Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xED39f0b82eEA3bf1c2f558076E1235421Afc8b68
Balance 0 ETH
Nonce 1
Code Size 16424 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

16424 bytes
0x608060408181526004918236101561001657600080fd5b600092833560e01c91826301ffc9a714612964575081630b88b8ca146127d05781630d87d62c1461268a578163248a9ca3146126425781632f2ff15d146125fa578163365636c41461236857816336568abe146122de5781633c7c1d89146122145781633f10db5c14611ebd5781634b31971314611e805781635431c94e14611d3a578163639ddaad14611cb757816371c5ecb114611c615781637208456d14611a715781638612372a146113ad57816386d5e6de1461109e57816391d148541461102d57816397866c8a14610f22578163a217fddf14610ee9578163a340fff414610ddd578163ac9650d814610c05578163c01cb1ea14610820578163c17a656d1461063b578163ca1d209d146103ec578163d547741f1461038f578163daa1f8ae14610336578163f26baa51146101ca575063fc0c546a1461015957600080fd5b346101c657817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c6576020905173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85168152f35b5080fd5b919050346103325760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126103325767ffffffffffffffff926024358481116101c65761021d9036908501612bf3565b936044359081116101c6576102359036908501612c11565b94908351916020926102638482816102568183019687815193849201612cb8565b8101038084520182612b41565b5190209061027087613180565b9661027d86519889612b41565b8088528388019060051b82019136831161032e578490915b83831061031e57505050509082915b86518310156102e8576102b783886131f4565b5190818110156102d857845281526102d28484205b92613198565b916102a4565b90845281526102d28484206102cc565b92955050508235036102f8578280f35b517fb05e92fa000000000000000000000000000000000000000000000000000000008152fd5b8235815291810191859101610295565b8580fd5b8280fd5b5050346101c657817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c657602090517f66fbe0d77ee8b64a048b3986d02e26607f216597947c12d07d7b52245d7487cf8152f35b9190503461033257807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610332576103e891356103e360016103d2612d8e565b93838752866020528620015461300f565b6130df565b5080f35b91905034610332576020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610637578235610429613708565b801561060f5773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85168351917f70a08231000000000000000000000000000000000000000000000000000000009283815230878201528481602481865afa9081156106055788916105d8575b5085517f23b872dd00000000000000000000000000000000000000000000000000000000868201523360248201523060448201528260648201526064815260a0810181811067ffffffffffffffff8211176105aa5791610511879492610516948a52866137a5565b613d47565b9260248651809481938252308a8301525afa9283156105a057869361056b575b50500361054557826001805580f35b517f1fff5701000000000000000000000000000000000000000000000000000000008152fd5b9080929350813d8311610599575b6105838183612b41565b810103126105945751903880610536565b600080fd5b503d610579565b84513d88823e3d90fd5b6041897f4e487b71000000000000000000000000000000000000000000000000000000006000525260246000fd5b90508481813d83116105fe575b6105ef8183612b41565b810103126105945751386104a9565b503d6105e5565b86513d8a823e3d90fd5b5050517fcbca5aa2000000000000000000000000000000000000000000000000000000008152fd5b8380fd5b90503461033257610698908361065036612c42565b61065e969196939293613708565b610666612f7c565b875196879485947f0d87d62c00000000000000000000000000000000000000000000000000000000865288860161386c565b0381305afa9182156108135784926107ef575b5073ffffffffffffffffffffffffffffffffffffffff602083015116156107c8576080820151156107a15763ffffffff6106e58351612df5565b5460a01c1661077a57507f0f82d0e25d66c620ba5a555f9a45859c28a70de61213b47f33a1eb73fc818ad4918161071f6107709351612df5565b740100000000000000000000000000000000000000007fffffffffffffffff00000000ffffffffffffffffffffffffffffffffffffffff825416179055519051918291602083526020830190612cdb565b0390a16001805580f35b82517f5554d0aa000000000000000000000000000000000000000000000000000000008152fd5b82517f3c34e69d000000000000000000000000000000000000000000000000000000008152fd5b82517f0baf7432000000000000000000000000000000000000000000000000000000008152fd5b61080c9192503d8086833e6108048183612b41565b810190613846565b90386106ab565b50505051903d90823e3d90fd5b9050346103325761083036612c42565b9161083c949394613708565b610844612f7c565b8551947f0d87d62c00000000000000000000000000000000000000000000000000000000865287868061087c878787878c860161386c565b0381305afa958615610bfb578896610bdf575b5073ffffffffffffffffffffffffffffffffffffffff60208701511615610bb757606086015115610b8f5763ffffffff93846108cb8851612df5565b5460a01c16610b67579082916108e18a94613c51565b15610a815761091c90895195869485947f3f10db5c0000000000000000000000000000000000000000000000000000000086528a860161386c565b0381305afa8015610a77576020918791610a53575b5001518051907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201918211610a27579061096b916131f4565b5116421015610a0057507f9f1d738a56ddc883f3f29598f2e7af90b537ab8374d15368d7c3e05010b5497591610770915b6109a68151612df5565b80547fffffffffffffffff00000000ffffffffffffffffffffffffffffffffffffffff77ffffffff00000000000000000000000000000000000000004260a01b169116179055519051918291602083526020830190612cdb565b82517f6aea1619000000000000000000000000000000000000000000000000000000008152fd5b6024876011867f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b610a6f91503d8089833e610a678183612b41565b810190613aa2565b905038610931565b85513d88823e3d90fd5b610ab790895195869485947f86d5e6de0000000000000000000000000000000000000000000000000000000086528a860161386c565b0381305afa8015610a77576020918791610b43575b5001518051907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201918211610a2757610b0f91610b09916131f4565b51613f4c565b16421015610a0057507f9f1d738a56ddc883f3f29598f2e7af90b537ab8374d15368d7c3e05010b54975916107709161099c565b610b5f91503d8089833e610b578183612b41565b81019061397e565b905038610acc565b8588517f5554d0aa000000000000000000000000000000000000000000000000000000008152fd5b8487517f67909b15000000000000000000000000000000000000000000000000000000008152fd5b8487517f0baf7432000000000000000000000000000000000000000000000000000000008152fd5b610bf49196503d808a833e6108048183612b41565b943861088f565b87513d8a823e3d90fd5b839150346101c657602091827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610dda5767ffffffffffffffff91803583811161033257610c5891369101612c11565b9092610c6382613180565b93610c7087519586612b41565b8285527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610c9d84613180565b0186855b828110610dca57505050835b838110610d2f575050505083519280840190808552835180925280868601968360051b870101940192955b828710610ce55785850386f35b909192938280610d1f837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08a600196030186528851612cdb565b9601920196019592919092610cd8565b8060051b8201357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18336030181121561032e578201803590848211610dc6578801908036038213610dc6578680610d8f610dc19594610da6943691612bbc565b8b81519101305af4610d9f613208565b9030613238565b610db082896131f4565b52610dbb81886131f4565b50613198565b610cad565b8680fd5b606082828a010152018790610ca1565b80fd5b9190503461033257827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261033257610e16613708565b610e1e612f7c565b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85168151927f70a082310000000000000000000000000000000000000000000000000000000084523090840152602083602481845afa918215610ee057508391610eab575b610ea492503390613743565b6001805580f35b90506020823d8211610ed8575b81610ec560209383612b41565b8101031261059457610ea4915190610e98565b3d9150610eb8565b513d85823e3d90fd5b5050346101c657817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c65751908152602090f35b8383346101c65760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c657610f5b613708565b610f63612f7c565b82546801000000000000000081101561100157806001610f8592018555612f16565b929080549360031b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff94858735831b921b19161790558354928301928311610fd557602083836001805551908152f35b806011857f4e487b71000000000000000000000000000000000000000000000000000000006024945252fd5b6024836041867f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b90503461033257817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126103325773ffffffffffffffffffffffffffffffffffffffff8260209461107e612d8e565b93358152808652209116600052825260ff81600020541690519015158152f35b8383346101c6576110ae36612e1b565b9395916110bc9591956134d8565b508151936110c985612aed565b6060918286528260208097015280820196838389031261032e5767ffffffffffffffff9883358a81116113a95789611102918601612bf3565b50878401358a81116113a9578961111a91860161352a565b9a868501358b811161133c5785019a878c8c031261133c5787519b61113e8d612aed565b80358281116113a5578c611153918301612bf3565b8d528a8101359182116113a157018a601f8201121561133c57803561117781613180565b9b8b808b519e8f906111899082612b41565b848152019260071b8401019281841161139d578c01915b83831061134057505050506111ba90898c019a8b52612f16565b93905494303b1561133c5792889492611206928f97958a5198899788977ff26baa5100000000000000000000000000000000000000000000000000000000895260031b1c9087016135c7565b0381305afa801561081357908491611328575b505061122c879896989594939551612df5565b90825161123881612ad1565b82549073ffffffffffffffffffffffffffffffffffffffff8216815263ffffffff809260a01c1686820152600198898501548683015260028501548483015260038501549460809586840152015460a08201528a5185519a6112998c612ab5565b8b52868b0152848a01526112cd6112b885519a868c52868c0190612e92565b9a8a8c03878c015251858c52858c0190612cdb565b9551998581880391015284808b5197888152019a0196935b8685106112f257898b038af35b8751805183168c528087015183168c8801528082015183168c83015283015182168b8401529983019996850196938801936112e5565b61133190612a72565b610332578289611219565b8880fd5b60808383031261139d578c6080918c5161135981612b09565b61136286612a61565b815261136f838701612a61565b838201528d61137f818801612a61565b9082015261138e8d8701612a61565b8d8201528152019201916111a0565b8b80fd5b8980fd5b8a80fd5b8780fd5b9050346103325760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610332578035926113e9612a4e565b9167ffffffffffffffff6044358181116106375761140a9036908401612bf3565b90606435908111610637576114229036908401612c11565b61142d959195613708565b61143683613c51565b156117e15790611474859392885197889485947f3f10db5c00000000000000000000000000000000000000000000000000000000865288860161386c565b0381305afa9384156117d6576114af95839484966117b4575b506020948286880151970151958151848101519063ffffffff9a8b9151612df5565b5460a01c1699879a81421690801560001461179c5750905b889b5b8b518d10156117825782826114df8f8f6131f4565b51161161150a576114fe611504916114f78f8e6131f4565b5190613d47565b9c613198565b9b6114ca565b9294979a50505061154593969950611526919497505b82613d8d565b8082101561177b57505b600161153d855151612df5565b0154906136fb565b73ffffffffffffffffffffffffffffffffffffffff90817f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85169086517f70a0823100000000000000000000000000000000000000000000000000000000815230898201528481602481865afa908115611771578a91611744575b506115ca8651613beb565b8082101561173c5750935b51906115e18251612df5565b600181019485549360028301976115fd816105118b5489613d47565b998b83019a8b511061171457808281116116ec5782156116c45793611654938f61166a9997948b9997946116739e9d9c95156116bd575b808210156116b357509889955b54169050806116a9575001511693613d47565b855561166283600254613d47565b600255613743565b54905490613d47565b9051106116835750506001805580f35b517fc945242d000000000000000000000000000000000000000000000000000000008152fd5b9250505093613d47565b9050988995611641565b5080611634565b8d8d517fcbca5aa2000000000000000000000000000000000000000000000000000000008152fd5b8d8d517f356680b7000000000000000000000000000000000000000000000000000000008152fd5b8c8c517fc945242d000000000000000000000000000000000000000000000000000000008152fd5b9050936115d5565b90508481813d831161176a575b61175b8183612b41565b810103126105945751386115bf565b503d611751565b88513d8c823e3d90fd5b9050611530565b9294979a5050506115459396995061152691949750611520565b90808210156117ad57505b906114c7565b90506117a7565b9095506117cc9194503d8085833e610a678183612b41565b939093943861148d565b51913d9150823e3d90fd5b9061181f8598959392889795985195869485947f86d5e6de0000000000000000000000000000000000000000000000000000000086528b860161386c565b0381305afa8015611a675785918691611a40575b5061184161184e9183613e40565b600161153d845151612df5565b73ffffffffffffffffffffffffffffffffffffffff807f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85169185517f70a082310000000000000000000000000000000000000000000000000000000081523088820152602081602481875afa908115611a36578991611a05575b506118d38551613beb565b808210156119fd5750925b516118e98151612df5565b9260018401938454926002820196611906816105118a5488613d47565b988a8301998a51106119d557808281116119ad57821561198557968095938e6116549461166a99979461195d9d9c9b1561197e575b8082101561197457509788945b541690508061196b5750602001511693613d47565b905110611683575050610ea4565b91505093613d47565b9050978894611948565b508061193b565b8c8c517fcbca5aa2000000000000000000000000000000000000000000000000000000008152fd5b8c8c517f356680b7000000000000000000000000000000000000000000000000000000008152fd5b8b8b517fc945242d000000000000000000000000000000000000000000000000000000008152fd5b9050926118de565b90506020813d8211611a2e575b81611a1f60209383612b41565b810103126105945751386118c8565b3d9150611a12565b87513d8b823e3d90fd5b611841925061184e9150611a5d903d8089833e610b578183612b41565b9290929150611833565b83513d87823e3d90fd5b905034610332576060927ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc908482360112610dda5767ffffffffffffffff833581811161033257611ac59036908601612a20565b60249591953593838511610dda5760e0868636030112610dda5760443598848a116101c65789840196898b3603918201126103325789519760209b8c8a019a848c52608096878c0190611b17926132d8565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0998d8b8d840301908d0152880190611b4f91613374565b91898b840301858c015280611b6391613317565b8d84528d840190611b73926132d8565b926024820135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdd0181121561032e57016024810197960135958611610637578560071b3603871361063757808203908c01528481528a01959487949093909290915b838210611bfc575050505050611bf29203908101835282612b41565b5190209051908152f35b9160019193955080809597988d63ffffffff9081611c198c612a61565b16835281611c28828d01612a61565b16908301528d81611c3a828d01612a61565b1690830152611c4a868b01612a61565b168582015201960192018794929391969596611bd6565b828434610dda5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610dda5782359254831015610dda5750611ca9602092612f16565b91905490519160031b1c8152f35b8390346101c65760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c657610ea490611cf4613708565b611cfc612f7c565b353373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e8516613743565b9190503461033257807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261033257611d73612db1565b611d7b612d8e565b90611d84613708565b611d8c612f7c565b73ffffffffffffffffffffffffffffffffffffffff809116907f000000000000000000000000d0a6053f087e87a25dc60701ba6e663b1a548e85168114611e58578251937f70a082310000000000000000000000000000000000000000000000000000000085523090850152602084602481845afa928315611e4f57508492611e1a575b610ea49350613743565b91506020833d8211611e47575b81611e3460209383612b41565b8101031261059457610ea4925191611e10565b3d9150611e27565b513d86823e3d90fd5b5050517fc1ab6dc1000000000000000000000000000000000000000000000000000000008152fd5b5050346101c657817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c6576020906002549051908152f35b8383346101c657611ecd36612e1b565b969390959192611edb6134d8565b50855193611ee885612ab5565b606098898652898860209782898201520152818301988a848b031261032e5767ffffffffffffffff9484358681116113a9578b611f26918701612bf3565b50878501358681116113a9578b611f3e91870161352a565b9a8a86013587811161133c578601968d8883031261133c578b5197611f6289612ab5565b80358281116113a55783611f77918301612bf3565b89528a8101358281116113a557810183601f820112156113a55790818e999897969594939235611fb2611fa982613180565b9b519b8c612b41565b808b528d808c019160051b83010191858311612210578e809101915b8383106121f857508c019a8b525050808e01359182116113a5570181601f820112156113a15790818d98979695949392359061201561200c83613180565b9a519a8b612b41565b818a528c808b019260051b82010192831161139d578c809101915b8383106121e8575050505061204a908c8901978852612f16565b93905494303b156113a15792899492612096928d97958f5198899788977ff26baa5100000000000000000000000000000000000000000000000000000000895260031b1c9087016135c7565b0381305afa80156121de579085916121ca575b505093929461215a6120be899a989a51612df5565b978a516120ca81612ad1565b89549373ffffffffffffffffffffffffffffffffffffffff8516825263ffffffff809560a01c168883015260019a8d8c8201549084015260028101548484015260038101546080840152015460a082015285518c519b6121298d612ab5565b8c52878c01528b8b01526121458b519a8c8c528c8c0190612e92565b948a8603878c01525190808652850190612cdb565b9451948381038585015284808751928381520196019187905b8282106121b3575050505051968184039101528080875193848152019601925b8281106121a05785870386f35b8351875295810195928101928401612193565b835181168852968601969286019290890190612173565b6121d390612a72565b61063757838a6120a9565b88513d87823e3d90fd5b82358152918101918d9101612030565b819061220384612a61565b8152019101908e90611fce565b8d80fd5b919050346103325760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126103325781359267ffffffffffffffff8411610dda575061227f602061226d60c09536908601612bf3565b81845193828580945193849201612cb8565b81016003815203019020805492600182015460028301549160038401549301549363ffffffff81519673ffffffffffffffffffffffffffffffffffffffff8116885260a01c1660208701528501526060840152608083015260a0820152f35b8383346101c657807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c657612316612d8e565b903373ffffffffffffffffffffffffffffffffffffffff83160361234057506103e89192356130df565b8390517f6697b232000000000000000000000000000000000000000000000000000000008152fd5b839150346101c65760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c6576123a2612db1565b926123ab612a4e565b67ffffffffffffffff9060443582811161032e576123cc9036908601612bf3565b9160643590811161032e579185916123ea6124279436908801612c11565b6123f5959195613708565b865195869485947f0d87d62c0000000000000000000000000000000000000000000000000000000086528a860161386c565b0381305afa9081156125f05784916125d6575b5061244481613beb565b61244e8151612df5565b73ffffffffffffffffffffffffffffffffffffffff8096169384156125af578154968716808614612587577f66fbe0d77ee8b64a048b3986d02e26607f216597947c12d07d7b52245d7487cf8752866020528487203360005260205260ff8560002054169081612579575b33148061256c575b8115612564575b501561253d5750837fffffffffffffffffffffffff00000000000000000000000000000000000000007f0ddf22a7d2cb2cfefa64b32f2c75bcb30cc2a68208febc823261caaf17121952969716179055519161252d8251938385948552840190612cdb565b9060208301520390a16001805580f35b83517fdc8d8db7000000000000000000000000000000000000000000000000000000008152fd5b9050886124c8565b5060c084015115156124c1565b60a0850151151591506124b9565b5083517f6da13360000000000000000000000000000000000000000000000000000000008152fd5b83517f776cceeb000000000000000000000000000000000000000000000000000000008152fd5b6125ea91503d8086833e6108048183612b41565b8561243a565b82513d86823e3d90fd5b9190503461033257807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610332576103e8913561263d60016103d2612d8e565b613035565b9050346103325760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261033257816020936001923581528085522001549051908152f35b839150346101c657906126b3916126a036612c42565b926126ad9691929661349f565b50612f16565b91905492303b1561032e578593929161273c91895196879586957ff26baa5100000000000000000000000000000000000000000000000000000000875260031b1c908501526060602485015261270c606485018a612cdb565b917ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc858403016044860152613462565b0381305afa80156127c6576127b7575b50815182019060209284818585019403126101c657838101519167ffffffffffffffff928381116101c6578486612785928501016135f3565b5085820151928311610dda575091836127a3926127b3940101613663565b9251928284938452830190612d1e565b0390f35b6127c090612a72565b8361274c565b84513d84823e3d90fd5b905034610332576060907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc9082823601126129605767ffffffffffffffff9481358681116101c6576128259036908401612a20565b939096602435948186116106375760e083873603011261063757604435918211610637578682860193833603011261063757979186916128d46128b3612880988b98979851998a9760209e8f8a019d8e5260808a01916132d8565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0988d8a8a850301908a015201613374565b938686860301818701526128c78480613317565b90918087528601916132d8565b958a6128e3602484018561340f565b919098868103828801528281520197915b8c82821061292f575050505091612916611bf29692604461292395019061340f565b918a818503910152613462565b03908101835282612b41565b600192949596975083989963ffffffff61294a839496612a61565b16815201970191019188959493929796976128f4565b8480fd5b8491346103325760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261033257357fffffffff00000000000000000000000000000000000000000000000000000000811680910361033257602092507f7965db0b0000000000000000000000000000000000000000000000000000000081149081156129f6575b5015158152f35b7f01ffc9a700000000000000000000000000000000000000000000000000000000915014836129ef565b9181601f840112156105945782359167ffffffffffffffff8311610594576020838186019501011161059457565b6024359063ffffffff8216820361059457565b359063ffffffff8216820361059457565b67ffffffffffffffff8111612a8657604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6060810190811067ffffffffffffffff821117612a8657604052565b60c0810190811067ffffffffffffffff821117612a8657604052565b6040810190811067ffffffffffffffff821117612a8657604052565b6080810190811067ffffffffffffffff821117612a8657604052565b60e0810190811067ffffffffffffffff821117612a8657604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117612a8657604052565b67ffffffffffffffff8111612a8657601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b929192612bc882612b82565b91612bd66040519384612b41565b829481845281830111610594578281602093846000960137010152565b9080601f8301121561059457816020612c0e93359101612bbc565b90565b9181601f840112156105945782359167ffffffffffffffff8311610594576020808501948460051b01011161059457565b60607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8201126105945760043563ffffffff81168103610594579167ffffffffffffffff6024358181116105945783612c9d91600401612bf3565b9260443591821161059457612cb491600401612c11565b9091565b60005b838110612ccb5750506000910152565b8181015183820152602001612cbb565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f602093612d1781518092818752878088019101612cb8565b0116010190565b9060c080612d35845160e0855260e0850190612cdb565b9373ffffffffffffffffffffffffffffffffffffffff60208201511660208501526040810151604085015260608101511515606085015260808101511515608085015260a0810151151560a08501520151151591015290565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361059457565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361059457565b359073ffffffffffffffffffffffffffffffffffffffff8216820361059457565b6020612e0e918160405193828580945193849201612cb8565b8101600381520301902090565b9060607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126105945760043563ffffffff81168103610594579167ffffffffffffffff916024358381116105945782612e7891600401612a20565b9390939260443591821161059457612cb491600401612c11565b9060e060a06040612ec1612eaf8651610100808852870190612d1e565b60208701518682036020880152612cdb565b94015173ffffffffffffffffffffffffffffffffffffffff815116604085015263ffffffff602082015116606085015260408101516080850152606081015182850152608081015160c0850152015191015290565b600454811015612f4d5760046000527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b0190600090565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b3360009081527f8f5170a001e97aa525d58a8c34652d2ff9db2c32fed46a283422af1e3fc4a2c260205260409020547f66fbe0d77ee8b64a048b3986d02e26607f216597947c12d07d7b52245d7487cf9060ff1615612fd85750565b604490604051907fe2517d3f0000000000000000000000000000000000000000000000000000000082523360048301526024820152fd5b80600052600060205260406000203360005260205260ff6040600020541615612fd85750565b906000918083528260205273ffffffffffffffffffffffffffffffffffffffff6040842092169182845260205260ff604084205416156000146130da5780835282602052604083208284526020526040832060017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff008254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4600190565b505090565b906000918083528260205273ffffffffffffffffffffffffffffffffffffffff6040842092169182845260205260ff6040842054166000146130da578083528260205260408320828452602052604083207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0081541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4600190565b67ffffffffffffffff8111612a865760051b60200190565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146131c55760010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8051821015612f4d5760209160051b010190565b3d15613233573d9061321982612b82565b916132276040519384612b41565b82523d6000602084013e565b606090565b90613277575080511561324d57805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b815115806132cf575b613288575090565b60249073ffffffffffffffffffffffffffffffffffffffff604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b15613280565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0938186528686013760008582860101520116010190565b90357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18236030181121561059457016020813591019167ffffffffffffffff821161059457813603831361059457565b3590811515820361059457565b9060c0613407816133966133888680613317565b60e0875260e08701916132d8565b9473ffffffffffffffffffffffffffffffffffffffff6133b860208301612dd4565b166020860152604081013560408601526133d460608201613367565b151560608601526133e760808201613367565b151560808601526133fa60a08201613367565b151560a086015201613367565b151591015290565b90357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18236030181121561059457016020813591019167ffffffffffffffff8211610594578160051b3603831361059457565b90918281527f07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83116105945760209260051b809284830137010190565b604051906134ac82612b25565b816060815260c06000918260208201528260408201528260608201528260808201528260a08201520152565b604051906134e582612ab5565b816134ee61349f565b815260606020820152604080519161350583612ad1565b6000808452806020850152808385015280606085015280608085015260a08401520152565b91909160e081840312610594576040519061354482612b25565b819381359067ffffffffffffffff8211610594578261356c60c094926135c294869401612bf3565b855261357a60208201612dd4565b60208601526040810135604086015261359560608201613367565b60608601526135a660808201613367565b60808601526135b760a08201613367565b60a086015201613367565b910152565b9391612c0e95936135e59286526060602087015260608601916132d8565b926040818503910152613462565b81601f8201121561059457805161360981612b82565b926136176040519485612b41565b8184526020828401011161059457612c0e9160208085019101612cb8565b519073ffffffffffffffffffffffffffffffffffffffff8216820361059457565b5190811515820361059457565b91909160e081840312610594576040519061367d82612b25565b819381519067ffffffffffffffff821161059457826136a560c094926135c2948694016135f3565b85526136b360208201613635565b6020860152604081015160408601526136ce60608201613656565b60608601526136df60808201613656565b60808601526136f060a08201613656565b60a086015201613656565b919082039182116131c557565b600260015414613719576002600155565b60046040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152fd5b6137a39273ffffffffffffffffffffffffffffffffffffffff604051937fa9059cbb00000000000000000000000000000000000000000000000000000000602086015216602484015260448301526044825261379e82612b09565b6137a5565b565b60008073ffffffffffffffffffffffffffffffffffffffff6137dc93169360208151910182865af16137d5613208565b9083613238565b8051908115159182613823575b50506137f25750565b602490604051907f5274afe70000000000000000000000000000000000000000000000000000000082526004820152fd5b819250906020918101031261059457602061383e9101613656565b1538806137e9565b9060208282031261059457815167ffffffffffffffff811161059457612c0e9201613663565b9290612c0e949263ffffffff6135e592168552606060208601526060850190612cdb565b519063ffffffff8216820361059457565b919091808303610100811261059457604051906138bd82612ab5565b819483519167ffffffffffffffff9283811161059457826138df918701613663565b845260208501519283116105945761391c7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc09260c09487016135f3565b602085015201126105945760409060e082519361393885612ad1565b613943848201613635565b855261395160608201613890565b602086015260808101518486015260a0810151606086015260c08101516080860152015160a08401520152565b6040929181810384136105945781519167ffffffffffffffff9283811161059457826139ab9183016138a1565b9460209182810151908582116105945701938185850312610594578151946139d286612aed565b805182811161059457856139e79183016135f3565b865283810151918211610594570183601f82011215610594578051613a0b81613180565b94613a1884519687612b41565b818652848087019260071b84010192818411610594578501915b838310613a4457505050505082015290565b60808383031261059457856080918651613a5d81612b09565b613a6686613890565b8152613a73838701613890565b83820152613a82888701613890565b888201526060613a93818801613890565b90820152815201920191613a32565b919060409081848203126105945783519167ffffffffffffffff928381116105945782613ad09187016138a1565b94602090818101519085821161059457019360608585031261059457825194613af886612ab5565b80518281116105945785613b0d9183016135f3565b86528281015182811161059457810185601f8201121561059457805190613b3382613180565b91613b4087519384612b41565b808352858084019160051b830101918883116105945786809101915b838310613bd357509150508701528381015191821161059457019280601f85011215610594578351613b8d81613180565b94613b9a85519687612b41565b818652838087019260051b820101928311610594578301905b828210613bc4575050505082015290565b81518152908301908301613bb3565b8190613bde84613890565b8152019101908690613b5c565b73ffffffffffffffffffffffffffffffffffffffff80613c0b8351612df5565b541615613c16575050565b613c27906020830151169151612df5565b907fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055565b80518101602091828183031261059457828101519167ffffffffffffffff831161059457613c8592848092019201016135f3565b604051907ff12295c6cff7c66c50482f7bee8dd63da0f387f76819ffea278d69c8f37485d1838301825193613cc486828187019761025681878b612cb8565b51902003613cd457505050600190565b613d107f60dde57ea82e6110c36e701060809f1f9246f49c2b2791e1f1dc6a5b15927a2993604051809361025683830196879251928391612cb8565b51902003613d1d57600090565b60046040517f63cca172000000000000000000000000000000000000000000000000000000008152fd5b919082018092116131c557565b8115613d5e570490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b90808202907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81840990828083109203918083039214613e3457620f42409082821115613e0a577fde8f6cefed634549b62c77574f722e1ac57e23f24d8fd5cb790fb65668c26139940990828211900360fa1b910360061c170290565b60046040517f227bc153000000000000000000000000000000000000000000000000000000008152fd5b5050620f424091500490565b63ffffffff9160209160409383613e5e828288860151015116613fd8565b930190815180517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81019081116131c557610b09613e9d9184936131f4565b16841015613f4157600095865b83518051891015613f2357613f1d91613f1189898c89896060613f018280613ed587613f179d6131f4565b51511697613ee48787516131f4565b5101511694838d613ef68388516131f4565b5101511694516131f4565b5101511691898d51015194613f7c565b90613d47565b97613198565b96613eaa565b5093510151955091935050505080821015613f3c575090565b905090565b505091505051015190565b63ffffffff908181511690826040816020840151169201511602908282169182036131c557019081116131c55790565b9193828110613fcd57613f9792613f92916136fb565b613d54565b92828411613fc3575b90613faa91613d8d565b8281029281840414901517156131c557612c0e91613d54565b9192508291613fa0565b505050505050600090565b8015613fed57804210600014612c0e57504290565b50429056fea264697066735822122076167a19874349f1109570b1f9ae39947aa7b4f5dbe70c63a97e9f885db1598464736f6c63430008140033

Verified Source Code Full Match

Compiler: v0.8.20+commit.a1b79de6 EVM: paris Optimization: Yes (10000000 runs)
AccessControl.sol 209 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}
IAccessControl.sol 98 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
Context.sol 24 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
Multicall.sol 23 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Multicall.sol)

pragma solidity ^0.8.20;

import {Address} from "./Address.sol";

/**
 * @dev Provides a function to batch together multiple calls in a single external call.
 */
abstract contract Multicall {
    /**
     * @dev Receives and executes a batch of function calls on this contract.
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            results[i] = Address.functionDelegateCall(address(this), data[i]);
        }
        return results;
    }
}
ReentrancyGuard.sol 84 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
MerkleProof.sol 232 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
ERC165.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
IMerkleVester.sol 114 lines
pragma solidity =0.8.20;

import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import './interfaces/IAirlockBase.sol';

interface IMerkleVester {

  /**
   * ---------- PUBLIC READ ----------
   */

  /**
   * @notice Calculates the Hash of a given Calendar allocation leaf
   * @param allocationType 'calendar' or 'interval'
   * @param allocation allocation data
   * @param unlockSchedule calendar unlock schedule
   */
  function getCalendarLeafHash(string calldata allocationType, Allocation calldata allocation, CalendarUnlockSchedule calldata unlockSchedule) external pure returns (bytes32);

  /**
   * @notice Calculates the Hash of a given Interval allocation leaf
   * @param allocationType 'calendar' or 'interval'
   * @param allocation allocation data
   * @param unlockSchedule interval unlock schedule
   */
  function getIntervalLeafHash(string calldata allocationType, Allocation calldata allocation, IntervalUnlockSchedule calldata unlockSchedule) external pure returns (bytes32);

  /**
   * @notice Decodes calendar allocation data from decodable arguments and state stored on chain
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function getCalendarLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (CalendarAllocation memory, CalendarUnlockSchedule memory);

  /**
   * @notice Decodes interval allocation data from decodable arguments and state stored on chain
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function getIntervalLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (IntervalAllocation memory, IntervalUnlockSchedule memory);

  /**
   * @notice Decodes allocation data from decodable arguments, works for both calendar and interval allocations
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function getLeafJustAllocationData(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external view returns (Allocation memory);

  /**
   * ---------- PUBLIC WRITE ----------
   */

  /**
   * @notice Adds additional allocations in an append only manner
   * @param merkleRoot the additional merkle root to append representing additional allocations
   * @dev dapp is responsible for ensuring funding across all allocations otherwise withdrawals will be fulfilled first come first served
   */
  function addAllocationRoot(bytes32 merkleRoot) external returns (uint256);

  /**
   * @notice Funds the contract with the specified amount of tokens
   * @dev MerkleVester contracts are funded as a whole rather than funding individual allocations
   */
  function fund(uint256 amount) external;

  /**
   * @notice Defunds the contract the specified amount of tokens
   * @dev using defund can result in underfunding the total liabilies of the allocations, in which case allocations will be served on a first come first serve basis
   */
  function defund(uint256 amount) external;

  /**
   * @notice Withdraws vested funds from the contract to the beneficiary
   * @param withdrawalAmount optional amount to withdraw, specify 0 to withdraw all vested funds. If amount specified is greater than vested amount this call will fail since that implies a incorrect intention
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function withdraw(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;

  /**
   * @notice Transfers the beneficiary address of the allocation, only for allocations either transferable by the beneficiary or benefactor
   * @param newBeneficiaryAddress the new beneficiary address 
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function transferBeneficiaryAddress(address newBeneficiaryAddress, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;

  /**
   * @notice Cancels the allocation, already vested funds remain withdrawable to the beneficiary
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function cancel(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;

  /**
   * @notice Revokes the allocation, unwithdrawn funds are no longer withdrawable to the beneficiary
   * @param rootIndex the index of the merkle root the allocation is in
   * @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
   * @param proof proof data of sibling leaves to verify the leaf is included in the root
   */
  function revoke(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;

  /**
   * @notice For exceptional circumstances, it would be prohibitively expensive to run cancellation logic per allocation
   */
  function revokeAll() external;

}
MerkleValidator.sol 14 lines
pragma solidity =0.8.20;

import { MerkleProof } from "@openzeppelin/utils/cryptography/MerkleProof.sol";
import { InvalidMerkleProof } from "./interfaces/AirlockTypes.sol";

contract MerkleValidator {

  function validateLeaf(bytes32 merkleRoot, bytes memory leafArguments, bytes32[] calldata proof) external pure {
    bytes32 leaf = keccak256(abi.encodePacked(leafArguments));
    bool isValidLeaf = MerkleProof.verify(proof, merkleRoot, leaf);
    if (!isValidLeaf) revert InvalidMerkleProof();
  }
   
}
MerkleVester.sol 239 lines
pragma solidity =0.8.20;

import "@openzeppelin/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/utils/Multicall.sol";
import { MerkleProof } from "@openzeppelin/utils/cryptography/MerkleProof.sol";
import "./IMerkleVester.sol";
import "./MerkleValidator.sol";
import "./interfaces/ICalendarVester.sol";
import "./interfaces/IIntervalVester.sol";

/**
 * @title MerkleVester
 * @author Magna
 * @notice Vesting contract that uses merkle trees to scale to millions of allocations
 */
contract MerkleVester is IAirlockBase, IMerkleVester, IntervalVester, CalendarVester, MerkleValidator, Multicall {
  /**
   * ---------- STATE ----------
   */

  /**
   * @dev Lazily store the mutable state as allocaitons are interacted with
   */
  mapping(string => DistributionState) public schedules;
  /**
   * @dev New batches of allocations are added as an additional merkle root append only to keep existing allocations immutable
   */
  bytes32[] public merkleRoots;

  /**
   * @dev Constructor to initialize the contract, see IAirlockBase for parameter details
   */
  constructor(address token, address benefactor) IAirlockBase(token, benefactor) {}

  /**
   * ---------- PUBLIC READ ----------
   */

  /// @inheritdoc IMerkleVester
  function getCalendarLeafHash(string calldata allocationType, Allocation calldata allocation, CalendarUnlockSchedule calldata unlockSchedule) external pure returns (bytes32) {
    return keccak256(abi.encode(allocationType, allocation, unlockSchedule));
  }

  /// @inheritdoc IMerkleVester
  function getIntervalLeafHash(string calldata allocationType, Allocation calldata allocation, IntervalUnlockSchedule calldata unlockSchedule) external pure returns (bytes32) {
    return keccak256(abi.encode(allocationType, allocation, unlockSchedule));
  }

  /// @inheritdoc IMerkleVester
  function getCalendarLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (CalendarAllocation memory, CalendarUnlockSchedule memory) {
    (string memory allocationType, Allocation memory allocation, CalendarUnlockSchedule memory calendarUnlockSchedule) = abi.decode(decodableArgs, (string, Allocation, CalendarUnlockSchedule));
    this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);

    DistributionState memory distributionState = schedules[allocation.id];

    return (CalendarAllocation(
      allocation,
      calendarUnlockSchedule.unlockScheduleId,
      distributionState
    ),
      calendarUnlockSchedule
    );
  }

  /// @inheritdoc IMerkleVester
  function getIntervalLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (IntervalAllocation memory, IntervalUnlockSchedule memory) {
    (string memory allocationType, Allocation memory allocation, IntervalUnlockSchedule memory intervalUnlockSchedule) = abi.decode(decodableArgs, (string, Allocation, IntervalUnlockSchedule));
    this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);

    DistributionState memory distributionState = schedules[allocation.id];

    return (IntervalAllocation(
      allocation,
      intervalUnlockSchedule.unlockScheduleId,
      distributionState
    ),
      intervalUnlockSchedule
    );
  }

  /// @inheritdoc IMerkleVester
  function getLeafJustAllocationData(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external view returns (Allocation memory) {
    this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);
    (, Allocation memory allocation) = abi.decode(decodableArgs, (string, Allocation));
    return allocation;
  }

  /**
   * ---------- PUBLIC WRITE ----------
   */

  /// @inheritdoc IMerkleVester
  function addAllocationRoot(bytes32 merkleRoot) external nonReentrant onlyRole(BENEFACTOR) returns (uint256) {
    merkleRoots.push() = merkleRoot;
    return merkleRoots.length - 1;
  }

  /**
   * @inheritdoc IMerkleVester
   * @dev MerkleVester funds the entire contract rather than per allocation so no additional state tracking is needed on funding
   **/
  function fund(uint256 amount) external override nonReentrant {
    _transferInFunds(amount);
  }

  /// @inheritdoc IMerkleVester
  function defund(uint256 amount) external override nonReentrant onlyRole(BENEFACTOR) {
    SafeERC20.safeTransfer(IERC20(token), msg.sender, amount);
  }

  /// @inheritdoc IMerkleVester
  function withdraw(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant {
    if (_isCalendar(decodableArgs)) {
      _withdrawCalendar(withdrawalAmount, rootIndex, decodableArgs, proof);
    } else {
      _withdrawInterval(withdrawalAmount, rootIndex, decodableArgs, proof);
    }
  }

  /**
   * @dev Note: authentication is performed internally in _transferBeneficiaryAddress
   **/

  /// @inheritdoc IMerkleVester
  function transferBeneficiaryAddress(address newBeneficiaryAddress, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external nonReentrant {
    Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);
    _checkOrSetOriginalBeneficiary(allocation);
    _transferBeneficiaryAddress(schedules[allocation.id], allocation, newBeneficiaryAddress);
  }

  /**
   * @dev cancel and revoke don't need to track the terminated amount since merkle vester doesn't have per allocation underfunding
   **/

  /// @inheritdoc IMerkleVester
  function cancel(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant onlyRole(BENEFACTOR) {
    Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);

    if (allocation.originalBeneficiary == address(0)) revert InvalidAllocation();
    if (!allocation.cancelable) revert NotCancellable();
    if (schedules[allocation.id].terminatedTimestamp != 0) revert AlreadyTerminated();

    _checkAlreadyFullyUnlocked(rootIndex, decodableArgs, proof);

    schedules[allocation.id].terminatedTimestamp = uint32(block.timestamp);

    emit ScheduleCanceled(allocation.id);
  }

  /// @inheritdoc IMerkleVester
  function revoke(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant onlyRole(BENEFACTOR) {
    Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);

    if (allocation.originalBeneficiary == address(0)) revert InvalidAllocation();
    if (!allocation.revokable) revert NotRevokable();
    if (schedules[allocation.id].terminatedTimestamp != 0) revert AlreadyTerminated();

    // We use 1 as a sentinel value here to ensure that any withdrawals would not see anything vested and thus withdrawable
    schedules[allocation.id].terminatedTimestamp = uint32(1);

    emit ScheduleRevoked(allocation.id);
  }

  /// @inheritdoc IMerkleVester
  function revokeAll() external nonReentrant onlyRole(BENEFACTOR) {
    SafeERC20.safeTransfer(IERC20(token), msg.sender, IERC20(token).balanceOf(address(this)));
  }

  /**
   * ---------- INTERNAL READ ----------
   */

  function _checkAlreadyFullyUnlocked(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal view {
    if (_isCalendar(decodableArgs)) {
      (CalendarAllocation memory calendar, CalendarUnlockSchedule memory unlockSchedule) = this.getCalendarLeafAllocationData(rootIndex, decodableArgs, proof);
      if (block.timestamp >= unlockSchedule.unlockTimestamps[unlockSchedule.unlockTimestamps.length - 1]) revert AlreadyFullyUnlocked();
    } else {
      (IntervalAllocation memory interval, IntervalUnlockSchedule memory intervalUnlockSchedule) = this.getIntervalLeafAllocationData(rootIndex, decodableArgs, proof);
      uint32 finalUnlockTimestamp = _getPieceEndTime(intervalUnlockSchedule.pieces[intervalUnlockSchedule.pieces.length - 1]);
      if (block.timestamp >= finalUnlockTimestamp) revert AlreadyFullyUnlocked();
    }
  }

  /**
   * @dev MerkleVester lazily sets the mutable schedule state, so we need to check if withdrawalAddress has not been set, and if so set it to the immutable allocations originalBeneficiary address
   **/
  function _checkOrSetOriginalBeneficiary(Allocation memory allocation) internal {
    if (schedules[allocation.id].withdrawalAddress == address(0)) {
      schedules[allocation.id].withdrawalAddress = allocation.originalBeneficiary;
    }
  }

  function _isCalendar(bytes memory decodableArgs) internal pure returns (bool) {
    (string memory allocationType) = abi.decode(decodableArgs, (string));
    if (keccak256(abi.encodePacked(allocationType)) == keccak256('calendar')) {
      return true;
    } else if (keccak256(abi.encodePacked(allocationType)) == keccak256('interval')) {
      return false;
    } else {
      revert InvalidAllocationType();
    }
  }

  /**
   * ---------- INTERNAL WRITE ----------
   */

  function _withdrawCalendar(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal {
    (CalendarAllocation memory calendar, CalendarUnlockSchedule memory unlockSchedule) = this.getCalendarLeafAllocationData(rootIndex, decodableArgs, proof);

    uint256 withdrawableAmount = _getVestedAmount(
      unlockSchedule.unlockTimestamps,
      unlockSchedule.unlockPercents,
      calendar.allocation.totalAllocation,
      schedules[calendar.allocation.id].terminatedTimestamp
    ) - schedules[calendar.allocation.id].withdrawn;

    uint256 contractBalance = IERC20(token).balanceOf(address(this));

    _checkOrSetOriginalBeneficiary(calendar.allocation);

    withdrawableAmount = Math.min(withdrawableAmount, contractBalance);
    _withdrawToBeneficiary(calendar.allocation, schedules[calendar.allocation.id], withdrawableAmount, withdrawalAmount);
  }

  function _withdrawInterval(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal {
    (IntervalAllocation memory interval, IntervalUnlockSchedule memory intervalUnlockSchedule) = this.getIntervalLeafAllocationData(rootIndex, decodableArgs, proof);

    uint256 withdrawableAmount = _getVestedAmount(interval, intervalUnlockSchedule) - schedules[interval.allocation.id].withdrawn;

    uint256 contractBalance = IERC20(token).balanceOf(address(this));

    _checkOrSetOriginalBeneficiary(interval.allocation);

    withdrawableAmount = Math.min(withdrawableAmount, contractBalance);
    _withdrawToBeneficiary(interval.allocation, schedules[interval.allocation.id], withdrawableAmount, withdrawalAmount);
  }

}
AirlockTypes.sol 149 lines
pragma solidity =0.8.20;
import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import { AccessControl } from '@openzeppelin/contracts/access/AccessControl.sol';
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import '@openzeppelin/utils/math/Math.sol';


/**
 * ---------- ERRORS ----------
 */

error ZeroToken();
error ZeroBeneficiary();
error AmountZero();
error AmountGreaterThanMaxAllocation();
error ZeroPeriods();
error Not100Percent();
error NotBeneficiary();
error NotCancellable();
error NotRevokable();
error NotTransferable();
error NotFunded();
error InvalidTimestamp();
error TooManyTimestamps();
error SameBeneficiaryAddress();

error CalendarExists();
error InvalidCalendar();
error ArrayLengthMismatch();
error ArrayMismatch(uint16 errCode, uint16 index);
error ZeroArrayLength();
error UnorderedTimestamp();

error IntervalExists();
error InvalidInterval();
error InvalidAmount();
error InvalidCliff();
error InvalidPeriod();
error InvalidWithdrawal();

error AlreadyTerminated();
error AlreadyFullyUnlocked();

error InvalidToken();
error InvalidAllocationType();
error DeflationaryTokensNotSupported();
error InvalidAllocation();

error InsufficientFunds();

error InvalidMerkleProof();


/**
 * ---------- STRUCTS ----------
 */

/**
 * @notice The mutable state of an allocation
 * @param withdrawalAddress can be overriden when the schedule is transferable
 * @param terminatedTimestamp Sentinel values: 0 is active, 1 is revoked, any other value is the time the calendar was cancelled
 * @param withdrawn represents the amount withdrawn by the beneficiary
 * @param terminatedWithdrawn represents the amount withdrawn from terminated funds, merkle vester does not support funding indivual allocations 
 * @param fundedAmount amount of tokens funded for this distribution, merkle vester does not support funding indivual allocations
 * @param terminatedAmount amount of tokens terminated for this distribution, merkle vester does not support funding indivual allocations
 */
struct DistributionState {
  address withdrawalAddress;
  uint32 terminatedTimestamp;
  uint256 withdrawn;
  uint256 terminatedWithdrawn;
  uint256 fundedAmount;
  uint256 terminatedAmount;
}

/**
 * @notice The immutable data for an allocation,
 * @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
 * @param id id of the allocation
 * @param originalBeneficiary original beneficiary address, withdrawalAddress in DistributionState should be used for transfers
 * @param totalAllocation total amount of tokens to vest in the allocaiton
 * @param cancelable flag to allow for the allocation to be cancelled, unvested funds are returned to the benefactor vested funds remain withdrawable by the beneficiary
 * @param revokable flag to allow for the allocation to be revoked, all funds not already withdrawn are returned to the benefactor
 * @param transferableByAdmin flag to allow for the allocation to be transferred by the admin
 * @param transferableByBeneficiary flag to allow for the allocation to be transferred by the beneficiary
 */
struct Allocation {
  string id;
  address originalBeneficiary; // original beneficiary address, withdrawalAddress should be used for transfers
  uint256 totalAllocation;
  bool cancelable;
  bool revokable;
  bool transferableByAdmin;
  bool transferableByBeneficiary;
}

/**
 * @notice Immutable unlock schedule for calendar allocations
 * @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
 * @param unlockScheduleId id of the allocation
 * @param unlockTimestamps sequence of timestamps when funds will unlock
 * @param unlockPercents sequence of percents that unlock at each timestamp, in 10,000ths
 */
struct CalendarUnlockSchedule {
  string unlockScheduleId; // Workaround for Internal or recursive type is not allowed for public state variables
  uint32[] unlockTimestamps;
  uint256[] unlockPercents;
}

/**
 * @notice Immutable unlock schedule for interval allocations
 * @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
 * @param unlockScheduleId id of the allocation
 * @param pieces sequence of pieces representing phases of the unlock schedule, percents of pieces must sum to 100%
 */
struct IntervalUnlockSchedule {
  string unlockScheduleId; // Workaround for Internal or recursive type is not allowed for public state variables
  Piece[] pieces;
}

/**
 * @notice Represents a phase of an interval unlock schedule
 * @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
 * @param startDate start timestamp of the piece
 * @param periodLength time length of the piece
 * @param numberOfPeriods how many periods for this piece
 * @param percent the total percent, in 10,000ths that will unlock over the piece
 */
struct Piece {
  uint32 startDate;
  uint32 periodLength;
  uint32 numberOfPeriods;
  uint32 percent;
}

struct CalendarAllocation {
  Allocation allocation;
  // Many allocations share the same unlock schedule so we can save gas by referencing the same schedule 
  // the mapping key could be smaller than string but this will help sync with the web application
  string calendarUnlockScheduleId;
  DistributionState distributionState;
}

struct IntervalAllocation {
  Allocation allocation;
  string intervalUnlockScheduleId;
  DistributionState distributionState;
}

IAirlockBase.sol 130 lines
pragma solidity =0.8.20;
import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import { AccessControl } from '@openzeppelin/contracts/access/AccessControl.sol';
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import '@openzeppelin/utils/math/Math.sol';
import './AirlockTypes.sol';

/**
 * @title IAirlockBase
 * @dev Defines the common errors, structures, and functions for managing vesting and related actions. 
 */
abstract contract IAirlockBase is AccessControl, ReentrancyGuard {

  /**
   * ---------- STATE ----------
   */

  uint256 public totalWithdrawn;

  /**
   * ---------- EVENTS ----------
   */

  event ScheduleCanceled(string id);
  event ScheduleRevoked(string id);
  event TransferredBeneficiary(string id, address newBeneficiary);


  /**
   * ---------- CONSTANTS/IMMUTABLES ----------
   */
  address public immutable token;
  bytes32 public constant BENEFACTOR = keccak256("BENEFACTOR");

  /**
   * @param _token token address this vesting contract will distribute
   * @param _benefactor inital administator and benefactor of the contract
   */
  constructor(address _token, address _benefactor) {
    if (_token == address(0)) revert ZeroToken();
    if (_benefactor == address(0)) revert ZeroBeneficiary();
    token = _token;
    _grantRole(DEFAULT_ADMIN_ROLE, _benefactor); // The benefactor specified in the deploy can grant and revoke benefactor roles using the AccessControl interface
    _grantRole(BENEFACTOR, _benefactor);
  }

  /**
   * ---------- PUBLIC WRITE ----------
   */

  /**
   * @notice Token rescue functionality, allows the benefactor to withdraw any other ERC20 tokens that were sent to the contract by mistake 
   * @param _errantTokenAddress address of the token to rescue, must not be the token the vesting contract manages
   * @param _rescueAddress address to send the recovered funds to
   */
  function rescueTokens(address _errantTokenAddress, address _rescueAddress) external nonReentrant onlyRole(BENEFACTOR) {
    if (_errantTokenAddress == token) revert InvalidToken();
    SafeERC20.safeTransfer(IERC20(_errantTokenAddress), _rescueAddress, IERC20(_errantTokenAddress).balanceOf(address(this)));
  }

  /**
   * ---------- INTERNAL WRITE ----------
   */

  /**
   * @notice Internal function to update state and withdraw beneficiary funds
   * @param allocation the allocation to withdraw from
   * @param distributionState the storage pointer to the distribution state for the allocation
   * @param withdrawableAmount amount of tokens that can be withdrawn by the beneficiary
   * @param requestedWithdrawalAmount amount of tokens beneficiary requested to withdraw, or 0 for all available funds
   */
  function _withdrawToBeneficiary(Allocation memory allocation, DistributionState storage distributionState, uint256 withdrawableAmount, uint256 requestedWithdrawalAmount) _validateWithdrawalInvariants(distributionState, allocation, withdrawableAmount) internal {
    if (requestedWithdrawalAmount > withdrawableAmount) revert InsufficientFunds();
    if (withdrawableAmount == 0) revert AmountZero();

    // withdrawal amount is optional, if not provided, withdraw the entire withdrawable amount
    if (requestedWithdrawalAmount == 0) requestedWithdrawalAmount = withdrawableAmount;
    withdrawableAmount = Math.min(withdrawableAmount, requestedWithdrawalAmount);

    // If the withdrawal address (set in the case of beneficiary transfer) is not set, use the original beneficiary
    address withdrawalAddress = (distributionState.withdrawalAddress == address(0)) ? allocation.originalBeneficiary : distributionState.withdrawalAddress;

    // Update the state and send funds
    distributionState.withdrawn += withdrawableAmount;
    totalWithdrawn += withdrawableAmount;
    SafeERC20.safeTransfer(IERC20(token), withdrawalAddress, withdrawableAmount);
  }

  /**
   * @notice Internal Transfer ownership of a calendar's beneficiary address, authorized by benefactor or beneficiary if enabled
   * @param state the storage pointer to the distribution state for the allocation
   * @param allocation the allocation to withdraw from
   * @param _newAddress address to transfer ownership to
   */
  function _transferBeneficiaryAddress(DistributionState storage state, Allocation memory allocation, address _newAddress) internal {
    if (_newAddress == address(0)) revert ZeroBeneficiary();

    if (_newAddress == state.withdrawalAddress) revert SameBeneficiaryAddress();

    bool authorizedByAdmin = (AccessControl.hasRole(BENEFACTOR, msg.sender) && allocation.transferableByAdmin);
    bool authorizedByBeneficiary = (msg.sender == state.withdrawalAddress && allocation.transferableByBeneficiary);
    if (!(authorizedByAdmin || authorizedByBeneficiary)) revert NotTransferable();

    state.withdrawalAddress = _newAddress;
    emit TransferredBeneficiary(allocation.id, _newAddress);
  }

  /**
   * @notice Internal verification and transfer of funds from the sender to the contract
   * @dev Should only be called in nonReentrant functions. Additionally as an extra precaution function should be called before mutating state 
   *   as a protection against tokens with callbacks see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol#L240 
   * @param _amountToFund amount of funds to transfer to the contract
   */
  function _transferInFunds(uint256 _amountToFund) internal {
    if (_amountToFund == 0) revert AmountZero();
    uint256 currentBalance = IERC20(token).balanceOf(address(this));
    SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), _amountToFund);
    if (currentBalance + _amountToFund != IERC20(token).balanceOf(address(this))) revert DeflationaryTokensNotSupported();
  }

  /**
   * @dev Internal withdrawal invariant validation, an additional safety measure against over-withdrawing
   */
  modifier _validateWithdrawalInvariants(DistributionState storage state, Allocation memory allocation,  uint256 amountWithdrawing) {
    if (state.withdrawn + state.terminatedWithdrawn + amountWithdrawing > allocation.totalAllocation) revert InvalidWithdrawal();
    _;
    if (state.withdrawn + state.terminatedWithdrawn > allocation.totalAllocation) revert InvalidWithdrawal();
  }
  
}
ICalendarVester.sol 39 lines
pragma solidity =0.8.20;

import '@openzeppelin/utils/math/Math.sol';

abstract contract CalendarVester {

  /**
   *
   * @param _unlockTimestamps array of unlock timestamps
   * @param _unlockPercents array of unlock percents
   * @param _totalAllocation total amount of tokens to be vested
   */
  function _getVestedAmount(
    uint32[] memory _unlockTimestamps,
    uint256[] memory _unlockPercents,
    uint256 _totalAllocation,
    uint256 _terminatedTimestamp
  ) internal view returns (uint256) {
    uint256 percent;
    uint32 blockTimestamp = uint32(block.timestamp);

    uint256 finalTimestamp;
    if (_terminatedTimestamp == 0) {
      finalTimestamp = blockTimestamp;
    } else {
      finalTimestamp = Math.min(_terminatedTimestamp, blockTimestamp);
    }

    for (uint256 i = 0; i < _unlockTimestamps.length; i++) {
      if (_unlockTimestamps[i] > finalTimestamp) {
        break;
      }
      percent += _unlockPercents[i];
    }

    // Perecent is in 10,000ths, so for precision we need to multipy then divide 
    return Math.min(_totalAllocation, Math.mulDiv(_totalAllocation, percent, 10_000 * 100));
  }
}
IIntervalVester.sol 92 lines
pragma solidity =0.8.20;

import '@openzeppelin/utils/math/Math.sol';
import './IAirlockBase.sol';

abstract contract IntervalVester is IAirlockBase {

  /**
   * @param interval The interval data for which to calculate vested amount.
   *
   * @dev Iterates over the pieces and calculates the number of tokens that have vested
   * @return Amount of tokens vested.
   *
   * @notice Gets the vested amount of tokens for a schedule
   */
  function _getVestedAmount(IntervalAllocation memory interval, IntervalUnlockSchedule memory schedule) internal view returns (uint256) {
      uint256 finalTimestamp = _getLastVestingTimestamp(interval.distributionState.terminatedTimestamp);

      uint256 vestingEndTimestamp = _getPieceEndTime(schedule.pieces[schedule.pieces.length - 1]);

      // Ensure full distribution without any rounding if we are past the end of the vesting schedule
      if (finalTimestamp >= vestingEndTimestamp) return interval.allocation.totalAllocation;

      // brute force iterate over schedule components
      uint256 currVested;

      for (uint256 index; index < schedule.pieces.length; index++) {
          currVested += _componentVested(
              schedule.pieces[index].startDate,
              schedule.pieces[index].periodLength,
              schedule.pieces[index].numberOfPeriods,
              schedule.pieces[index].percent,
              finalTimestamp,
              interval.allocation.totalAllocation
          );
      }

      return Math.min(interval.allocation.totalAllocation, currVested);
  }

  /**
   * @notice Gets the date when the piece is fully vested
   */
  function _getPieceEndTime(Piece memory piece) internal pure returns (uint32) {
      return (piece.startDate + (piece.periodLength * piece.numberOfPeriods));
  }

  /**
   * @param startDate The start date of the component
   * @param periodLength The length of each period
   * @param numberOfPeriods The number of periods in the component
   * @param percent The percent of tokens that is released in the component
   * @param blockTimestamp The current block timestamp
   *
   * @dev Calculates the number of tokens that have vested for a single component
   * @return Amount of tokens vested.
   *
   * @notice Gets the vested amount of tokens for a schedule
   */
  function _componentVested(
      uint256 startDate,
      uint256 periodLength,
      uint256 numberOfPeriods,
      uint256 percent,
      uint256 blockTimestamp,
      uint256 totalAllocation
  ) internal pure returns (uint256) {

      if (blockTimestamp < startDate) {
          return 0;
      }
      uint256 elapsedTime = blockTimestamp - startDate;
      uint256 fullyVestedPeriods = elapsedTime / periodLength;

      if (fullyVestedPeriods > numberOfPeriods) {
          fullyVestedPeriods = numberOfPeriods;
      }

      uint256 amount = Math.mulDiv(totalAllocation, percent, 10_000 * 100);

      return (amount * fullyVestedPeriods) / numberOfPeriods;
  }

  function _getLastVestingTimestamp(uint256 terminatedTimestamp) internal view returns (uint256) {
    if (terminatedTimestamp != 0) {
      return Math.min(block.timestamp, terminatedTimestamp);
    } else {
      return block.timestamp;
    }
  }

}

Read Contract

BENEFACTOR 0xdaa1f8ae → bytes32
DEFAULT_ADMIN_ROLE 0xa217fddf → bytes32
getCalendarLeafAllocationData 0x3f10db5c → tuple, tuple
getCalendarLeafHash 0x729b5a1f → bytes32
getIntervalLeafAllocationData 0x86d5e6de → tuple, tuple
getIntervalLeafHash 0xf1c9bc83 → bytes32
getLeafJustAllocationData 0x0d87d62c → tuple
getRoleAdmin 0x248a9ca3 → bytes32
hasRole 0x91d14854 → bool
merkleRoots 0x71c5ecb1 → bytes32
schedules 0x3c7c1d89 → address, uint32, uint256, uint256, uint256, uint256
supportsInterface 0x01ffc9a7 → bool
token 0xfc0c546a → address
totalWithdrawn 0x4b319713 → uint256
validateLeaf 0xf26baa51

Write Contract 13 functions

These functions modify contract state and require a wallet transaction to execute.

addAllocationRoot 0x97866c8a
bytes32 merkleRoot
returns: uint256
cancel 0xc01cb1ea
uint32 rootIndex
bytes decodableArgs
bytes32[] proof
defund 0x639ddaad
uint256 amount
fund 0xca1d209d
uint256 amount
grantRole 0x2f2ff15d
bytes32 role
address account
multicall 0xac9650d8
bytes[] data
returns: bytes[]
renounceRole 0x36568abe
bytes32 role
address callerConfirmation
rescueTokens 0x5431c94e
address _errantTokenAddress
address _rescueAddress
revoke 0xc17a656d
uint32 rootIndex
bytes decodableArgs
bytes32[] proof
revokeAll 0xa340fff4
No parameters
revokeRole 0xd547741f
bytes32 role
address account
transferBeneficiaryAddress 0x365636c4
address newBeneficiaryAddress
uint32 rootIndex
bytes decodableArgs
bytes32[] proof
withdraw 0x8612372a
uint256 withdrawalAmount
uint32 rootIndex
bytes decodableArgs
bytes32[] proof

Recent Transactions

No transactions found for this address