b4565b015580610bbc816129dc565b915050610b7d565b5050565b610bd0611df8565b6024610bc48282612a39565b610be4611df8565b6025805460ff1916911515919091179055565b610bff611df8565b600a8210610c4e5760405162461bcd60e51b8152602060048201526017602482015276125b9d985b1a5908185b1b1bdddb1a5cdd081b195d995b604a1b60448201526064015b60405180910390fd5b80601883600a8110610c6257610c626129b4565b01555050565b5f610c7282611e25565b9050836001600160a01b0316816001600160a01b031614610ca55760405162a1148160e81b815260040160405180910390fd5b5f8281526006602052604090208054338082146001600160a01b03881690911417610cf157610cd48633610951565b610cf157604051632ce44b5f60e11b815260040160405180910390fd5b6001600160a01b038516610d1857604051633a954ecd60e21b815260040160405180910390fd5b8015610d22575f82555b6001600160a01b038681165f9081526005602052604080822080545f19019055918716808252919020805460010190554260a01b17600160e11b175f85815260046020526040812091909155600160e11b84169003610dae57600184015f818152600460205260408120549003610dac575f548114610dac575f8181526004602052604090208490555b505b83856001600160a01b0316876001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a45b505050505050565b610e00611df8565b5f5b600a811015610bc4578181600a8110610e1d57610e1d6129b4565b6020020135601882600a8110610e3557610e356129b4565b015580610e41816129dc565b915050610e02565b60255460ff1615610e965760405162461bcd60e51b815260206004820152601760248201527654686520636f6e7472616374206973207061757365642160481b6044820152606401610c45565b8260095481610ea65f545f190190565b610eb09190612af4565b1115610ece5760405162461bcd60e51b8152600401610c4590612b07565b60255462010000900460ff16610f265760405162461bcd60e51b815260206004820152601c60248201527f416c6c6f776c6973743a204d696e742069732064697361626c656421000000006044820152606401610c45565b600a8510610f705760405162461bcd60e51b8152602060048201526017602482015276125b9d985b1a5908185b1b1bdddb1a5cdd081b195d995b604a1b6044820152606401610c45565b600b5484610f7f5f545f190190565b610f899190612af4565b1115610fe25760405162461bcd60e51b815260206004820152602260248201527f43757272656e7420416c6c6f776c69737420537570706c792045786365656465604482015261321760f11b6064820152608401610c45565b600e85600a8110610ff557610ff56129b4565b0154600d545f9081526022602090815260408083208984528252808320338452909152902054611026908690612af4565b11156110745760405162461bcd60e51b815260206004820152601d60248201527f416c6c6f776c6973743a204578636565647320616c6c6f77616e6365210000006044820152606401610c45565b6040516bffffffffffffffffffffffff193360601b1660208201525f906034016040516020818303038152906040528051906020012090506110fe8484808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250601892508a915050600a81106110f6576110f66129b4565b015483611e8e565b61113f5760405162461bcd60e51b81526020600482015260126024820152714e6f7420612076616c69642070726f6f662160701b6044820152606401610c45565b600d545f908152602260209081526040808320898452825280832033845290915281208054879290611172908490612af4565b90915550610df090503386611ea3565b61118a611df8565b6001600160a01b0381166111db5760405162461bcd60e51b815260206004820152601860248201527743616e6e6f7420626520746865203020616464726573732160401b6044820152606401610c45565b602580546001600160a01b039092166301000000026301000000600160b81b0319909216919091179055565b61120f611df8565b602554630100000090046001600160a01b03166112695760405162461bcd60e51b815260206004820152601860248201527743616e6e6f7420626520746865203020616464726573732160401b6044820152606401610c45565b60255460405147915f9163010000009091046001600160a01b03169083905f6040518083038185875af1925050503d805f81146112c1576040519150601f19603f3d011682016040523d82523d5f602084013e6112c6565b606091505b50508091505080610bc45760405162461bcd60e51b815260206004820152601860248201527f5472616e73616374696f6e20556e7375636365737366756c00000000000000006044820152606401610c45565b600e81600a8110611328575f80fd5b0154905081565b61134983838360405180602001604052805f815250611aa9565b505050565b6024805461135b9061297c565b80601f01602080910402602001604051908101604052809291908181526020018280546113879061297c565b80156113d25780601f106113a9576101008083540402835291602001916113d2565b820191905f5260205f20905b8154815290600101906020018083116113b557829003601f168201915b505050505081565b6113e2611df8565b6023610bc48282612a39565b6060815f816001600160401b0381111561140a5761140a61251a565b60405190808252806020026020018201604052801561145a57816020015b604080516080810182525f8082526020808301829052928201819052606082015282525f199092019101816114285790505b5090505f5b8281146114ac5761148786868381811061147b5761147b6129b4565b90506020020135611c03565b828281518110611499576114996129b4565b602090810291909101015260010161145f565b50949350505050565b6114bd611df8565b600d55565b5f6109fd82611e25565b6023805461135b9061297c565b6114e1611df8565b5f545f190181101580156114f757506009548111155b6115395760405162461bcd60e51b815260206004820152601360248201527224b73b30b634b21026b0bc1029bab838363c9760691b6044820152606401610c45565b600955565b5f6001600160a01b038216611566576040516323d3ad8160e21b815260040160405180910390fd5b506001600160a01b03165f908152600560205260409020546001600160401b031690565b611592611df8565b61159b5f611ebc565b565b6115a5611df8565b60258054911515620100000262ff000019909216919091179055565b601881600a8110611328575f80fd5b6115d8611df8565b602580549115156101000261ff0019909216919091179055565b60605f805f6116008561153e565b90505f816001600160401b0381111561161b5761161b61251a565b604051908082528060200260200182016040528015611644578160200160208202803683370190505b509050611670604080516080810182525f80825260208201819052918101829052606081019190915290565b60015b8386146116ea5761168381611f0d565b915081604001516116e25781516001600160a01b0316156116a357815194505b876001600160a01b0316856001600160a01b0316036116e257808387806001019850815181106116d5576116d56129b4565b6020026020010181815250505b600101611673565b50909695505050505050565b6116fe611df8565b600a55565b61170b611df8565b600c55565b606060038054610a129061297c565b606081831061174157604051631960ccad60e11b815260040160405180910390fd5b5f8061174b5f5490565b9050600185101561175b57600194505b80841115611767578093505b5f6117718761153e565b905084861015611790578585038181101561178a578091505b50611793565b505f5b5f816001600160401b038111156117ac576117ac61251a565b6040519080825280602002602001820160405280156117d5578160200160208202803683370190505b509050815f036117ea57935061189792505050565b5f6117f488611c03565b90505f8160400151611804575080515b885b8881141580156118165750848714155b1561188b5761182481611f0d565b925082604001516118835782516001600160a01b03161561184457825191505b8a6001600160a01b0316826001600160a01b0316036118835780848880600101995081518110611876576118766129b4565b6020026020010181815250505b600101611806565b50505092835250909150505b9392505050565b60255460ff16156118eb5760405162461bcd60e51b815260206004820152601760248201527654686520636f6e7472616374206973207061757365642160481b6044820152606401610c45565b80600954816118fb5f545f190190565b6119059190612af4565b11156119235760405162461bcd60e51b8152600401610c4590612b07565b602554610100900460ff1661197a5760405162461bcd60e51b815260206004820152601960248201527f5075626c69633a204d696e742069732064697361626c656421000000000000006044820152606401610c45565b81600c546119889190612b35565b3410156119cd5760405162461bcd60e51b815260206004820152601360248201527224b739bab33334b1b4b2b73a10333ab732399760691b6044820152606401610c45565b600a54826119dc5f545f190190565b6119e69190612af4565b1115611a345760405162461bcd60e51b815260206004820152601f60248201527f43757272656e74205075626c696320537570706c792045786365656465642e006044820152606401610c45565b6113498383611ea3565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b611ab4848484610c68565b6001600160a01b0383163b15611aed57611ad084848484611f47565b611aed576040516368d2bf6b60e11b815260040160405180910390fd5b50505050565b611afb6123e6565b611b036123e6565b5f5b600a811015611bfa57600e81600a8110611b2157611b216129b4565b01548382600a8110611b3557611b356129b4565b602090810291909101919091525f85815260228252604080822084835283528082206001600160a01b03891683529092522054600e82600a8110611b7b57611b7b6129b4565b015411611b88575f611bd1565b5f84815260226020908152604080832084845282528083206001600160a01b0389168452909152902054600e82600a8110611bc557611bc56129b4565b0154611bd19190612b4c565b8282600a8110611be357611be36129b4565b602002015280611bf2816129dc565b915050611b05565b505b9250929050565b604080516080810182525f808252602082018190529181018290526060810191909152604080516080810182525f8082526020820181905291810182905260608101919091526001831080611c5957505f548310155b15611c645792915050565b611c6d83611f0d565b9050806040015115611c7f5792915050565b6118978361202f565b611c90611df8565b8060095481611ca05f545f190190565b611caa9190612af4565b1115611a345760405162461bcd60e51b8152600401610c4590612b07565b6060611cd382611dc6565b611d1f5760405162461bcd60e51b815260206004820152601f60248201527f55524920717565727920666f72206e6f6e6578697374656e7420746f6b656e006044820152606401610c45565b5f60238054611d2d9061297c565b905011611d485760405180602001604052805f8152506109fd565b6023611d5383612063565b6024604051602001611d6793929190612bce565b60405160208183030381529060405292915050565b611d84611df8565b600b55565b611d91611df8565b6001600160a01b038116611dba57604051631e4fbdf760e01b81525f6004820152602401610c45565b611dc381611ebc565b50565b5f81600111158015611dd857505f5482105b80156109fd5750505f90815260046020526040902054600160e01b161590565b6008546001600160a01b0316331461159b5760405163118cdaa760e01b8152336004820152602401610c45565b5f8180600111611e75575f54811015611e75575f8181526004602052604081205490600160e01b82169003611e73575b805f0361189757505f19015f81815260046020526040902054611e55565b505b604051636f96cda160e11b815260040160405180910390fd5b5f82611e9a85846120f2565b14949350505050565b610bc4828260405180602001604052805f81525061213e565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b604080516080810182525f8082526020820181905291810182905260608101919091525f828152600460205260409020546109fd906121a7565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290611f7b903390899088908890600401612c00565b6020604051808303815f875af1925050508015611fb5575060408051601f3d908101601f19168201909252611fb291810190612c3c565b60015b612011573d808015611fe2576040519150601f19603f3d011682016040523d82523d5f602084013e611fe7565b606091505b5080515f03612009576040516368d2bf6b60e11b815260040160405180910390fd5b805181602001fd5b6001600160e01b031916630a85bd0160e11b1490505b949350505050565b604080516080810182525f8082526020820181905291810182905260608101919091526109fd61205e83611e25565b6121a7565b60605f61206f836121ee565b60010190505f816001600160401b0381111561208d5761208d61251a565b6040519080825280601f01601f1916602001820160405280156120b7576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846120c157509392505050565b5f81815b84518110156121365761212282868381518110612115576121156129b4565b60200260200101516122c5565b91508061212e816129dc565b9150506120f6565b509392505050565b61214883836122ee565b6001600160a01b0383163b15611349575f548281035b6121705f868380600101945086611f47565b61218d576040516368d2bf6b60e11b815260040160405180910390fd5b81811061215e57815f54146121a0575f80fd5b5050505050565b604080516080810182526001600160a01b038316815260a083901c6001600160401b03166020820152600160e01b831615159181019190915260e89190911c606082015290565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b831061222c5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310612258576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061227657662386f26fc10000830492506010015b6305f5e100831061228e576305f5e100830492506008015b61271083106122a257612710830492506004015b606483106122b4576064830492506002015b600a83106109fd5760010192915050565b5f8183106122df575f828152602084905260409020611897565b505f9182526020526040902090565b5f8054908290036123125760405163b562e8dd60e01b815260040160405180910390fd5b6001600160a01b0383165f8181526005602090815260408083208054680100000000000000018802019055848352600490915281206001851460e11b4260a01b178317905582840190839083907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8180a4600183015b8181146123be5780835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4600101612388565b50815f036123de57604051622e076360e81b815260040160405180910390fd5b5f5550505050565b604051806101400160405280600a906020820280368337509192915050565b6001600160e01b031981168114611dc3575f80fd5b5f6020828403121561242a575f80fd5b813561189781612405565b5f5b8381101561244f578181015183820152602001612437565b50505f910152565b5f815180845261246e816020860160208601612435565b601f01601f19169290920160200192915050565b602081525f6118976020830184612457565b5f602082840312156124a4575f80fd5b5035919050565b80356001600160a01b03811681146124c1575f80fd5b919050565b5f80604083850312156124d7575f80fd5b6124e0836124ab565b946020939093013593505050565b8061014081018310156109fd575f80fd5b5f6101408284031215612510575f80fd5b61189783836124ee565b634e487b7160e01b5f52604160045260245ffd5b5f6001600160401b03808411156125475761254761251a565b604051601f8501601f19908116603f0116810190828211818310171561256f5761256f61251a565b81604052809350858152868686011115612587575f80fd5b858560208301375f602087830101525050509392505050565b5f602082840312156125b0575f80fd5b81356001600160401b038111156125c5575f80fd5b8201601f810184136125d5575f80fd5b6120278482356020840161252e565b803580151581146124c1575f80fd5b5f60208284031215612603575f80fd5b611897826125e4565b5f806040838503121561261d575f80fd5b50508035926020909101359150565b5f805f6060848603121561263e575f80fd5b612647846124ab565b9250612655602085016124ab565b9150604084013590509250925092565b5f8083601f840112612675575f80fd5b5081356001600160401b0381111561268b575f80fd5b6020830191508360208260051b8501011115611bfc575f80fd5b5f805f80606085870312156126b8575f80fd5b843593506020850135925060408501356001600160401b038111156126db575f80fd5b6126e787828801612665565b95989497509550505050565b5f60208284031215612703575f80fd5b611897826124ab565b5f806020838503121561271d575f80fd5b82356001600160401b03811115612732575f80fd5b61273e85828601612665565b90969095509350505050565b80516001600160a01b031682526020808201516001600160401b03169083015260408082015115159083015260609081015162ffffff16910152565b602080825282518282018190525f9190848201906040850190845b818110156116ea576127b483855161274a565b92840192608092909201916001016127a1565b602080825282518282018190525f9190848201906040850190845b818110156116ea578351835292840192918401916001016127e2565b5f805f60608486031215612810575f80fd5b612819846124ab565b95602085013595506040909401359392505050565b5f806040838503121561283f575f80fd5b612848836124ab565b9150612856602084016125e4565b90509250929050565b5f805f8060808587031215612872575f80fd5b61287b856124ab565b9350612889602086016124ab565b92506040850135915060608501356001600160401b038111156128aa575f80fd5b8501601f810187136128ba575f80fd5b6128c98782356020840161252e565b91505092959194509250565b805f5b600a811015611aed5781518452602093840193909101906001016128d8565b610280810161290682856128d5565b6118976101408301846128d5565b608081016109fd828461274a565b5f805f60608486031215612934575f80fd5b833592506020840135915061294b604085016124ab565b90509250925092565b5f8060408385031215612965575f80fd5b61296e836124ab565b9150612856602084016124ab565b600181811c9082168061299057607f821691505b6020821081036129ae57634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f600182016129ed576129ed6129c8565b5060010190565b601f821115611349575f81815260208120601f850160051c81016020861015612a1a5750805b601f850160051c820191505b81811015610df057828155600101612a26565b81516001600160401b03811115612a5257612a5261251a565b612a6681612a60845461297c565b846129f4565b602080601f831160018114612a99575f8415612a825750858301515b5f19600386901b1c1916600185901b178555610df0565b5f85815260208120601f198616915b82811015612ac757888601518255948401946001909101908401612aa8565b5085821015612ae457878501515f19600388901b60f8161c191681555b5050505050600190811b01905550565b808201808211156109fd576109fd6129c8565b60208082526014908201527326b0bc1029bab838363c9022bc31b2b2b232b21760611b604082015260600190565b80820281158282048414176109fd576109fd6129c8565b818103818111156109fd576109fd6129c8565b5f8154612b6b8161297c565b60018281168015612b835760018114612b9857612bc4565b60ff1984168752821515830287019450612bc4565b855f526020805f205f5b85811015612bbb5781548a820152908401908201612ba2565b50505082870194505b5050505092915050565b5f612bd98286612b5f565b8451612be9818360208901612435565b612bf581830186612b5f565b979650505050505050565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90612c3290830184612457565b9695505050505050565b5f60208284031215612c4c575f80fd5b81516118978161240556fea26469706673582212208ce153ff72707fa9c7b984476c7ff34159b0e1e95f524f9a08257089855b32f164736f6c63430008140033
Verified Source Code Full Match
Compiler: v0.8.20+commit.a1b79de6
EVM: shanghai
Optimization: Yes (200 runs)
Debook.sol 196 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "erc721a/contracts/extensions/ERC721AQueryable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
// ██████╗░███████╗██████╗░░█████╗░░█████╗░██╗░░██╗ ███╗░░░███╗░█████╗░░██████╗░██╗░█████╗░██╗░░██╗███████╗██╗░░░██╗
// ██╔══██╗██╔════╝██╔══██╗██╔══██╗██╔══██╗██║░██╔╝ ████╗░████║██╔══██╗██╔════╝░██║██╔══██╗██║░██╔╝██╔════╝╚██╗░██╔╝
// ██║░░██║█████╗░░██████╦╝██║░░██║██║░░██║█████═╝░ ██╔████╔██║███████║██║░░██╗░██║██║░░╚═╝█████═╝░█████╗░░░╚████╔╝░
// ██║░░██║██╔══╝░░██╔══██╗██║░░██║██║░░██║██╔═██╗░ ██║╚██╔╝██║██╔══██║██║░░╚██╗██║██║░░██╗██╔═██╗░██╔══╝░░░░╚██╔╝░░
// ██████╔╝███████╗██████╦╝╚█████╔╝╚█████╔╝██║░╚██╗ ██║░╚═╝░██║██║░░██║╚██████╔╝██║╚█████╔╝██║░╚██╗███████╗░░░██║░░░
// ╚═════╝░╚══════╝╚═════╝░░╚════╝░░╚════╝░╚═╝░░╚═╝ ╚═╝░░░░░╚═╝╚═╝░░╚═╝░╚═════╝░╚═╝░╚════╝░╚═╝░░╚═╝╚══════╝░░░╚═╝░░░
// Powered by https://nalikes.com
contract Debook is ERC721AQueryable, Ownable {
using Strings for uint256;
uint256 public maxSupply = 3333;
uint256 public currentPublicSupply = 378;
uint256 public currentAllowlistSupply = 733;
uint256 public price = 0.15 ether;
uint256 public phaseLevel = 0;
uint256[10] public allowlistLevelAllowances;
bytes32[10] public merkleRoots;
// "phase id": {"sale id": {"wallet address": "nft balance"}}
mapping(uint256 => mapping(uint256 => mapping(address => uint256))) public allowlistMintedBalance;
string public baseURI;
string public uriSuffix;
bool public paused = true;
bool public publicMintEnabled = false;
bool public allowlistMintEnabled = false;
address public recipient;
constructor() Ownable(msg.sender) ERC721A("Debook Magickey", "DBK") {}
//******************************* MODIFIERS
modifier notPaused() {
require(!paused, "The contract is paused!");
_;
}
modifier mintCompliance(uint256 quantity) {
require(_totalMinted() + quantity <= maxSupply, "Max Supply Exceeded.");
_;
}
//******************************* OVERRIDES
function _startTokenId() internal view virtual override returns (uint256) {
return 1;
}
//******************************* MINT
function mintAllowlist(uint256 allowlistLevel, uint256 quantity, bytes32[] calldata proof) external payable notPaused
mintCompliance(quantity) {
require(allowlistMintEnabled, "Allowlist: Mint is disabled!");
require(allowlistLevel < 10, "Invalid allowlist level");
require(_totalMinted() + quantity <= currentAllowlistSupply, "Current Allowlist Supply Exceeded.");
require(
allowlistMintedBalance[phaseLevel][allowlistLevel][_msgSender()] + quantity <= allowlistLevelAllowances[allowlistLevel],
"Allowlist: Exceeds allowance!"
);
bytes32 leaf = keccak256(abi.encodePacked(_msgSender()));
require(MerkleProof.verify(proof, merkleRoots[allowlistLevel], leaf), "Not a valid proof!");
allowlistMintedBalance[phaseLevel][allowlistLevel][_msgSender()] += quantity;
_safeMint(_msgSender(), quantity);
}
function mintPublic(address to, uint256 quantity) external payable notPaused
mintCompliance(quantity) {
require(publicMintEnabled, "Public: Mint is disabled!");
require(msg.value >= price * quantity, "Insufficient funds.");
require(_totalMinted() + quantity <= currentPublicSupply, "Current Public Supply Exceeded.");
_safeMint(to, quantity);
}
function mintAdmin(address to, uint256 quantity) external onlyOwner mintCompliance(quantity) {
_safeMint(to, quantity);
}
//******************************* ADMIN
function setMaxSupply(uint256 _supply) external onlyOwner {
require(_supply >= _totalMinted() && _supply <= maxSupply, "Invalid Max Supply.");
maxSupply = _supply;
}
function setCurrentPublicSupply(uint256 _supply) external onlyOwner {
currentPublicSupply = _supply;
}
function setCurrentAllowlistSupply(uint256 _supply) external onlyOwner {
currentAllowlistSupply = _supply;
}
function setPrice(uint256 _price) public onlyOwner {
price = _price;
}
function setPhaseLevel(uint256 _phaseLevel) public onlyOwner {
phaseLevel = _phaseLevel;
}
function setAllowlistLevelAllowances(uint256[10] calldata newAllowlistLevelAllowances) external onlyOwner {
for (uint i = 0; i < 10; i++) {
allowlistLevelAllowances[i] = newAllowlistLevelAllowances[i];
}
}
function setMerkleRoot(uint256 allowlistLevel, bytes32 newMerkleRoot) external onlyOwner {
require(allowlistLevel < 10, "Invalid allowlist level");
merkleRoots[allowlistLevel] = newMerkleRoot;
}
function setMerkleRoots(bytes32[10] calldata newMerkleRoots) external onlyOwner {
for (uint256 i = 0; i < 10; i++) {
merkleRoots[i] = newMerkleRoots[i];
}
}
function setBaseURI(string memory _baseURI) external onlyOwner {
baseURI = _baseURI;
}
function setUriSuffix(string memory _uriSuffix) external onlyOwner {
uriSuffix = _uriSuffix;
}
function setRecipient(address newRecipient) public onlyOwner {
require(newRecipient != address(0), "Cannot be the 0 address!");
recipient = newRecipient;
}
function setAllowlistMintEnabled(bool _state) public onlyOwner {
allowlistMintEnabled = _state;
}
function setPublicMintEnabled(bool _state) public onlyOwner {
publicMintEnabled = _state;
}
function setPaused(bool _state) public onlyOwner {
paused = _state;
}
//******************************* WITHDRAW
function withdraw() public onlyOwner {
require(recipient != address(0), "Cannot be the 0 address!");
uint256 balance = address(this).balance;
bool success;
(success, ) = payable(recipient).call{value: balance}("");
require(success, "Transaction Unsuccessful");
}
//******************************* VIEWS
function tokenURI(uint256 _tokenId) public view virtual override (ERC721A, IERC721A) returns (string memory) {
require(_exists(_tokenId), "URI query for nonexistent token");
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, _tokenId.toString(), uriSuffix)) : "";
}
function getAllowlistInfo(address user, uint256 phase) external view returns (uint256[10] memory totalAllowances, uint256[10] memory remainingBalances) {
for (uint256 i = 0; i < 10; i++) {
// Set totalAllowance
totalAllowances[i] = allowlistLevelAllowances[i];
// Set remainingBalance
remainingBalances[i] = allowlistLevelAllowances[i] > allowlistMintedBalance[phase][i][user] ? allowlistLevelAllowances[i] - allowlistMintedBalance[phase][i][user] : 0;
}
return (totalAllowances, remainingBalances);
}
}
ERC721A.sol 1091 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256) {
// Counter underflow is impossible as _burnCounter cannot be incremented
// more than `_currentIndex - _startTokenId()` times.
unchecked {
return _currentIndex - _burnCounter - _startTokenId();
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
return _currentIndex - _startTokenId();
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) revert BalanceQueryForZeroAddress();
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
uint256 curr = tokenId;
unchecked {
if (_startTokenId() <= curr)
if (curr < _currentIndex) {
uint256 packed = _packedOwnerships[curr];
// If not burned.
if (packed & _BITMASK_BURNED == 0) {
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `curr` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
while (packed == 0) {
packed = _packedOwnerships[--curr];
}
return packed;
}
}
}
revert OwnerQueryForNonexistentToken();
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
address owner = ownerOf(tokenId);
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
revert ApprovalCallerNotOwnerNorApproved();
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return
_startTokenId() <= tokenId &&
tokenId < _currentIndex && // If within bounds,
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
if (to == address(0)) revert TransferToZeroAddress();
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert TransferToNonERC721ReceiverImplementer();
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) revert MintZeroQuantity();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
uint256 toMasked;
uint256 end = startTokenId + quantity;
// Use assembly to loop and emit the `Transfer` event for gas savings.
// The duplicated `log4` removes an extra check and reduces stack juggling.
// The assembly, together with the surrounding Solidity code, have been
// delicately arranged to nudge the compiler into producing optimized opcodes.
assembly {
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
toMasked := and(to, _BITMASK_ADDRESS)
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
startTokenId // `tokenId`.
)
// The `iszero(eq(,))` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
// The compiler will optimize the `iszero` away for performance.
for {
let tokenId := add(startTokenId, 1)
} iszero(eq(tokenId, end)) {
tokenId := add(tokenId, 1)
} {
// Emit the `Transfer` event. Similar to above.
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
}
}
if (toMasked == 0) revert MintToZeroAddress();
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) revert MintToZeroAddress();
if (quantity == 0) revert MintZeroQuantity();
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
} while (index < end);
// Reentrancy protection.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) revert OwnershipNotInitializedForExtraData();
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
}
IERC721A.sol 282 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
ERC721AQueryable.sol 178 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721AQueryable.sol';
import '../ERC721A.sol';
/**
* @title ERC721AQueryable.
*
* @dev ERC721A subclass with convenience query functions.
*/
abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
TokenOwnership memory ownership;
if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
return ownership;
}
ownership = _ownershipAt(tokenId);
if (ownership.burned) {
return ownership;
}
return _ownershipOf(tokenId);
}
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] calldata tokenIds)
external
view
virtual
override
returns (TokenOwnership[] memory)
{
unchecked {
uint256 tokenIdsLength = tokenIds.length;
TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
for (uint256 i; i != tokenIdsLength; ++i) {
ownerships[i] = explicitOwnershipOf(tokenIds[i]);
}
return ownerships;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view virtual override returns (uint256[] memory) {
unchecked {
if (start >= stop) revert InvalidQueryRange();
uint256 tokenIdsIdx;
uint256 stopLimit = _nextTokenId();
// Set `start = max(start, _startTokenId())`.
if (start < _startTokenId()) {
start = _startTokenId();
}
// Set `stop = min(stop, stopLimit)`.
if (stop > stopLimit) {
stop = stopLimit;
}
uint256 tokenIdsMaxLength = balanceOf(owner);
// Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
// to cater for cases where `balanceOf(owner)` is too big.
if (start < stop) {
uint256 rangeLength = stop - start;
if (rangeLength < tokenIdsMaxLength) {
tokenIdsMaxLength = rangeLength;
}
} else {
tokenIdsMaxLength = 0;
}
uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
if (tokenIdsMaxLength == 0) {
return tokenIds;
}
// We need to call `explicitOwnershipOf(start)`,
// because the slot at `start` may not be initialized.
TokenOwnership memory ownership = explicitOwnershipOf(start);
address currOwnershipAddr;
// If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
// `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
if (!ownership.burned) {
currOwnershipAddr = ownership.addr;
}
for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
// Downsize the array to fit.
assembly {
mstore(tokenIds, tokenIdsIdx)
}
return tokenIds;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
unchecked {
uint256 tokenIdsIdx;
address currOwnershipAddr;
uint256 tokenIdsLength = balanceOf(owner);
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
TokenOwnership memory ownership;
for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
return tokenIds;
}
}
}
IERC721AQueryable.sol 79 lines
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
/**
* @dev Interface of ERC721AQueryable.
*/
interface IERC721AQueryable is IERC721A {
/**
* Invalid query range (`start` >= `stop`).
*/
error InvalidQueryRange();
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view returns (uint256[] memory);
}
MerkleProof.sol 232 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
Read Contract
allowlistLevelAllowances 0x41655988 → uint256
allowlistMintEnabled 0x79de186a → bool
allowlistMintedBalance 0xe5c41b38 → uint256
balanceOf 0x70a08231 → uint256
baseURI 0x6c0360eb → string
currentAllowlistSupply 0xf484b521 → uint256
currentPublicSupply 0xd8caf821 → uint256
explicitOwnershipOf 0xc23dc68f → tuple
explicitOwnershipsOf 0x5bbb2177 → tuple[]
getAllowlistInfo 0xbcfc53e2 → uint256[10], uint256[10]
getApproved 0x081812fc → address
isApprovedForAll 0xe985e9c5 → bool
maxSupply 0xd5abeb01 → uint256
merkleRoots 0x71c5ecb1 → bytes32
name 0x06fdde03 → string
owner 0x8da5cb5b → address
ownerOf 0x6352211e → address
paused 0x5c975abb → bool
phaseLevel 0x1d2846a3 → uint256
price 0xa035b1fe → uint256
publicMintEnabled 0x0f4161aa → bool
recipient 0x66d003ac → address
supportsInterface 0x01ffc9a7 → bool
symbol 0x95d89b41 → string
tokenURI 0xc87b56dd → string
tokensOfOwner 0x8462151c → uint256[]
tokensOfOwnerIn 0x99a2557a → uint256[]
totalSupply 0x18160ddd → uint256
uriSuffix 0x5503a0e8 → string
Write Contract 25 functions
These functions modify contract state and require a wallet transaction to execute.
approve 0x095ea7b3
address to
uint256 tokenId
mintAdmin 0xc3a71999
address to
uint256 quantity
mintAllowlist 0x2992cd64
uint256 allowlistLevel
uint256 quantity
bytes32[] proof
mintPublic 0x9f93f779
address to
uint256 quantity
renounceOwnership 0x715018a6
No parameters
safeTransferFrom 0x42842e0e
address from
address to
uint256 tokenId
safeTransferFrom 0xb88d4fde
address from
address to
uint256 tokenId
bytes _data
setAllowlistLevelAllowances 0x0b78294f
uint256[10] newAllowlistLevelAllowances
setAllowlistMintEnabled 0x71a94340
bool _state
setApprovalForAll 0xa22cb465
address operator
bool approved
setBaseURI 0x55f804b3
string _baseURI
setCurrentAllowlistSupply 0xd5be9d0f
uint256 _supply
setCurrentPublicSupply 0x855386d5
uint256 _supply
setMaxSupply 0x6f8b44b0
uint256 _supply
setMerkleRoot 0x18712c21
uint256 allowlistLevel
bytes32 newMerkleRoot
setMerkleRoots 0x27efc19b
bytes32[10] newMerkleRoots
setPaused 0x16c38b3c
bool _state
setPhaseLevel 0x6168097d
uint256 _phaseLevel
setPrice 0x91b7f5ed
uint256 _price
setPublicMintEnabled 0x818668d7
bool _state
setRecipient 0x3bbed4a0
address newRecipient
setUriSuffix 0x16ba10e0
string _uriSuffix
transferFrom 0x23b872dd
address from
address to
uint256 tokenId
transferOwnership 0xf2fde38b
address newOwner
withdraw 0x3ccfd60b
No parameters
Recent Transactions
No transactions found for this address