Address Contract Partially Verified
Address
0x25DF2d6DDCa09C0f9Fce19373896be075F4f7d98
Balance
0 ETH
Nonce
1
Code Size
12775 bytes
Creator
Create2 Deployer at tx 0x26253c7d...5af23b
Indexed Transactions
0
Contract Bytecode
12775 bytes
0x608060405260043610610113575f3560e01c80637cd0c9b61161009d57806393d001231161006257806393d001231461034f578063a48c5eb114610385578063bc43cbaf146103a4578063c89701a2146103c3578063e11013dd146103e2575f80fd5b80637cd0c9b6146102975780637f46ddb2146102b657806387087623146102d35780638f601f66146102f2578063927ede2d14610332575f80fd5b80633cb747bf116100e35780633cb747bf146101dc578063485cc955146101fb578063540abf731461021a57806354fd4d50146102395780635c975abb14610276575f80fd5b80630166a07a1461016857806309fc8843146101875780631635f5fd1461019a57806335e80ab3146101ad575f80fd5b36610164576101206103f5565b6101455760405162461bcd60e51b815260040161013c90611d10565b60405180910390fd5b610162333362030d4060405180602001604052805f81525061042f565b005b5f80fd5b348015610173575f80fd5b50610162610182366004611dac565b610442565b610162610195366004611e66565b610658565b6101626101a8366004611ebc565b6106c3565b3480156101b8575f80fd5b506003546001600160a01b03165b6040516101d39190611f76565b60405180910390f35b3480156101e7575f80fd5b506001546101c6906001600160a01b031681565b348015610206575f80fd5b50610162610215366004611fa2565b61088f565b348015610225575f80fd5b50610162610234366004611fdc565b6109d9565b348015610244575f80fd5b50610269604051806040016040528060058152602001640322e332e360dc1b81525081565b6040516101d39190612099565b348015610281575f80fd5b5061028a610a1d565b6040516101d391906120b2565b3480156102a2575f80fd5b506101626102b1366004612132565b610a8d565b3480156102c1575f80fd5b506002546001600160a01b03166101c6565b3480156102de575f80fd5b506101626102ed36600461221c565b610c2e565b3480156102fd575f80fd5b5061032561030c3660046122ab565b5f60208181529281526040808220909352908152205481565b6040516101d391906122e1565b34801561033d575f80fd5b506001546001600160a01b03166101c6565b34801561035a575f80fd5b506103256103693660046122ab565b603f60209081525f928352604080842090915290825290205481565b348015610390575f80fd5b5061016261039f366004612302565b610c96565b3480156103af575f80fd5b506003546101c6906001600160a01b031681565b3480156103ce575f80fd5b506002546101c6906001600160a01b031681565b6101626103f0366004612419565b610ff0565b5f3233036104035750600190565b333b60170361042a576040516020810160405260205f82333c5160e81c62ef010014905090565b505f90565b61043c8484348585611032565b50505050565b6001546001600160a01b0316331480156104d5575060025460015460408051636e296e4560e01b815290516001600160a01b039384169390921691636e296e45916004808201926020929091908290030181865afa1580156104a6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ca919061248c565b6001600160a01b0316145b6104f15760405162461bcd60e51b815260040161013c90612510565b6104f9610a1d565b156105165760405162461bcd60e51b815260040161013c90612520565b61051f8761110b565b156105aa5761052e8787611123565b61054a5760405162461bcd60e51b815260040161013c906125c0565b6040516340c10f1960e01b81526001600160a01b038816906340c10f199061057890879087906004016125d9565b5f604051808303815f87803b15801561058f575f80fd5b505af11580156105a1573d5f803e3d5ffd5b5050505061060c565b6001600160a01b038088165f90815260208181526040808320938a16835292905220546105d8908490612608565b6001600160a01b038089165f81815260208181526040808320948c168352939052919091209190915561060c9085856111a0565b61064f878787878787878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506111f892505050565b50505050505050565b6106606103f5565b61067c5760405162461bcd60e51b815260040161013c90611d10565b6106be3333348686868080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061103292505050565b505050565b6001546001600160a01b031633148015610756575060025460015460408051636e296e4560e01b815290516001600160a01b039384169390921691636e296e45916004808201926020929091908290030181865afa158015610727573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061074b919061248c565b6001600160a01b0316145b6107725760405162461bcd60e51b815260040161013c90612510565b61077a610a1d565b156107975760405162461bcd60e51b815260040161013c90612520565b8234146107b65760405162461bcd60e51b815260040161013c90612674565b306001600160a01b038516036107de5760405162461bcd60e51b815260040161013c906126c3565b6001546001600160a01b039081169085160361080c5760405162461bcd60e51b815260040161013c90612717565b61084d85858585858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061125992505050565b5f610868855a8660405180602001604052805f8152506112ac565b9050806108875760405162461bcd60e51b815260040161013c90612766565b505050505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff1615906001600160401b03165f811580156108d35750825b90505f826001600160401b031660011480156108ee5750303b155b9050811580156108fc575080155b1561091a5760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561094457845460ff60401b1916600160401b1785555b600180546001600160a01b038981166001600160a01b031992831617909255600280546010602160991b019083161790556003805492891692909116919091179055831561064f57845460ff60401b191685556040517fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906109c890600190612790565b60405180910390a150505050505050565b61064f87873388888888888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506112c692505050565b60035460408051635c975abb60e01b815290515f926001600160a01b031691635c975abb9160048083019260209291908290030181865afa158015610a64573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a8891906127a9565b905090565b610a9561147d565b610a9e876114c7565b610ab78987610aad878961294d565b8a6020013561166f565b5f610ac2338a611707565b9050610add8185610ad3858761294d565b8a60400135611783565b335f908152603f602090815260408083206001600160a01b038e16845290915281208054869290610b0f908490612959565b9091555050335f908152603f602090815260408083206001600160a01b038e1684529091529020548414610b555760405162461bcd60e51b815260040161013c906129b1565b6001600160a01b03808c165f90815260208181526040808320938e1683529290529081208054869290610b89908490612608565b90915550610ba390506001600160a01b038c1633866111a0565b896001600160a01b03168b6001600160a01b0316336001600160a01b03167f652680593818ce2767e3068aa2ca7b3946bb4fc772840f22294d2984580c12c587604051610bf091906122e1565b60405180910390a450610c2260017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f0055565b50505050505050505050565b610c366103f5565b610c525760405162461bcd60e51b815260040161013c90611d10565b61088786863333888888888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506112c692505050565b610c9e61147d565b610ca7886114c7565b610cc08a88610cb6888a61294d565b8b6020013561166f565b610ce4610cd9610cd360208401846129c1565b8b611707565b85610ad3858761294d565b5f80610cee61181b565b6001600160a01b031663b93793e9610d0960208601866129c1565b6040518263ffffffff1660e01b8152600401610d2591906129df565b602060405180830381865afa158015610d40573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d64919061248c565b90506001600160a01b038116610d8c5760405162461bcd60e51b815260040161013c90612a3a565b6001600160a01b038116634ce3d5c5338e6020808f013590610db090890189612a4a565b6040518663ffffffff1660e01b8152600401610dd0959493929190612ac6565b6020604051808303815f875af1158015610dec573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e109190612b0c565b9150819050603f5f610e2560208601866129c1565b6001600160a01b03166001600160a01b031681526020019081526020015f205f8d6001600160a01b03166001600160a01b031681526020019081526020015f205f828254610e739190612959565b909155505084811115610e985760405162461bcd60e51b815260040161013c90612b74565b84603f5f610ea960208601866129c1565b6001600160a01b03166001600160a01b031681526020019081526020015f205f8d6001600160a01b03166001600160a01b031681526020019081526020015f20541115610f085760405162461bcd60e51b815260040161013c906129b1565b6001600160a01b03808d165f90815260208181526040808320938f1683529290529081208054839290610f3c908490612608565b90915550610f5690506001600160a01b038d1633836111a0565b6001600160a01b038c16610f6d60208401846129c1565b6001600160a01b0316336001600160a01b03167fd5b60084fa1b7e17f3a8a160c5ab0eaa4cdf2c5b95254e49f1f10397fb129c528e85604051610fb19291906125d9565b60405180910390a450610fe360017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f0055565b5050505050505050505050565b61043c3385348686868080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061103292505050565b8234146110515760405162461bcd60e51b815260040161013c90612bdd565b61105d858585846118e5565b6001546002546040516001600160a01b0392831692633dbb202b928792911690631635f5fd60e01b9061109a908b908b9086908a90602401612bed565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b03199485161790525160e086901b90921682526110e292918890600401612c33565b5f604051808303818588803b1580156110f9575f80fd5b505af1158015610c22573d5f803e3d5ffd5b5f61111d8263ec4fc8e360e01b61192a565b92915050565b5f826001600160a01b031663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa158015611160573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611184919061248c565b6001600160a01b0316826001600160a01b031614905092915050565b6106be83846001600160a01b031663a9059cbb85856040516024016111c69291906125d9565b604051602081830303815290604052915060e01b6020820180516001600160e01b03838183161783525050505061194c565b836001600160a01b0316856001600160a01b0316876001600160a01b03167fd59c65b35445225835c83f50b6ede06a7be047d22e357073e250d9af537518cd86868660405161124993929190612c62565b60405180910390a4505050505050565b826001600160a01b0316846001600160a01b03167f31b2166ff604fc5672ea5df08a78081d2bc6d746cadce880747f3643d819e83d848460405161129e929190612c98565b60405180910390a350505050565b5f805f80845160208601878a8af19150505b949350505050565b6112cf8761110b565b1561135a576112de8787611123565b6112fa5760405162461bcd60e51b815260040161013c906125c0565b604051632770a7eb60e21b81526001600160a01b03881690639dc29fac9061132890889087906004016125d9565b5f604051808303815f87803b15801561133f575f80fd5b505af1158015611351573d5f803e3d5ffd5b505050506113c1565b61136f6001600160a01b0388168630866119a4565b6001600160a01b038088165f90815260208181526040808320938a168352929052205461139d908490612959565b6001600160a01b038089165f90815260208181526040808320938b16835292905220555b6113cf8787878787866119cc565b6001546002546040516001600160a01b0392831692633dbb202b92169062b3503d60e11b9061140c908b908d908c908c908c908b90602401612cb8565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b03199485161790525160e085901b909216825261145492918790600401612c33565b5f604051808303815f87803b15801561146b575f80fd5b505af1158015610fe3573d5f803e3d5ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f008054600119016114c157604051633ee5aeb560e01b815260040160405180910390fd5b60029055565b5f6114d0611a1d565b90505f816001600160a01b031663a25ae557836001600160a01b03166369f16eec6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561151e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115429190612b0c565b6040518263ffffffff1660e01b815260040161155e91906122e1565b606060405180830381865afa158015611579573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061159d9190612d8d565b90505f826001600160a01b03166346ade58e6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156115dc573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116009190612b0c565b9050428183602001516001600160801b031661161c9190612959565b106116395760405162461bcd60e51b815260040161013c90612e04565b61165061164b36869003860186612e83565b611ac3565b82511461043c5760405162461bcd60e51b815260040161013c90612ee8565b6040516315518b3f60e11b815273b60f4a5964a6d332d1780fedefd339cf6b021bb790632aa3167e906116ac908790879087908790600401612fde565b602060405180830381865af41580156116c7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116eb91906127a9565b61043c5760405162461bcd60e51b815260040161013c9061305c565b5f811561176757826001600160a01b03167f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0060405160200161174a92919061306c565b60405160208183030381529060405280519060200120905061111d565b826001600160a01b03165f60405160200161174a92919061306c565b604051636f7dac4360e01b815273b60f4a5964a6d332d1780fedefd339cf6b021bb790636f7dac43906117c090879087908790879060040161307a565b602060405180830381865af41580156117db573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117ff91906127a9565b61043c5760405162461bcd60e51b815260040161013c906130fa565b60015460408051636425666b60e01b815290515f926001600160a01b031691636425666b9160048083019260209291908290030181865afa158015611862573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118869190613115565b6001600160a01b03166354c594b66040518163ffffffff1660e01b8152600401602060405180830381865afa1580156118c1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a889190613115565b826001600160a01b0316846001600160a01b03167f2849b43074093a05396b6f2a937dee8565b15a48a7b3d4bffb732a5017380af5848460405161129e929190612c98565b5f61193483611b07565b801561194557506119458383611b39565b9392505050565b5f6119606001600160a01b03841683611bb8565b905080515f1415801561198457508080602001905181019061198291906127a9565b155b156106be5782604051635274afe760e01b815260040161013c91906129df565b61043c84856001600160a01b03166323b872dd8686866040516024016111c693929190613133565b836001600160a01b0316856001600160a01b0316876001600160a01b03167f7ff126db8024424bbfd9826e8ab82ff59136289ea440b04b39a0df1b03b9cabf86868660405161124993929190612c62565b60015460408051636425666b60e01b815290515f926001600160a01b031691636425666b9160048083019260209291908290030181865afa158015611a64573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a889190613115565b6001600160a01b0316639b5f694a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156118c1573d5f803e3d5ffd5b5f815f0151826020015183604001518460600151604051602001611aea949392919061315b565b604051602081830303815290604052805190602001209050919050565b5f611b19826301ffc9a760e01b611b39565b801561111d5750611b32826001600160e01b0319611b39565b1592915050565b5f8082604051602401611b4c91906131a0565b60408051601f19818403018152919052602080820180516001600160e01b03166301ffc9a760e01b17815282519293505f9283928392909183918a617530fa92503d91505f519050828015611ba2575060208210155b8015611bad57505f81115b979650505050505050565b606061194583835f845f80856001600160a01b03168486604051611bdc91906131cf565b5f6040518083038185875af1925050503d805f8114611c16576040519150601f19603f3d011682016040523d82523d5f602084013e611c1b565b606091505b5091509150611c2b868383611c35565b9695505050505050565b606082611c4a57611c4582611c88565b611945565b8151158015611c6157506001600160a01b0384163b155b15611c815783604051639996b31560e01b815260040161013c91906129df565b5080611945565b805115611c985780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b50565b603781525f602082017f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c81527f792062652063616c6c65642066726f6d20616e20454f41000000000000000000602082015291505b5060400190565b6020808252810161111d81611cb4565b5f6001600160a01b03821661111d565b611d3981611d20565b8114611cb1575f80fd5b803561111d81611d30565b80611d39565b803561111d81611d4e565b5f8083601f840112611d7257611d725f80fd5b5081356001600160401b03811115611d8b57611d8b5f80fd5b602083019150836001820283011115611da557611da55f80fd5b9250929050565b5f805f805f805f60c0888a031215611dc557611dc55f80fd5b5f611dd08a8a611d43565b9750506020611de18a828b01611d43565b9650506040611df28a828b01611d43565b9550506060611e038a828b01611d43565b9450506080611e148a828b01611d54565b93505060a08801356001600160401b03811115611e3257611e325f80fd5b611e3e8a828b01611d5f565b925092505092959891949750929550565b63ffffffff8116611d39565b803561111d81611e4f565b5f805f60408486031215611e7b57611e7b5f80fd5b5f611e868686611e5b565b93505060208401356001600160401b03811115611ea457611ea45f80fd5b611eb086828701611d5f565b92509250509250925092565b5f805f805f60808688031215611ed357611ed35f80fd5b5f611ede8888611d43565b9550506020611eef88828901611d43565b9450506040611f0088828901611d54565b93505060608601356001600160401b03811115611f1e57611f1e5f80fd5b611f2a88828901611d5f565b92509250509295509295909350565b6001600160a01b031690565b5f61111d825f61111d6001600160a01b038316611f39565b5f61111d82611f45565b611f7081611f5d565b82525050565b6020810161111d8284611f67565b5f61111d82611d20565b611d3981611f84565b803561111d81611f8e565b5f8060408385031215611fb657611fb65f80fd5b5f611fc18585611f97565b9250506020611fd285828601611f97565b9150509250929050565b5f805f805f805f60c0888a031215611ff557611ff55f80fd5b5f6120008a8a611d43565b97505060206120118a828b01611d43565b96505060406120228a828b01611d43565b95505060606120338a828b01611d54565b9450506080611e148a828b01611e5b565b5f5b8381101561205e578181015183820152602001612046565b50505f910152565b5f61206f825190565b808452602084019350612086818560208601612044565b601f19601f8201165b9093019392505050565b602080825281016119458184612066565b801515611f70565b6020810161111d82846120aa565b801515611d39565b803561111d816120c0565b5f608082840312156120e6576120e65f80fd5b50919050565b5f8083601f8401126120ff576120ff5f80fd5b5081356001600160401b03811115612118576121185f80fd5b602083019150836020820283011115611da557611da55f80fd5b5f805f805f805f805f806101c08b8d03121561214f5761214f5f80fd5b5f61215a8d8d611d43565b9a5050602061216b8d828e01611d43565b995050604061217c8d828e016120c8565b985050606061218d8d828e016120d3565b97505060e061219e8d828e016120d3565b9650506101608b01356001600160401b038111156121bd576121bd5f80fd5b6121c98d828e016120ec565b95509550506101806121dd8d828e01611d54565b9350506101a08b01356001600160401b038111156121fc576121fc5f80fd5b6122088d828e016120ec565b92509250509295989b9194979a5092959850565b5f805f805f8060a08789031215612234576122345f80fd5b5f61223f8989611d43565b965050602061225089828a01611d43565b955050604061226189828a01611d54565b945050606061227289828a01611e5b565b93505060808701356001600160401b03811115612290576122905f80fd5b61229c89828a01611d5f565b92509250509295509295509295565b5f80604083850312156122bf576122bf5f80fd5b5f6122ca8585611d43565b9250506020611fd285828601611d43565b80611f70565b6020810161111d82846122db565b5f604082840312156120e6576120e65f80fd5b5f805f805f805f805f805f6101e08c8e031215612320576123205f80fd5b5f61232b8e8e611d43565b9b5050602061233c8e828f01611d43565b9a5050604061234d8e828f016120c8565b995050606061235e8e828f016120d3565b98505060e061236f8e828f016120d3565b9750506101608c01356001600160401b0381111561238e5761238e5f80fd5b61239a8e828f016120ec565b96509650506101806123ae8e828f01611d54565b9450506101a08c01356001600160401b038111156123cd576123cd5f80fd5b6123d98e828f016120ec565b93509350506101c08c01356001600160401b038111156123fa576123fa5f80fd5b6124068e828f016122ef565b9150509295989b509295989b9093969950565b5f805f806060858703121561242f5761242f5f80fd5b5f61243a8787611d43565b945050602061244b87828801611e5b565b93505060408501356001600160401b03811115612469576124695f80fd5b61247587828801611d5f565b95989497509550505050565b805161111d81611d30565b5f6020828403121561249f5761249f5f80fd5b5f6112be8484612481565b604181525f602082017f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c81527f792062652063616c6c65642066726f6d20746865206f746865722062726964676020820152606560f81b604082015291505b5060600190565b6020808252810161111d816124aa565b6020808252810161111d81601681527514dd185b99185c99109c9a5919d94e881c185d5cd95960521b602082015260400190565b604a81525f602082017f5374616e646172644272696467653a2077726f6e672072656d6f746520746f6b81527f656e20666f72204f7074696d69736d204d696e7461626c65204552433230206c60208201526937b1b0b6103a37b5b2b760b11b60408201529150612509565b6020808252810161111d81612554565b611f7081611d20565b604081016125e782856125d0565b61194560208301846122db565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561111d5761111d6125f4565b603a81525f602082017f5374616e646172644272696467653a20616d6f756e742073656e7420646f657381527f206e6f74206d6174636820616d6f756e7420726571756972656400000000000060208201529150611d09565b6020808252810161111d8161261b565b602381525f602082017f5374616e646172644272696467653a2063616e6e6f742073656e6420746f207381526232b63360e91b60208201529150611d09565b6020808252810161111d81612684565b602881525f602082017f5374616e646172644272696467653a2063616e6e6f742073656e6420746f206d81526732b9b9b2b733b2b960c11b60208201529150611d09565b6020808252810161111d816126d3565b602381525f602082017f5374616e646172644272696467653a20455448207472616e73666572206661698152621b195960ea1b60208201529150611d09565b6020808252810161111d81612727565b6001600160401b031690565b611f70815f61111d82612776565b6020810161111d8284612782565b805161111d816120c0565b5f602082840312156127bc576127bc5f80fd5b5f6112be848461279e565b634e487b7160e01b5f52604160045260245ffd5b601f19601f83011681018181106001600160401b0382111715612800576128006127c7565b6040525050565b5f61281160405190565b905061281d82826127db565b919050565b5f6001600160401b0382111561283a5761283a6127c7565b5060209081020190565b5f6001600160401b0382111561285c5761285c6127c7565b601f19601f83011660200192915050565b82818337505f910152565b5f61288a61288584612844565b612807565b9050828152602081018484840111156128a4576128a45f80fd5b6128af84828561286d565b509392505050565b5f82601f8301126128c9576128c95f80fd5b81356112be848260208601612878565b5f6128e661288584612822565b83815290506020808201908402830185811115612904576129045f80fd5b835b818110156129435780356001600160401b03811115612926576129265f80fd5b80860161293389826128b7565b8552505060209283019201612906565b5050509392505050565b5f6119453684846128d9565b8082018082111561111d5761111d6125f4565b602981525f602082017f4c315374616e646172644272696467653a20416c72656164792065736361706581526832103a37b5b2b7399760b91b60208201529150611d09565b6020808252810161111d8161296c565b5f602082840312156129d4576129d45f80fd5b5f6112be8484611d43565b6020810161111d82846125d0565b603181525f602082017f4c315374616e646172644272696467653a204e6f205265736f6c76657220436f8152701b9d1c9858dd08149959da5cdd195c9959607a1b60208201529150611d09565b6020808252810161111d816129ed565b5f808335601e1936859003018112612a6357612a635f80fd5b8084019250823591506001600160401b03821115612a8257612a825f80fd5b602083019250600182023603831315612a9c57612a9c5f80fd5b509250929050565b8183525f602084019350612ab983858461286d565b601f19601f84011661208f565b60808101612ad482886125d0565b612ae160208301876125d0565b612aee60408301866122db565b8181036060830152611bad818486612aa4565b805161111d81611d4e565b5f60208284031215612b1f57612b1f5f80fd5b5f6112be8484612b01565b602e81525f602082017f4c315374616e646172644272696467653a20496e76616c696420616d6f756e7481526d10333937b6903932b9b7b63b32b960911b60208201529150611d09565b6020808252810161111d81612b2a565b603e81525f602082017f5374616e646172644272696467653a206272696467696e6720455448206d757381527f7420696e636c7564652073756666696369656e74204554482076616c7565000060208201529150611d09565b6020808252810161111d81612b84565b60808101612bfb82876125d0565b612c0860208301866125d0565b612c1560408301856122db565b8181036060830152611c2b8184612066565b63ffffffff8116611f70565b60608101612c4182866125d0565b8181036020830152612c538185612066565b90506112be6040830184612c27565b60608101612c7082866125d0565b612c7d60208301856122db565b8181036040830152612c8f8184612066565b95945050505050565b60408101612ca682856122db565b81810360208301526112be8184612066565b60c08101612cc682896125d0565b612cd360208301886125d0565b612ce060408301876125d0565b612ced60608301866125d0565b612cfa60808301856122db565b81810360a0830152612d0c8184612066565b98975050505050505050565b6001600160801b038116611d39565b805161111d81612d18565b5f60608284031215612d4557612d455f80fd5b612d4f6060612807565b90505f612d5c8484612b01565b8252506020612d6d84848301612d27565b6020830152506040612d8184828501612d27565b60408301525092915050565b5f60608284031215612da057612da05f80fd5b5f6112be8484612d32565b603781525f602082017f4c315374616e646172644272696467653a204e6f7420656e6f7567682074696d81527f65206861732070617373656420746f206573636170652e00000000000000000060208201529150611d09565b6020808252810161111d81612dab565b5f60808284031215612e2757612e275f80fd5b612e316080612807565b90505f612e3e8484611d54565b8252506020612e4f84848301611d54565b6020830152506040612e6384828501611d54565b6040830152506060612e7784828501611d54565b60608301525092915050565b5f60808284031215612e9657612e965f80fd5b5f6112be8484612e14565b602b81525f602082017f4c315374616e646172644272696467653a20696e76616c6964206f757470757481526a103937b7ba10383937b7b360a91b60208201529150611d09565b6020808252810161111d81612ea1565b5f6119456020840184611d54565b60808201612f148280612ef8565b612f1e84826122db565b50612f2c6020830183612ef8565b612f3960208501826122db565b50612f476040830183612ef8565b612f5460408501826122db565b50612f626060830183612ef8565b61043c60608501826122db565b5f6119458383612066565b5f612f83825190565b80845260208401935083602082028501612f9d8560200190565b805f5b85811015612fd15784840389528151612fb98582612f6f565b94506020830160209a909a0199925050600101612fa0565b5091979650505050505050565b60e08101612fec82876125d0565b612ff96020830186612f06565b81810360a083015261300b8185612f7a565b9050612c8f60c08301846122db565b602681525f602082017f4c315374616e646172644272696467653a20496e76616c696420737461746520815265383937b7b31760d11b60208201529150611d09565b6020808252810161111d8161301a565b604081016125e782856122db565b6080810161308882876122db565b61309560208301866122db565b81810360408301526130a78185612f7a565b9050612c8f60608301846122db565b602881525f602082017f4c315374616e646172644272696467653a20496e76616c69642073746f7261678152673290383937b7b31760c11b60208201529150611d09565b6020808252810161111d816130b6565b805161111d81611f8e565b5f60208284031215613128576131285f80fd5b5f6112be848461310a565b6060810161314182866125d0565b61314e60208301856125d0565b6112be60408301846122db565b6080810161316982876122db565b61317660208301866122db565b61318360408301856122db565b612c8f60608301846122db565b6001600160e01b03198116611f70565b6020810161111d8284613190565b5f6131b7825190565b6131c5818560208601612044565b9290920192915050565b5f61194582846131ae56fea164736f6c6343000814000a
Verified Source Code Partial Match
Compiler: v0.8.20+commit.a1b79de6
EVM: shanghai
L1StandardBridge.sol 269 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Predeploys } from "src/libraries/Predeploys.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { L1CrossDomainMessenger } from "src/L1/L1CrossDomainMessenger.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
import { AccessControlPausable } from "src/universal/AccessControlPausable.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { StateVerifier } from "src/libraries/StateVerifier.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ResolverRegistry } from "./ResolverRegistry.sol";
import { IEscapeResolver } from "src/L1/IEscapeResolver.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
/// @custom:proxied
/// @title L1StandardBridge
/// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
/// L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
/// contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
/// stored within this contract. After Bedrock, ETH is instead stored inside the
/// OptimismPortal contract.
/// NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
/// of some token types that may not be properly supported by this contract include, but are
/// not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
contract L1StandardBridge is StandardBridge, ReentrancyGuardUpgradeable, ISemver {
/// @notice Semantic version.
/// @custom:semver 2.3.0
string public constant version = "2.3.0";
using SafeERC20 for IERC20;
uint256[14] spacer_49_0_448;
/// @notice List for (User => (Token => Amount Escaped))
mapping(address => mapping(address => uint256)) public escapedAmount;
/// @notice Emitted when user escapes ERC20 tokens.
/// @param user address of the user that escaped the tokens.
/// @param localToken address of the localToken that was escaped from the contract.
/// @param remoteToken address of the corresponding remoteToken.
/// @param amount amount of localToken ERC20 removed from the contract.
event ERC20Escape(address indexed user, address indexed localToken, address indexed remoteToken, uint256 amount);
/// @notice Emitted when user escaped ERC20 token through resolver.
/// @param user address of the user that escaped the tokens.
/// @param l2Contract contract on L2 that held the tokens.
/// @param localToken address of the localToken that was escaped from the contract.
/// @param remoteToken address of the corresponding remoteToken.
/// @param amount amount of localToken ERC20 removed from the contract.
event ERC20EscapeResolver(
address indexed user,
address indexed l2Contract,
address indexed localToken,
address remoteToken,
uint256 amount
);
/// @notice Constructs the L1StandardBridge contract.
constructor() StandardBridge() {
initialize({ _messenger: CrossDomainMessenger(address(0)), _superchainConfig: SuperchainConfig(address(0)) });
}
/// @notice Initializer.
/// @param _messenger Contract for the CrossDomainMessenger on this network.
/// @param _superchainConfig Contract for the SuperchainConfig on this network.
function initialize(CrossDomainMessenger _messenger, SuperchainConfig _superchainConfig) public initializer {
__StandardBridge_init({
_messenger: _messenger,
_otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)),
_accessController: AccessControlPausable(_superchainConfig)
});
}
/// @notice The access controller is also the superchain config. To avoid storing it twice, only use a getter here
function superchainConfig() external view returns (SuperchainConfig) {
return SuperchainConfig(address(accessController));
}
/// @inheritdoc StandardBridge
function paused() public view override returns (bool) {
return accessController.paused();
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
receive() external payable override onlyEOA {
_initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
}
/// @notice Internal function for initiating an ETH deposit.
/// @param _from Address of the sender on L1.
/// @param _to Address of the recipient on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
_initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Allows users to escape ERC20 tokens if no output root has been published for over 30 days.
/// @param _localToken Address of the token on L1.
/// @param _remoteToken Address of the corresponding token on L2.
/// @param _isRemoteTokenUpgradable If the L2 token is an upgradable contract or not
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _accountState State of the ERC20 token contract on L2.
/// @param _stateProof Proof of the ERC20 contract state.
/// @param _tokenBalance Balance the user had of the ERC20 on L2.
/// @param _storageProof Proof of value on the storage slot with the user balance.
function escapeERC20(
address _localToken,
address _remoteToken,
bool _isRemoteTokenUpgradable,
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _accountState,
bytes[] calldata _stateProof,
uint256 _tokenBalance,
bytes[] calldata _storageProof
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(_remoteToken, _accountState, _stateProof, _outputRootProof.stateRoot);
bytes32 storageKey = _getBalanceSlot(msg.sender, _isRemoteTokenUpgradable);
_verifyBalance(storageKey, _tokenBalance, _storageProof, _accountState.storageRoot);
escapedAmount[msg.sender][_remoteToken] += _tokenBalance;
require(escapedAmount[msg.sender][_remoteToken] == _tokenBalance, "L1StandardBridge: Already escaped tokens.");
deposits[_localToken][_remoteToken] -= _tokenBalance;
IERC20(_localToken).safeTransfer(msg.sender, _tokenBalance);
emit ERC20Escape(msg.sender, _localToken, _remoteToken, _tokenBalance);
}
/// @notice Allows users to escape ERC20 tokens from a smart contract through a resolver contract if no output root
/// has been published for over 30 days.
/// @param _localToken Address of the token on L1.
/// @param _remoteToken Address of the corresponding token on L2.
/// @param _isRemoteTokenUpgradable If the L2 token is an upgradable contract or not
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _accountState State of the ERC20 token contract on L2.
/// @param _stateProof Proof of the ERC20 contract state.
/// @param _tokenBalance Balance the smart contract had of the ERC20 on L2.
/// @param _storageProof Proof of value on the storage slot with the user balance.
/// @param _resolverData Extra data needed for the resolver to determine escape.
function escapeERC20ThroughResolver(
address _localToken,
address _remoteToken,
bool _isRemoteTokenUpgradable,
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _accountState,
bytes[] calldata _stateProof,
uint256 _tokenBalance,
bytes[] calldata _storageProof,
Types.ResolverData calldata _resolverData
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(_remoteToken, _accountState, _stateProof, _outputRootProof.stateRoot);
_verifyBalance(
_getBalanceSlot(_resolverData.l2Contract, _isRemoteTokenUpgradable), _tokenBalance, _storageProof, _accountState.storageRoot
);
uint256 _amountToUser;
{
address _resolver = _getResolverRegistry().resolvers(_resolverData.l2Contract);
if (_resolver == address(0)) {
revert("L1StandardBridge: No Resolver Contract Registered");
}
_amountToUser = IEscapeResolver(_resolver).userEscapableERC20Balance(
msg.sender, _remoteToken, _outputRootProof.stateRoot, _resolverData.data
);
}
escapedAmount[_resolverData.l2Contract][_remoteToken] += _amountToUser;
require(_amountToUser <= _tokenBalance, "L1StandardBridge: Invalid amount from resolver");
require(
escapedAmount[_resolverData.l2Contract][_remoteToken] <= _tokenBalance,
"L1StandardBridge: Already escaped tokens."
);
deposits[_localToken][_remoteToken] -= _amountToUser;
IERC20(_localToken).safeTransfer(msg.sender, _amountToUser);
emit ERC20EscapeResolver(msg.sender, _resolverData.l2Contract, _localToken, _remoteToken, _amountToUser);
}
function _verifyOutputRoot(Types.OutputRootProof calldata _outputRootProof) internal view {
L2OutputOracle l2Oracle = _getL2OutputOracle();
Types.OutputProposal memory lastSubmittedRoot = l2Oracle.getL2Output(l2Oracle.latestOutputIndex());
uint256 timeLimitOutputRootSubmissionSeconds = l2Oracle.timeLimitOutputRootSubmissionSeconds();
require(
lastSubmittedRoot.timestamp + timeLimitOutputRootSubmissionSeconds < block.timestamp,
"L1StandardBridge: Not enough time has passed to escape."
);
require(
lastSubmittedRoot.outputRoot == Hashing.hashOutputRootProof(_outputRootProof),
"L1StandardBridge: invalid output root proof"
);
}
function _verifyState(
address _account,
Types.AccountState calldata _accountState,
bytes[] memory _proof,
bytes32 _stateRoot
)
internal
pure
{
require(
StateVerifier.verifyAccountState(_account, _accountState, _proof, _stateRoot),
"L1StandardBridge: Invalid state proof."
);
}
function _verifyBalance(
bytes32 _storageKey,
uint256 _tokenBalance,
bytes[] memory _storageProof,
bytes32 _storageRoot
)
internal
pure
{
require(
StateVerifier.verifyERC20Balance(_storageKey, _tokenBalance, _storageProof, _storageRoot),
"L1StandardBridge: Invalid storage proof."
);
}
function _getL2OutputOracle() internal view returns (L2OutputOracle) {
return OptimismPortal(L1CrossDomainMessenger(address(messenger)).portal()).l2Oracle();
}
function _getResolverRegistry() internal view returns (ResolverRegistry) {
return OptimismPortal(L1CrossDomainMessenger(address(messenger)).portal()).resolverRegistry();
}
function _getBalanceSlot(address _user,bool _isRemoteTokenUpgradable) internal pure returns (bytes32) {
if (_isRemoteTokenUpgradable) {
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
return keccak256(abi.encode(uint256(uint160(_user)), uint256(0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00)));
} else {
return keccak256(abi.encode(uint256(uint160(_user)), uint256(0)));
}
}
}
Predeploys.sol 120 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Predeploys
/// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
// This excludes the preinstalls (non-protocol contracts).
library Predeploys {
/// @notice Number of predeploy-namespace addresses reserved for protocol usage.
uint256 internal constant PREDEPLOY_COUNT = 2048;
/// @notice Address of the canonical WETH9 contract.
address internal constant WETH9 = 0x4200000000000000000000000000000000000006;
/// @notice Address of the L2CrossDomainMessenger predeploy.
address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
/// @notice Address of the GasPriceOracle predeploy. Includes fee information
/// and helpers for computing the L1 portion of the transaction fee.
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/// @notice Address of the L2StandardBridge predeploy.
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
//// @notice Address of the SequencerFeeWallet predeploy.
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/// @notice Address of the OptimismMintableERC20Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
/// @notice Address of the L2ERC721Bridge predeploy.
address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
/// @notice Address of the L1Block predeploy.
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/// @notice Address of the L2ToL1MessagePasser predeploy.
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
/// @notice Address of the OptimismMintableERC721Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
/// @notice Address of the ProxyAdmin predeploy.
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/// @notice Address of the BaseFeeVault predeploy.
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/// @notice Address of the L1FeeVault predeploy.
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
/// @notice Address of the OperatorFeeVault predeploy.
address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;
/// @notice Address of the SchemaRegistry predeploy.
address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
/// @notice Address of the EAS predeploy.
address internal constant EAS = 0x4200000000000000000000000000000000000021;
/// @notice Address of the GovernanceToken predeploy.
address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
/// @notice Address of the L2Controller predeploy.
address internal constant L2_CONTROLLER = 0x4200000000000000000000000000000000000100;
/// @notice Returns the name of the predeploy at the given address.
function getName(address _addr) internal pure returns (string memory out_) {
require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
if (_addr == WETH9) return "WETH9";
if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
if (_addr == PROXY_ADMIN) return "ProxyAdmin";
if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
if (_addr == L1_FEE_VAULT) return "L1FeeVault";
if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
if (_addr == EAS) return "EAS";
if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
if (_addr == L2_CONTROLLER) return "L2Controller";
revert("Predeploys: unnamed predeploy");
}
/// @notice Returns true if the predeploy is not proxied.
function notProxied(address _addr) internal pure returns (bool) {
return _addr == GOVERNANCE_TOKEN || _addr == WETH9;
}
/// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
function isSupportedPredeploy(address _addr) internal pure returns (bool) {
return _addr == WETH9
|| _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
|| _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY
|| _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
|| _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
|| _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
|| _addr == L2_CONTROLLER || _addr == OPERATOR_FEE_VAULT;
}
function isPredeployNamespace(address _addr) internal pure returns (bool) {
return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
}
/// @notice Function to compute the expected address of the predeploy implementation
/// in the genesis state.
function predeployToCodeNamespace(address _addr) internal pure returns (address) {
require(
isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
);
return address(
uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
);
}
}
StandardBridge.sol 474 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { EOA } from "src/libraries/EOA.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
import { AccessControlPausable } from "src/universal/AccessControlPausable.sol";
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
/// @custom:upgradeable
/// @title StandardBridge
/// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
/// the core bridging logic, including escrowing tokens that are native to the local chain
/// and minting/burning tokens that are native to the remote chain.
abstract contract StandardBridge is Initializable {
using SafeERC20 for IERC20;
/// @notice The L2 gas limit set when eth is depoisited using the receive() function.
uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
/// @notice Mapping that stores deposits for a given pair of local and remote tokens.
mapping(address => mapping(address => uint256)) public deposits;
/// @notice Messenger contract on this domain.
/// @custom:network-specific
CrossDomainMessenger public messenger;
/// @notice Corresponding bridge on the other domain.
/// @custom:network-specific
StandardBridge public otherBridge;
/// @notice Contract that controls whether pausing is enabled
AccessControlPausable public accessController;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 45 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[45] private __gap;
/// @notice Emitted when an ETH bridge is initiated to the other chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ETH bridge is finalized on this chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ERC20 bridge is initiated to the other chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeInitiated(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Emitted when an ERC20 bridge is finalized on this chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeFinalized(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
/// calling code within their constructors, but also doesn't really matter since we're
/// just trying to prevent users accidentally depositing with smart contract wallets.
modifier onlyEOA() {
require(EOA.isSenderEOA(), "StandardBridge: function can only be called from an EOA");
_;
}
/// @notice Ensures that the caller is a cross-chain message from the other bridge.
modifier onlyOtherBridge() {
require(
msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
"StandardBridge: function can only be called from the other bridge"
);
_;
}
/// @notice Initializer.
/// @param _messenger Contract for CrossDomainMessenger on this network.
/// @param _otherBridge Contract for the other StandardBridge contract.
function __StandardBridge_init(
CrossDomainMessenger _messenger,
StandardBridge _otherBridge,
AccessControlPausable _accessController
)
internal
{
messenger = _messenger;
otherBridge = _otherBridge;
accessController = _accessController;
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
/// Must be implemented by contracts that inherit.
receive() external payable virtual;
/// @notice Getter for messenger contract.
/// Public getter is legacy and will be removed in the future. Use `messenger` instead.
/// @return Contract of the messenger on this domain.
/// @custom:legacy
function MESSENGER() external view returns (CrossDomainMessenger) {
return messenger;
}
/// @notice Getter for the other bridge contract.
/// Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
/// @return Contract of the bridge on the other network.
/// @custom:legacy
function OTHER_BRIDGE() external view returns (StandardBridge) {
return otherBridge;
}
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function will check the L2Controller for its paused status.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return accessController.paused();
}
/// @notice Sends ETH to the sender's address on the other chain.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
_initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
/// smart contract and the call fails, the ETH will be temporarily locked in the
/// StandardBridge on the other chain until the call is replayed. If the call cannot be
/// replayed with any amount of gas (call always reverts), then the ETH will be
/// permanently locked in the StandardBridge on the other chain. ETH will also
/// be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
/// in that case.
/// @param _to Address of the receiver.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
_initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to the sender's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeERC20(
address _localToken,
address _remoteToken,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
public
virtual
onlyEOA
{
_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeERC20To(
address _localToken,
address _remoteToken,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
public
virtual
{
_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeETH(
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
payable
onlyOtherBridge
{
require(paused() == false, "StandardBridge: paused");
require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
require(_to != address(this), "StandardBridge: cannot send to self");
require(_to != address(messenger), "StandardBridge: cannot send to messenger");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeFinalized(_from, _to, _amount, _extraData);
bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
require(success, "StandardBridge: ETH transfer failed");
}
/// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeERC20(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
onlyOtherBridge
{
require(paused() == false, "StandardBridge: paused");
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).mint(_to, _amount);
} else {
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
IERC20(_localToken).safeTransfer(_to, _amount);
}
// Emit the correct events. By default this will be ERC20BridgeFinalized, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeETH(
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeInitiated(_from, _to, _amount, _extraData);
messenger.sendMessage{ value: _amount }({
_target: address(otherBridge),
_message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
_minGasLimit: _minGasLimit
});
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeERC20(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).burn(_from, _amount);
} else {
IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
}
// Emit the correct events. By default this will be ERC20BridgeInitiated, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
messenger.sendMessage({
_target: address(otherBridge),
_message: abi.encodeWithSelector(
this.finalizeBridgeERC20.selector,
// Because this call will be executed on the remote chain, we reverse the order of
// the remote and local token addresses relative to their order in the
// finalizeBridgeERC20 function.
_remoteToken,
_localToken,
_from,
_to,
_amount,
_extraData
),
_minGasLimit: _minGasLimit
});
}
/// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
/// Just the way we like it.
/// @param _token Address of the token to check.
/// @return True if the token is an OptimismMintableERC20.
function _isOptimismMintableERC20(address _token) internal view returns (bool) {
return ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
}
/// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
/// Calls can be saved in the future by combining this logic with
/// `_isOptimismMintableERC20`.
/// @param _mintableToken OptimismMintableERC20 to check against.
/// @param _otherToken Pair token to check.
/// @return True if the other token is the correct pair token for the OptimismMintableERC20.
function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
}
/// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
/// when an ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeInitiated(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
}
/// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
/// ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeFinalized(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeInitiated(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeFinalized(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
}
ISemver.sol 13 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
/// versioned using semantic versioning.
interface ISemver {
/// @notice Getter for the semantic version of the contract. This is not
/// meant to be used onchain but instead meant to be used by offchain
/// tooling.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}
CrossDomainMessenger.sol 361 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
/// cross-chain messenger contracts. It's designed to be a universal interface that only
/// needs to be extended slightly to provide low-level message passing functionality on each
/// chain it's deployed on. Currently only designed for message passing between two paired
/// chains and does not support one-to-many interactions.
/// Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is Initializable {
/// @notice Current message version identifier.
uint16 public constant MESSAGE_VERSION = 1;
/// @notice Constant overhead added to the base gas for a message.
uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
/// @notice Numerator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
/// @notice Denominator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
/// @notice Extra gas added to base gas for each byte of calldata in a message.
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/// @notice Gas reserved for performing the external call in `relayMessage`.
uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
/// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
uint64 public constant RELAY_RESERVED_GAS = 40_000;
/// @notice Gas reserved for the execution between the `hasMinGas` check and the external
/// call in `relayMessage`.
uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
/// @notice Base gas required for any transaction in the EVM.
uint64 public constant TX_BASE_GAS = 21_000;
/// @notice Floor overhead per byte of non-zero calldata in a message. Calldata floor was
/// introduced in EIP-7623.
uint64 public constant FLOOR_CALLDATA_OVERHEAD = 40;
/// @notice Overhead added to the internal message data when the full call to relayMessage is
/// ABI encoded. This is a constant value that is specific to the V1 message encoding
/// scheme. 260 is an upper bound, actual overhead can be as low as 228 bytes for an
/// empty message.
uint64 public constant ENCODING_OVERHEAD = 260;
/// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
/// be present in this mapping if it has successfully been relayed on this chain, and
/// can therefore not be relayed again.
mapping(bytes32 => bool) public successfulMessages;
/// @notice Address of the sender of the currently executing message on the other chain. If the
/// value of this variable is the default value (0x00000000...dead) then no message is
/// currently being executed. Use the xDomainMessageSender getter which will throw an
/// error if this is the case.
address internal xDomainMsgSender;
/// @notice Nonce for the next message to be sent, without the message version applied. Use the
/// messageNonce getter which will insert the message version into the nonce to give you
/// the actual nonce to be used for the message.
uint240 internal msgNonce;
/// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
/// executed at least once. A message will not be present in this mapping if it
/// successfully executed on the first attempt.
mapping(bytes32 => bool) public failedMessages;
/// @notice CrossDomainMessenger contract on the other chain.
/// @custom:network-specific
CrossDomainMessenger public otherMessenger;
/// @notice Reserve extra slots in the storage layout for future upgrades.
/// A gap size of 41 was chosen here, so that the first slot used in a child contract
/// would be 1 plus a multiple of 50.
uint256[41] private __gap;
/// @notice Emitted whenever a message is sent to the other chain.
/// @param target Address of the recipient of the message.
/// @param sender Address of the sender of the message.
/// @param message Message to trigger the recipient address with.
/// @param messageNonce Unique nonce attached to the message.
/// @param gasLimit Minimum gas limit that the message can be executed with.
event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
/// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
/// SentMessage event without breaking the ABI of this contract, this is good enough.
/// @param sender Address of the sender of the message.
/// @param value ETH value sent along with the message to the recipient.
event SentMessageExtension1(address indexed sender, uint256 value);
/// @notice Emitted whenever a message is successfully relayed on this chain.
/// @param msgHash Hash of the message that was relayed.
event RelayedMessage(bytes32 indexed msgHash);
/// @notice Emitted whenever a message fails to be relayed on this chain.
/// @param msgHash Hash of the message that failed to be relayed.
event FailedRelayedMessage(bytes32 indexed msgHash);
/// @notice Sends a message to some target address on the other chain. Note that if the call
/// always reverts, then the message will be unrelayable, and any ETH sent will be
/// permanently locked. The same will occur if the target on the other chain is
/// considered unsafe (see the _isUnsafeTarget() function).
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage({
_to: address(otherMessenger),
_gasLimit: baseGas(_message, _minGasLimit),
_value: msg.value,
_data: abi.encodeWithSelector(
this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
)
});
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
/// be executed via cross-chain call from the other messenger OR if the message was
/// already received once and is currently being replayed.
/// @param _nonce Nonce of the message being relayed.
/// @param _sender Address of the user who sent the message.
/// @param _target Address that the message is targeted at.
/// @param _value ETH value to send with the message.
/// @param _minGasLimit Minimum amount of gas that the message can be executed with.
/// @param _message Message to send to the target.
function relayMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
external
payable
{
// On L1 this function will check the Portal for its paused status.
// On L2 this function should be a no-op, because paused will always return false.
require(paused() == false, "CrossDomainMessenger: paused");
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(version == 1, "CrossDomainMessenger: only version 1 messages are supported at this time");
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash =
Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == _value);
assert(!failedMessages[versionedHash]);
} else {
require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
}
require(
_isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
);
require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
// If there is not enough gas left to perform the external call and finish the execution,
// return early and assign the message to the failedMessages mapping.
// We are asserting that we have enough gas to:
// 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
// 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
// 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
//
// If `xDomainMsgSender` is not the default L2 sender, this function
// is being re-entered. This marks the message as failed to allow it to be replayed.
if (
!SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
|| xDomainMsgSender != Constants.DEFAULT_L2_SENDER
) {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
return;
}
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success) {
// This check is identical to one above, but it ensures that the same message cannot be relayed
// twice, and adds a layer of protection against rentrancy.
assert(successfulMessages[versionedHash] == false);
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/// @notice Retrieves the address of the contract or wallet that initiated the currently
/// executing message on the other chain. Will throw an error if there is no message
/// currently being executed. Allows the recipient of a call to see who triggered it.
/// @return Address of the sender of the currently executing message on the other chain.
function xDomainMessageSender() external view returns (address) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
/// Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
/// @return CrossDomainMessenger contract on the other chain.
/// @custom:legacy
function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
return otherMessenger;
}
/// @notice Retrieves the next message nonce. Message version will be added to the upper two
/// bytes of the message nonce. Message version allows us to treat messages as having
/// different structures.
/// @return Nonce of the next message to be sent, with added message version.
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/// @notice Computes the amount of gas required to guarantee that a given message will be
/// received on the other chain without running out of gas. Guaranteeing that a message
/// will not run out of gas is important because this ensures that a message can always
/// be replayed on the other chain if it fails to execute completely.
/// @param _message Message to compute the amount of required gas for.
/// @param _minGasLimit Minimum desired gas limit when message goes to target.
/// @return Amount of gas required to guarantee message receipt.
function baseGas(bytes memory _message, uint32 _minGasLimit) public pure returns (uint64) {
// Base gas should really be computed on the fully encoded message but that would break the
// expected API, so we instead just add the encoding overhead to the message length inside
// of this function.
// We need a minimum amount of execution gas to ensure that the message will be received on
// the other side without running out of gas (stored within the failedMessages mapping).
// If we get beyond the hasMinGas check, then we *must* supply more than minGasLimit to
// the external call.
uint64 executionGas = uint64(
// Constant costs for relayMessage
RELAY_CONSTANT_OVERHEAD
// Covers dynamic parts of the CALL opcode
+ RELAY_CALL_OVERHEAD
// Ensures execution of relayMessage completes after call
+ RELAY_RESERVED_GAS
// Buffer between hasMinGas check and the CALL
+ RELAY_GAS_CHECK_BUFFER
// Minimum gas limit, multiplied by 64/63 to account for EIP-150.
+ ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
);
// Total message size is the result of properly ABI encoding the call to relayMessage.
// Since we only get the message data and not the rest of the calldata, we use the
// ENCODING_OVERHEAD constant to conservatively account for the remaining bytes.
uint64 totalMessageSize = uint64(_message.length + ENCODING_OVERHEAD);
// Finally, replicate the transaction cost formula as defined after EIP-7623. This is
// mostly relevant in the L1 -> L2 case because we need to be able to cover the intrinsic
// cost of the message but it doesn't hurt in the L2 -> L1 case. After EIP-7623, the cost
// of a transaction is floored by its calldata size. We don't need to account for the
// contract creation case because this is always a call to relayMessage.
return TX_BASE_GAS
+ uint64(
Math.max(
executionGas + (totalMessageSize * MIN_GAS_CALLDATA_OVERHEAD),
(totalMessageSize * FLOOR_CALLDATA_OVERHEAD)
)
);
}
/// @notice Initializer.
/// @param _otherMessenger CrossDomainMessenger contract on the other chain.
function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
// We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
// meaning that this is a fresh contract deployment.
// This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
// a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
if (xDomainMsgSender == address(0)) {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
}
otherMessenger = _otherMessenger;
}
/// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @param _to Recipient of the message on the other chain.
/// @param _gasLimit Minimum gas limit the message can be executed with.
/// @param _value Amount of ETH to send with the message.
/// @param _data Message data.
function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
/// @notice Checks whether the message is coming from the other messenger. Implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @return Whether the message is coming from the other messenger.
function _isOtherMessenger() internal view virtual returns (bool);
/// @notice Checks whether a given call target is a system address that could cause the
/// messenger to peform an unsafe action. This is NOT a mechanism for blocking user
/// addresses. This is ONLY used to prevent the execution of messages to specific
/// system addresses that could cause security issues, e.g., having the
/// CrossDomainMessenger send messages to itself.
/// @param _target Address of the contract to check.
/// @return Whether or not the address is an unsafe system address.
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
}
L1CrossDomainMessenger.sol 74 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Predeploys } from "src/libraries/Predeploys.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
/// @custom:proxied
/// @title L1CrossDomainMessenger
/// @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
/// for sending and receiving data on the L1 side. Users are encouraged to use this
/// interface instead of interacting with lower-level contracts directly.
contract L1CrossDomainMessenger is CrossDomainMessenger, ISemver {
/// @notice Contract of the SuperchainConfig.
SuperchainConfig public superchainConfig;
/// @notice Contract of the OptimismPortal.
/// @custom:network-specific
OptimismPortal public portal;
/// @notice Semantic version.
/// @custom:semver 2.4.0
string public constant version = "2.4.0";
/// @notice Constructs the L1CrossDomainMessenger contract.
constructor() CrossDomainMessenger() {
initialize({ _superchainConfig: SuperchainConfig(address(0)), _portal: OptimismPortal(payable(address(0))) });
}
/// @notice Initializes the contract.
/// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
/// @param _portal Contract of the OptimismPortal contract on this network.
function initialize(SuperchainConfig _superchainConfig, OptimismPortal _portal) public initializer {
superchainConfig = _superchainConfig;
portal = _portal;
__CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
}
/// @notice Getter function for the OptimismPortal contract on this chain.
/// Public getter is legacy and will be removed in the future. Use `portal()` instead.
/// @return Contract of the OptimismPortal on this chain.
/// @custom:legacy
function PORTAL() external view returns (OptimismPortal) {
return portal;
}
/// @inheritdoc CrossDomainMessenger
function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal override {
portal.depositTransaction{ value: _value }({
_to: _to,
_value: _value,
_gasLimit: _gasLimit,
_isCreation: false,
_data: _data
});
}
/// @inheritdoc CrossDomainMessenger
function _isOtherMessenger() internal view override returns (bool) {
return msg.sender == address(portal) && portal.l2Sender() == address(otherMessenger);
}
/// @inheritdoc CrossDomainMessenger
function _isUnsafeTarget(address _target) internal view override returns (bool) {
return _target == address(this) || _target == address(portal);
}
/// @inheritdoc CrossDomainMessenger
function paused() public view override returns (bool) {
return superchainConfig.paused();
}
}
OptimismPortal.sol 680 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { SystemConfig } from "src/L1/SystemConfig.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
import { StateVerifier } from "src/libraries/StateVerifier.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { IEscapeResolver } from "src/L1/IEscapeResolver.sol";
import { ResolverRegistry } from "src/L1/ResolverRegistry.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { WithdrawTreeVerifier } from "src/libraries/WithdrawTreeVerifier.sol";
/// @custom:proxied
/// @title OptimismPortal
/// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
/// and L2. Messages sent directly to the OptimismPortal have no form of replayability.
/// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
/// @notice The withdrawal verification method was ported from Scroll
contract OptimismPortal is Initializable, ReentrancyGuardUpgradeable, ResourceMetering, ISemver {
/// @notice Represents a proven withdrawal.
/// @custom:field outputRoot Root of the L2 output this was proven against.
/// @custom:field timestamp Timestamp at which the withdrawal was proven.
/// @custom:field l2OutputIndex Index of the output this was proven against.
struct ProvenWithdrawal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2OutputIndex;
}
/// @notice Version of the deposit event.
uint256 internal constant DEPOSIT_VERSION = 0;
/// @notice The L2 gas limit set when eth is deposited using the receive() function.
uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
/// @notice Address of the L2 account which initiated a withdrawal in this transaction.
/// If the of this variable is the default L2 sender address, then we are NOT inside of
/// a call to finalizeWithdrawalTransaction.
address public l2Sender;
/// @notice A list of withdrawal hashes which have been successfully finalized.
mapping(bytes32 => bool) public finalizedWithdrawals;
/// @notice Mapping of withdrawal hashes to `ProvenWithdrawal` data
mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
/// @notice The address of the Superchain Config contract.
SuperchainConfig public superchainConfig;
uint256[24] spacer_54_0_768;
/// @notice Contract of the L2OutputOracle.
/// @custom:network-specific
L2OutputOracle public l2Oracle;
/// @notice Contract of the SystemConfig.
/// @custom:network-specific
SystemConfig public systemConfig;
/// @notice Registry for Escape Resolvers
ResolverRegistry public resolverRegistry;
/// @notice Mapping from address to amount of Eth escaped
mapping(address => uint256) public amountEscaped;
/// @notice Mapping from address to amount of WETH escaped
mapping(address => uint256) public amountWETHEscaped;
/// @notice Emitted when a transaction is deposited from L1 to L2.
/// The parameters of this event are read by the rollup node and used to derive deposit
/// transactions on L2.
/// @param from Address that triggered the deposit transaction.
/// @param to Address that the deposit transaction is directed to.
/// @param version Version of this deposit transaction event.
/// @param opaqueData ABI encoded deposit data to be parsed off-chain.
event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
/// @notice Legacy, removed but kept for backwards compatibility in the bindings
/// @notice Emitted when a withdrawal transaction is proven.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param from Address that triggered the withdrawal transaction.
/// @param to Address that the withdrawal transaction is directed to.
event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
/// @notice Emitted when a withdrawal transaction is finalized.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param success Whether the withdrawal transaction was successful.
event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
/// @notice Emitted when an Eth escape happens.
/// @param user address that performed the escape.
/// @param amount amount of Eth removed from the contract.
event ETHEscaped(address indexed user, uint256 amount);
/// @notice Emitted when an Eth escape through a resolver happens.
/// @param l2Contract Address of the L2 contract that held the funds.
/// @param user address that performed the escape.
/// @param amount amount of Eth removed from the contract.
event ETHEscapedResolver(address indexed l2Contract, address indexed user, uint256 amount);
/// @notice Emitted when an WETH escape happens.
/// @param user address that performed the escape.
/// @param amount amount of Eth removed from the contract.
event WETHEscaped(address indexed user, uint256 amount);
/// @notice Emitted when an Eth escape through a resolver happens.
/// @param l2Contract Address of the L2 contract that held the funds.
/// @param user address that performed the escape.
/// @param amount amount of Eth removed from the contract.
event WETHEscapedResolver(address indexed l2Contract, address indexed user, uint256 amount);
/// @notice Reverts when paused.
modifier whenNotPaused() {
require(paused() == false, "OptimismPortal: paused");
_;
}
/// @notice Semantic version.
/// @custom:semver 2.2.0
string public constant version = "2.2.0";
/// @notice Constructs the OptimismPortal contract.
constructor() {
initialize({
_l2Oracle: L2OutputOracle(address(0)),
_systemConfig: SystemConfig(address(0)),
_superchainConfig: SuperchainConfig(address(0)),
_resolverRegistry: ResolverRegistry(address(0))
});
}
/// @notice Initializer.
/// @param _l2Oracle Contract of the L2OutputOracle.
/// @param _systemConfig Contract of the SystemConfig.
/// @param _superchainConfig Contract of the SuperchainConfig.
function initialize(
L2OutputOracle _l2Oracle,
SystemConfig _systemConfig,
SuperchainConfig _superchainConfig,
ResolverRegistry _resolverRegistry
)
public
initializer
{
l2Oracle = _l2Oracle;
systemConfig = _systemConfig;
superchainConfig = _superchainConfig;
resolverRegistry = _resolverRegistry;
if (l2Sender == address(0)) {
l2Sender = Constants.DEFAULT_L2_SENDER;
}
__ResourceMetering_init();
}
/// @notice Getter function for the address of the guardian. This will be removed in the future, use
/// `SuperchainConfig.guardian()` instead.
/// @notice Address of the guardian.
/// @custom:legacy
function guardian() public view returns (address) {
return superchainConfig.guardian();
}
/// @notice Getter for the current paused status.
function paused() public view returns (bool paused_) {
paused_ = superchainConfig.paused();
}
/// @notice Computes the minimum gas limit for a deposit.
/// The minimum gas limit linearly increases based on the size of the calldata.
/// This is to prevent users from creating L2 resource usage without paying for it.
/// This function can be used when interacting with the portal to ensure forwards
/// compatibility.
/// @param _byteCount Number of bytes in the calldata.
/// @return The minimum gas limit for a deposit.
function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
return _byteCount * 40 + 21000;
}
/// @notice Accepts value so that users can send ETH directly to this contract and have the
/// funds be deposited to their address on L2. This is intended as a convenience
/// function for EOAs. Contracts should call the depositTransaction() function directly
/// otherwise any deposited funds will be lost due to address aliasing.
// solhint-disable-next-line ordering
receive() external payable {
depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
}
/// @notice Accepts ETH value without triggering a deposit to L2.
/// This function mainly exists for the sake of the migration between the legacy
/// Optimism system and Bedrock.
function donateETH() external payable {
// Intentionally empty.
}
/// @notice Getter for the resource config.
/// Used internally by the ResourceMetering contract.
/// The SystemConfig is the source of truth for the resource config.
/// @return ResourceMetering ResourceConfig
function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
return systemConfig.resourceConfig();
}
/// @notice Proves and finalizes a withdrawal transaction.
/// @param _tx Withdrawal transaction to finalize.
/// @param _l2OutputIndex L2 output index to prove against.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's withdrawal root.
/// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
function proveWithdrawalTransaction(
Types.WithdrawalTransaction memory _tx,
uint256 _l2OutputIndex,
Types.OutputRootProof calldata _outputRootProof,
bytes[] calldata _withdrawalProof
)
external
whenNotPaused
{
// Prevent users from creating a deposit transaction where this address is the message
// sender on L2
require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
// Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
// than the default value when a withdrawal transaction is being finalized. This check is
// a defacto reentrancy guard.
require(l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: function cannot be reentered");
// Get the output root and finalization time. This will revert if there is no output root for the given block
// number.
(bytes32 outputRoot, uint256 outputFinalizedAt) = l2Oracle.getL2OutputRootWithFinalization(_l2OutputIndex);
// A withdrawal must wait at least the finalization period before it can be finalized.
require(
block.timestamp >= outputFinalizedAt,
"OptimismPortal: proven withdrawal finalization period has not elapsed"
);
// Verify that the output root can be generated with the elements in the proof.
require(
outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
);
// using the withdrawal hash as a unique identifier.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
// Nonce has a version stored as a bit in the highest byte - this is masked out here.
(uint240 msgNonce, uint16 msgVersion) = Encoding.decodeVersionedNonce(_tx.nonce);
// Withdrawal proof verficaction with respect to withdrawal root
if(msgVersion == 1) {
// Verification of Merkle trie proof for old withdrawals.
// Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
// Refer to the Solidity documentation for more information on how storage layouts are
// computed for mappings.
bytes32 storageKey = keccak256(
abi.encode(
withdrawalHash,
uint256(0) // The withdrawals mapping is at the first slot in the layout.
)
);
// Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
// on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
// bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
// be relayed on L1.
require(
SecureMerkleTrie.verifyInclusionProof(
abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
),
"OptimismPortal: invalid withdrawal inclusion proof, msgVersion=1"
);
} else if (msgVersion == 2) {
// Verification of Merkle tree proof for new withdrawals.
require(
WithdrawTreeVerifier.verifyMerkleProof(
_outputRootProof.messagePasserStorageRoot, withdrawalHash, msgNonce, _withdrawalProof[0]
),
"OptimismPortal: invalid withdrawal inclusion proof, msgVersion=2"
);
} else {
revert("OptimismPortal: invalid message version");
}
// Check that this withdrawal has not already been finalized, this is replay protection.
require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
// Mark the withdrawal as finalized so it can't be replayed.
finalizedWithdrawals[withdrawalHash] = true;
// Set the l2Sender so contracts know who triggered this withdrawal on L2.
l2Sender = _tx.sender;
// Trigger the call to the target contract. We use a custom low level method
// SafeCall.callWithMinGas to ensure two key properties
// 1. Target contracts cannot force this call to run out of gas by returning a very large
// amount of data (and this is OK because we don't care about the returndata here).
// 2. The amount of gas provided to the execution context of the target is at least the
// gas limit specified by the user. If there is not enough gas in the current context
// to accomplish this, `callWithMinGas` will revert.
bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
// Reset the l2Sender back to the default value.
l2Sender = Constants.DEFAULT_L2_SENDER;
// All withdrawals are immediately finalized. Replayability can
// be achieved through contracts built on top of this contract
emit WithdrawalFinalized(withdrawalHash, success);
// Reverting here is useful for determining the exact gas cost to successfully execute the
// sub call to the target contract if the minimum gas limit specified by the user would not
// be sufficient to execute the sub call.
if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("OptimismPortal: withdrawal failed");
}
}
/// @notice Finalizes a withdrawal transaction. Keeping this function for legacy transactions that
/// were proven before the single step withdrawal process was introduced.
/// @param _tx Withdrawal transaction to finalize.
function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
// Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
// than the default value when a withdrawal transaction is being finalized. This check is
// a defacto reentrancy guard.
require(l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: function cannot be reentered");
// Grab the proven withdrawal from the `provenWithdrawals` map.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
// been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
// a timestamp of zero.
require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
// As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
// starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
// safety against weird bugs in the proving step.
require(
provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
"OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
);
// Get the output root and finalization time. This will revert if there is no output root for the given block
// number.
(bytes32 outputRoot, uint256 outputFinalizedAt) =
l2Oracle.getL2OutputRootWithFinalization(provenWithdrawal.l2OutputIndex);
// A proven withdrawal must wait at least the finalization period before it can be
// finalized. This waiting period can elapse in parallel with the waiting period for the
// output the withdrawal was proven against. In effect, this means that the minimum
// withdrawal time is proposal submission time + finalization period.
require(
block.timestamp >= outputFinalizedAt,
"OptimismPortal: proven withdrawal finalization period has not elapsed"
);
// Check that the output root that was used to prove the withdrawal is the same as the
// current output root for the given output index. An output root may change if it is
// deleted by the challenger address and then re-proposed.
require(
outputRoot == provenWithdrawal.outputRoot,
"OptimismPortal: output root proven is not the same as current output root"
);
// Check that this withdrawal has not already been finalized, this is replay protection.
require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
// Mark the withdrawal as finalized so it can't be replayed.
finalizedWithdrawals[withdrawalHash] = true;
// Set the l2Sender so contracts know who triggered this withdrawal on L2.
l2Sender = _tx.sender;
// Trigger the call to the target contract. We use a custom low level method
// SafeCall.callWithMinGas to ensure two key properties
// 1. Target contracts cannot force this call to run out of gas by returning a very large
// amount of data (and this is OK because we don't care about the returndata here).
// 2. The amount of gas provided to the execution context of the target is at least the
// gas limit specified by the user. If there is not enough gas in the current context
// to accomplish this, `callWithMinGas` will revert.
bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
// Reset the l2Sender back to the default value.
l2Sender = Constants.DEFAULT_L2_SENDER;
// All withdrawals are immediately finalized. Replayability can
// be achieved through contracts built on top of this contract
emit WithdrawalFinalized(withdrawalHash, success);
// Reverting here is useful for determining the exact gas cost to successfully execute the
// sub call to the target contract if the minimum gas limit specified by the user would not
// be sufficient to execute the sub call.
if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("OptimismPortal: withdrawal failed");
}
}
/// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
/// deriving deposit transactions. Note that if a deposit is made by a contract, its
/// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
/// using the CrossDomainMessenger contracts for a simpler developer experience.
/// @param _to Target address on L2.
/// @param _value ETH value to send to the recipient.
/// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1.
/// @param _isCreation Whether or not the transaction is a contract creation.
/// @param _data Data to trigger the recipient with.
function depositTransaction(
address _to,
uint256 _value,
uint64 _gasLimit,
bool _isCreation,
bytes memory _data
)
public
payable
whenNotPaused
metered(_gasLimit)
{
// Just to be safe, make sure that people specify address(0) as the target when doing
// contract creations.
if (_isCreation) {
require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
}
// Prevent depositing transactions that have too small of a gas limit. Users should pay
// more for more resource usage.
require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
// Prevent the creation of deposit transactions that have too much calldata. This gives an
// upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
// that the transaction can fit into the p2p network policy of 128kb even though deposit
// transactions are not gossipped over the p2p network.
require(_data.length <= 120_000, "OptimismPortal: data too large");
// Transform the from-address to its alias if the caller is a contract.
address from = msg.sender;
if (msg.sender != tx.origin) {
from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
}
// Compute the opaque data that will be emitted as part of the TransactionDeposited event.
// We use opaque data so that we can update the TransactionDeposited event in the future
// without breaking the current interface.
bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
// Emit a TransactionDeposited event so that the rollup node can derive a deposit
// transaction for this deposit.
emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
}
/// @notice Determine if a given output is finalized.
/// Reverts if the call to l2Oracle.getL2Output reverts.
/// Returns a boolean otherwise.
/// @param _l2OutputIndex Index of the L2 output to check.
/// @return Whether or not the output is finalized.
function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
(, uint256 outputFinalizedAt) = l2Oracle.getL2OutputRootWithFinalization(_l2OutputIndex);
return block.timestamp >= outputFinalizedAt;
}
/// @notice Function to withdraw ETH that user had on L2 if more than 30 days passed since output root was
/// published.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _accountState State of user account on L2.
/// @param _proof Proof of account state on L2.
function escapeETH(
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _accountState,
bytes[] calldata _proof
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(msg.sender, _accountState, _proof, _outputRootProof.stateRoot);
amountEscaped[msg.sender] += _accountState.balance;
require(amountEscaped[msg.sender] == _accountState.balance, "OptimismPortal: Already escaped ETH balance.");
bool success = SafeCall.send(msg.sender, _accountState.balance);
if (success == false) {
revert("OptimismPortal: escape failed");
}
emit ETHEscaped(msg.sender, _accountState.balance);
}
/// @notice Function to withdraw WETH that user had on L2 if more than 30 days passed since output root was
/// published.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _accountState State of of WETH contract on L2.
/// @param _stateProof Proof of account state of WETH on L2.
/// @param _wethBalance User balance of WETH.
/// @param _storageProof Proof of value on the storage slot with the user balance.
function escapeWETH(
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _accountState,
bytes[] calldata _stateProof,
uint256 _wethBalance,
bytes[] calldata _storageProof
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(Predeploys.WETH9, _accountState, _stateProof, _outputRootProof.stateRoot);
bytes32 storageKey = _getWETHBalanceSlot(msg.sender);
_verifyBalance(storageKey, _wethBalance, _storageProof, _accountState.storageRoot);
amountWETHEscaped[msg.sender] += _wethBalance;
require(amountWETHEscaped[msg.sender] == _wethBalance, "OptimismPortal: Already escaped WETH balance.");
bool success = SafeCall.send(msg.sender, _wethBalance);
if (success == false) {
revert("OptimismPortal: escape failed");
}
emit WETHEscaped(msg.sender, _wethBalance);
}
/// @notice Function to remove ETH to user that smart contract had on L2 if more than 30 days passed since output
/// root was published through a resolver contract.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _accountstate State of of smart contract account on L2.
/// @param _proof Proof of account state of smart contract on L2.
/// @param _l2Contract Address of the L2 smart contract that users wants to escape assets from.
/// @param _data Extra data needed for the resolver contract.
function escapeETHThroughResolver(
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _accountstate,
bytes[] calldata _proof,
address _l2Contract,
bytes memory _data
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(_l2Contract, _accountstate, _proof, _outputRootProof.stateRoot);
address _resolver = ResolverRegistry(resolverRegistry).resolvers(_l2Contract);
if (_resolver == address(0)) {
revert("OptimismPortal: No Resolver Contract Registered");
}
uint256 _amountToUser = IEscapeResolver(_resolver).userEscapableETHBalance(msg.sender, _accountstate, _data);
amountEscaped[_l2Contract] += _amountToUser;
require(_amountToUser <= _accountstate.balance, "OptimismPortal: Invalid amount from resolver");
require(amountEscaped[_l2Contract] <= _accountstate.balance, "OptimismPortal: Already escaped ETH balance.");
bool success = SafeCall.send(msg.sender, _amountToUser);
if (success == false) {
revert("OptimismPortal: escape failed");
}
emit ETHEscapedResolver(_l2Contract, msg.sender, _amountToUser);
}
/// @notice Allows users to escape ERC20 tokens from a smart contract through a resolver contract if no output root
/// has been published for over 30 days.
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _wethState State of the WETH token contract on L2.
/// @param _stateProof Proof of the WETH contract state.
/// @param _tokenBalance Balance the smart contract had of WETH on L2.
/// @param _storageProof Proof of value on the storage slot with the user balance.
/// @param _resolverData Extra data needed for the resolver to determine escape.
function escapeWETHThroughResolver(
Types.OutputRootProof calldata _outputRootProof,
Types.AccountState calldata _wethState,
bytes[] calldata _stateProof,
uint256 _tokenBalance,
bytes[] calldata _storageProof,
Types.ResolverData calldata _resolverData
)
external
nonReentrant
{
_verifyOutputRoot(_outputRootProof);
_verifyState(Predeploys.WETH9, _wethState, _stateProof, _outputRootProof.stateRoot);
_verifyBalance(
_getWETHBalanceSlot(_resolverData.l2Contract), _tokenBalance, _storageProof, _wethState.storageRoot
);
uint256 _amountToUser;
{
address _resolver = ResolverRegistry(resolverRegistry).resolvers(_resolverData.l2Contract);
if (_resolver == address(0)) {
revert("OptimismPortal: No Resolver Contract Registered");
}
_amountToUser = IEscapeResolver(_resolver).userEscapableERC20Balance(
msg.sender, Predeploys.WETH9, _outputRootProof.stateRoot, _resolverData.data
);
}
amountWETHEscaped[_resolverData.l2Contract] += _amountToUser;
require(_amountToUser <= _tokenBalance, "OptimismPortal: Invalid amount from resolver");
require(
amountWETHEscaped[_resolverData.l2Contract] <= _tokenBalance,
"OptimismPortal: Already escaped WETH balance."
);
bool success = SafeCall.send(msg.sender, _amountToUser);
if (success == false) {
revert("OptimismPortal: escape failed");
}
emit WETHEscapedResolver(_resolverData.l2Contract, msg.sender, _amountToUser);
}
function _verifyState(
address _account,
Types.AccountState calldata _accountState,
bytes[] memory _proof,
bytes32 _stateRoot
)
internal
pure
{
require(
StateVerifier.verifyAccountState(_account, _accountState, _proof, _stateRoot),
"OptimismPortal: Invalid account state proof."
);
}
function _verifyOutputRoot(Types.OutputRootProof calldata _outputRootProof) internal view {
Types.OutputProposal memory lastSubmittedRoot = l2Oracle.getL2Output(l2Oracle.latestOutputIndex());
uint256 timeLimitOutputRootSubmissionSeconds = l2Oracle.timeLimitOutputRootSubmissionSeconds();
require(
lastSubmittedRoot.timestamp + timeLimitOutputRootSubmissionSeconds < block.timestamp,
"OptimismPortal: Not enough time has passed to escape."
);
require(
lastSubmittedRoot.outputRoot == Hashing.hashOutputRootProof(_outputRootProof),
"OptimismPortal: Invalid output root proof"
);
}
function _verifyBalance(
bytes32 _storageKey,
uint256 _tokenBalance,
bytes[] memory _storageProof,
bytes32 _storageRoot
)
internal
pure
{
require(
StateVerifier.verifyERC20Balance(_storageKey, _tokenBalance, _storageProof, _storageRoot),
"OptimismPortal: Invalid storage proof."
);
}
function _getWETHBalanceSlot(address _user) internal pure returns (bytes32) {
return keccak256(abi.encode(uint256(uint160(_user)), uint256(3)));
}
}
SuperchainConfig.sol 38 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { ISemver } from "src/universal/ISemver.sol";
import { AccessControlPausable } from "src/universal/AccessControlPausable.sol";
/// PUBLIC: DELETE START
/// @custom:audit none This contracts is not yet audited.
/// PUBLIC: DELETE END
/// @title SuperchainConfig
/// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
contract SuperchainConfig is AccessControlPausable, ISemver {
/// @notice Semantic version.
/// @custom:semver 1.2.0
string public constant version = "1.2.0";
/// @notice Constructs the SuperchainConfig contract.
constructor() {
initialize({ _admin: address(0xdead), _paused: false });
}
/// @notice Initializer.
/// @param _admin Address of the admin, can control access roles.
/// @param _paused Initial paused status.
function initialize(address _admin, bool _paused) public initializer {
// assign the _admin address the DEFAULT_ADMIN_ROLE
// changing admin addresses requires 1 day to pass
__AccessControlPausable_init(1 days, _admin);
if (_paused) {
_pause("Initializer paused");
}
}
/// @notice Alias for the DEFAULT_ADMIN_ROLE
function guardian() external view returns (address) {
return defaultAdmin();
}
}
Constants.sol 47 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
maxResourceLimit: 6_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
_spacer: 0,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
}
AccessControlPausable.sol 75 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { AccessControlDefaultAdminRulesUpgradeable } from "@openzeppelin/contracts-upgradeable/access/extensions/AccessControlDefaultAdminRulesUpgradeable.sol";
import { Storage } from "src/libraries/Storage.sol";
/// @title AccessControlPausable
/// @notice Provide common constants/functions for implementing access control pausability
abstract contract AccessControlPausable is AccessControlDefaultAdminRulesUpgradeable {
/// @notice Whether or not the contract is paused.
bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("paused")) - 1);
/// @notice Addresses with this role are allowed to pause the contract but not unpause it.
bytes32 public constant MONITOR_ROLE = keccak256("MONITOR_ROLE");
/// @notice Addresses with this role are allowed to pause and unpause the contract.
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
/// @notice Emitted when the pause is triggered.
/// @param identifier A string helping to identify provenance of the pause transaction.
event Paused(string identifier);
/// @notice Emitted when the pause is lifted.
event Unpaused();
/// @notice Returns whether `_address` has at least monitor capabilities
function hasMonitorCapabilities(address _address) public view returns (bool) {
return hasRole(MONITOR_ROLE, _address)
|| hasRole(OPERATOR_ROLE, _address)
|| hasRole(DEFAULT_ADMIN_ROLE, _address);
}
/// @notice Returns whether `_address` has operator capabilities
function hasOperatorCapabilities(address _address) public view returns (bool) {
return hasRole(OPERATOR_ROLE, _address)
|| hasRole(DEFAULT_ADMIN_ROLE, _address);
}
/// @notice Getter for the current paused status.
function paused() public view returns (bool paused_) {
paused_ = Storage.getUint(PAUSED_SLOT) != 0;
}
/// @notice Getter for the paused timestamp.
function pausedTimestamp() public view returns (uint256 pausedSince_) {
pausedSince_ = Storage.getUint(PAUSED_SLOT);
}
/// @notice Pauses deposits and withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function pause(string memory _identifier) external {
require(hasMonitorCapabilities(msg.sender), "caller not allowed to pause");
require(!paused(), "already paused");
_pause(_identifier);
}
/// @notice Pauses deposits and withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function _pause(string memory _identifier) internal {
Storage.setUint(PAUSED_SLOT, block.timestamp);
emit Paused(_identifier);
}
/// @notice Unpauses deposits and withdrawals.
function unpause() external {
require(hasOperatorCapabilities(msg.sender), "caller not allowed to unpause");
Storage.setUint(PAUSED_SLOT, 0);
emit Unpaused();
}
/// @notice Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
function __AccessControlPausable_init(uint48 _initialDelay, address _initialDefaultAdmin) internal onlyInitializing {
__AccessControlDefaultAdminRules_init(_initialDelay, _initialDefaultAdmin);
}
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
L2OutputOracle.sol 619 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import { Types } from "src/libraries/Types.sol";
import { ISP1Verifier } from "@sp1-contracts/ISP1Verifier.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
/// @custom:proxied
/// @title L2OutputOracle
/// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
/// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
/// these outputs to verify information about the state of L2. The outputs posted to this contract
/// are proved to be valid with `op-succinct`.
contract L2OutputOracle is Initializable, Ownable2StepUpgradeable, ISemver {
/// @notice Parameters to initialize the L2OutputOracle contract.
struct InitParams {
uint256 l2ChainId;
uint256 l2BlockTime;
uint256 startingBlockNumber;
uint256 startingTimestamp;
address proposer;
address challenger;
address verifierV3;
uint256 finalizationPeriodSeconds;
bytes32 aggregationVkey;
bytes32 rangeVkeyCommitment;
bytes32 rollupConfigHash;
address owner;
address superchainConfig;
uint256 timeLimitOutputRootSubmissionSeconds;
}
/// @dev Address of the EIP-2935 history storage contract.
address internal constant HISTORY_STORAGE_ADDRESS = 0x0000F90827F1C53a10cb7A02335B175320002935;
/// @notice The number of the first L2 block recorded in this contract.
uint256 public startingBlockNumber;
/// @notice The timestamp of the first L2 block recorded in this contract.
uint256 public startingTimestamp;
/// @notice An array of L2 output proposals.
Types.OutputProposal[] internal l2Outputs;
/// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
/// @custom:network-specific
uint256 public finalizationPeriodSeconds;
uint256 spacer_4_0_32;
/// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
/// @custom:network-specific
uint256 public l2BlockTime;
/// @notice The address of the challenger. Can be updated via upgrade.
/// @custom:network-specific
address public challenger;
uint256 spacer_7_0_32;
/// @notice The address of the proposer. Can be updated via upgrade.
/// @custom:network-specific
address public proposer;
/// @notice Gaps for deprecated members
/// @custom:network-specific
uint256 spacer_9_0_32;
/// @notice The chain ID of the L2
uint256 public l2ChainId;
uint256 spacer_11_0_32;
uint256 spacer_12_0_32;
uint256 spacer_13_0_32;
/// @notice Maximum amount of time that can pass without receiving new L2 output proposals.
uint256 public timeLimitOutputRootSubmissionSeconds;
/// @notice SuperchainConfig contract address used for fetching pause time
SuperchainConfig public superchainConfig;
/// @notice The verification key of the aggregation SP1 program.
bytes32 public aggregationVkey;
/// @notice The 32 byte commitment to the BabyBear representation of the verification key of the range SP1 program.
/// Specifically,
/// this verification is the output of converting the [u32; 8] range BabyBear verification key to a [u8; 32] array.
bytes32 public rangeVkeyCommitment;
/// @notice The deployed SP1Verifier contract to verify proofs.
address public verifierV3;
/// @notice The hash of the chain's rollup config, which ensures the proofs submitted are for the correct chain.
bytes32 public rollupConfigHash;
/// @notice A trusted mapping of block numbers to block hashes.
mapping(uint256 => bytes32) public historicBlockHashes;
uint256 spacer_21_0_32;
/// @notice Extended data for output proposals.
/// @dev Maps output index to extended proposal data. This mapping can be extended with new fields
/// in OutputProposalExtension without breaking backwards compatibility. For outputs created
/// before fields were added, those field values will be zero/address(0).
mapping(uint256 => Types.OutputProposalExtension) internal l2OutputsExtension;
////////////////////////////////////////////////////////////
// Events //
////////////////////////////////////////////////////////////
/// @notice Emitted when a v2 output is proposed. This is a legacy event kept for abi generation.
/// @param poseidonStateRoot The output root.
/// @param l2OutputIndex The index of the output in the l2Outputs/l2OutputsEx array.
/// @param batchIndex The batch index of the proof.
/// @param batchHash The batch hash of the proof.
/// @custom:legacy
event OutputProposedV2(
bytes32 indexed poseidonStateRoot, uint256 indexed l2OutputIndex, uint256 batchIndex, bytes32 batchHash
);
/// @notice Emitted when an output is proposed.
/// @param outputRoot The output root.
/// @param l2OutputIndex The index of the output in the l2Outputs array.
/// @param l2BlockNumber The L2 block number of the output root.
/// @param l1Timestamp The L1 timestamp when proposed.
event OutputProposed(
bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
);
/// @notice Emitted when outputs are deleted.
/// @param prevNextOutputIndex Next L2 output index before the deletion.
/// @param newNextOutputIndex Next L2 output index after the deletion.
event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
/// @notice Emitted when the aggregation verification key is updated.
/// @param oldAggregationVkey The old aggregation verification key.
/// @param newAggregationVkey The new aggregation verification key.
event AggregationVkeyUpdated(bytes32 indexed oldAggregationVkey, bytes32 indexed newAggregationVkey);
/// @notice Emitted when the range verification key commitment is updated.
/// @param oldRangeVkeyCommitment The old range verification key commitment.
/// @param newRangeVkeyCommitment The new range verification key commitment.
event RangeVkeyCommitmentUpdated(bytes32 indexed oldRangeVkeyCommitment, bytes32 indexed newRangeVkeyCommitment);
/// @notice Emitted when the verifier address is updated.
/// @param oldVerifier The old verifier address.
/// @param newVerifier The new verifier address.
event VerifierUpdated(address indexed oldVerifier, address indexed newVerifier);
/// @notice Emitted when the rollup config hash is updated.
/// @param oldRollupConfigHash The old rollup config hash.
/// @param newRollupConfigHash The new rollup config hash.
event RollupConfigHashUpdated(bytes32 indexed oldRollupConfigHash, bytes32 indexed newRollupConfigHash);
/// @notice Emitted when a proposer address is added.
/// @param proposer The proposer address.
/// @param added Whether the proposer was added or removed.
event ProposerUpdated(address indexed proposer, bool added);
////////////////////////////////////////////////////////////
// Errors //
////////////////////////////////////////////////////////////
/// @notice The L1 block hash is not available. If the block hash requested is not in the last 256 blocks,
/// it is not available.
error L1BlockHashNotAvailable();
/// @notice The L1 block hash is not checkpointed.
error L1BlockHashNotCheckpointed();
/// @notice The bootstrap was already performed.
error BootstrapAlreadyPerformed();
/// @notice The output for this block has not been proposed yet
error BlockNotProposed();
/// @notice Semantic version.
/// @custom:semver 3.1.0
string public constant version = "3.1.0";
/// @notice The version of the initializer on the contract. Used for managing upgrades.
uint8 public constant initializerVersion = 2;
////////////////////////////////////////////////////////////
// Functions //
////////////////////////////////////////////////////////////
/// @notice Constructs the L2OutputOracle contract. Disables initializers.
constructor() {
_disableInitializers();
}
/// @notice Initializer.
/// @param _initParams The initialization parameters for the contract.
function initialize(InitParams memory _initParams) public reinitializer(initializerVersion) {
require(_initParams.l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
require(
_initParams.startingTimestamp <= block.timestamp,
"L2OutputOracle: starting L2 timestamp must be less than current time"
);
l2BlockTime = _initParams.l2BlockTime;
// For proof verification to work, there must be an initial output.
// Disregard the _startingBlockNumber and _startingTimestamp parameters during upgrades, as they're already set.
if (l2Outputs.length == 0) {
startingBlockNumber = _initParams.startingBlockNumber;
startingTimestamp = _initParams.startingTimestamp;
}
proposer = _initParams.proposer;
challenger = _initParams.challenger;
finalizationPeriodSeconds = _initParams.finalizationPeriodSeconds;
l2ChainId = _initParams.l2ChainId;
timeLimitOutputRootSubmissionSeconds = _initParams.timeLimitOutputRootSubmissionSeconds;
superchainConfig = SuperchainConfig(_initParams.superchainConfig);
// OP Succinct initialization parameters.
aggregationVkey = _initParams.aggregationVkey;
rangeVkeyCommitment = _initParams.rangeVkeyCommitment;
verifierV3 = _initParams.verifierV3;
rollupConfigHash = _initParams.rollupConfigHash;
_transferOwnership(_initParams.owner);
}
/// @notice Getter for the l2BlockTime.
/// Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
/// @return L2 block time.
/// @custom:legacy
function L2_BLOCK_TIME() external view returns (uint256) {
return l2BlockTime;
}
/// @notice Getter for the challenger address.
/// Public getter is legacy and will be removed in the future. Use `challenger` instead.
/// @return Address of the challenger.
/// @custom:legacy
function CHALLENGER() external view returns (address) {
return challenger;
}
/// @notice Getter for the proposer address.
/// Public getter is legacy and will be removed in the future. Use `proposer` instead.
/// @return Address of the proposer.
/// @custom:legacy
function PROPOSER() external view returns (address) {
return proposer;
}
/// @notice Getter for the finalizationPeriodSeconds.
/// Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
/// @return Finalization period in seconds.
/// @custom:legacy
function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
return finalizationPeriodSeconds;
}
/// @notice Setter for the finalizationPeriodSeconds.
function setFinalizationPeriodSeconds(uint256 newFinalizationPeriodLength) external onlyOwner {
// We would never want a value that is larger than a week (like for an OR) and want
// to avoid anyone being able to DoS the bridge therefore we set an upper bound for the period length
require(newFinalizationPeriodLength <= 7 days, "L2OutputOracle: Finalization period too long");
finalizationPeriodSeconds = newFinalizationPeriodLength;
}
/// @notice Updates the aggregation verification key.
/// @param _aggregationVkey The new aggregation verification key.
function updateAggregationVkey(bytes32 _aggregationVkey) external onlyOwner {
emit AggregationVkeyUpdated(aggregationVkey, _aggregationVkey);
aggregationVkey = _aggregationVkey;
}
/// @notice Updates the range verification key commitment.
/// @param _rangeVkeyCommitment The new range verification key commitment.
function updateRangeVkeyCommitment(bytes32 _rangeVkeyCommitment) external onlyOwner {
emit RangeVkeyCommitmentUpdated(rangeVkeyCommitment, _rangeVkeyCommitment);
rangeVkeyCommitment = _rangeVkeyCommitment;
}
/// @notice Updates the verifierV3 address.
/// @param _verifierV3 The new verifierV3 address.
function updateVerifierV3(address _verifierV3) external onlyOwner {
emit VerifierUpdated(verifierV3, _verifierV3);
verifierV3 = _verifierV3;
}
/// @notice Setter for the timeLimitOutputRootSubmissionSeconds.
function setTimeLimitOutputRootSubmissionSeconds(uint256 _timeLimitOutputRootSubmissionSeconds)
external
onlyOwner
{
timeLimitOutputRootSubmissionSeconds = _timeLimitOutputRootSubmissionSeconds;
}
/// @notice Updates the rollup config hash.
/// @param _rollupConfigHash The new rollup config hash.
function updateRollupConfigHash(bytes32 _rollupConfigHash) external onlyOwner {
emit RollupConfigHashUpdated(rollupConfigHash, _rollupConfigHash);
rollupConfigHash = _rollupConfigHash;
}
/// @notice Inserts a new l2Output and its extension into storage.
/// @param _outputProposal The L2 output proposal.
/// @param _outputProposalExtension The L2 output proposal extension.
function _insertL2Output(Types.OutputProposal memory _outputProposal, Types.OutputProposalExtension memory _outputProposalExtension) internal {
l2Outputs.push(_outputProposal);
l2OutputsExtension[l2Outputs.length - 1] = _outputProposalExtension;
}
/// @notice Deletes all output proposals after and including the proposal that corresponds to
/// the given output index. Only the challenger address can delete outputs.
/// @param _l2OutputIndex Index of the first L2 output to be deleted.
/// All outputs after this output will also be deleted.
function deleteL2Outputs(uint256 _l2OutputIndex) external {
require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
// Make sure we're not *increasing* the length of the array.
require(
_l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
);
// Do not allow deleting any outputs that have already been finalized.
require(
!isL2OutputFinalized(_l2OutputIndex),
"L2OutputOracle: cannot delete outputs that have already been finalized"
);
_deleteL2Outputs(_l2OutputIndex);
}
function _deleteL2Outputs(uint256 _l2OutputIndex) internal {
uint256 prevNextL2OutputIndex = nextOutputIndex();
// Delete extension data for all outputs being removed
for (uint256 i = _l2OutputIndex; i < prevNextL2OutputIndex; i++) {
delete l2OutputsExtension[i];
}
// Use assembly to delete the array elements because Solidity doesn't allow it.
assembly {
sstore(l2Outputs.slot, _l2OutputIndex)
}
emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
}
/// @notice Insert a new l2Output without requiring a corresponding proof.
/// This can only be called by the proposer and
/// 1) there are no outputs yet, so we need an initial state to prove transitions from
/// 2) there was no proof for a prolongued period of time to keep withdrawals live
/// @param _outputRoot The L2 output of the checkpoint block.
/// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
function bootstrapL2Output(bytes32 _outputRoot, uint256 _l2BlockNumber, uint64 _senderNonce, address _senderAddress) external {
require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
require(
_l2BlockNumber >= nextBlockNumber(),
"L2OutputOracle: block number must be greater than or equal to next expected block number"
);
require(
computeL2Timestamp(_l2BlockNumber) < block.timestamp,
"L2OutputOracle: cannot propose L2 output in the future"
);
require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
uint256 l2OutputsLength = l2Outputs.length;
// we only allow bootstrapping if we don't have any outputs yet
if (l2OutputsLength != 0) {
revert BootstrapAlreadyPerformed();
}
emit OutputProposed(_outputRoot, l2OutputsLength, _l2BlockNumber, block.timestamp);
_insertL2Output(
Types.OutputProposal({
outputRoot: _outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)
}),
Types.OutputProposalExtension({
senderNonce: _senderNonce,
senderAddress: _senderAddress
})
);
}
/// @notice Accepts an outputRoot and verifies that the state transition from the last output root
/// to the new one is correct. This function may only be called by the Proposer.
/// @param _outputRoot The L2 output of the checkpoint block.
/// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
/// @param _l1BlockNumber The L1 block number for this proof.
/// @param _proof The aggregation proof that proves the transition from the latest L2 output to the new L2 output.
/// @param _proverAddress The address of the prover that submitted the proof. Note: proverAddress is not required to
/// be the tx.origin as there is no reason to front-run the prover in the full validity setting.
function proposeL2OutputV3(
bytes32 _outputRoot,
uint64 _claimNonce,
address _claimSenderAddress,
uint256 _l2BlockNumber,
uint256 _l1BlockNumber,
bytes memory _proof,
address _proverAddress
)
external
payable
{
require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
require(
_l2BlockNumber >= nextBlockNumber(),
"L2OutputOracle: block number must be greater than or equal to next expected block number"
);
require(
computeL2Timestamp(_l2BlockNumber) < block.timestamp,
"L2OutputOracle: cannot propose L2 output in the future"
);
require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
uint256 nextOutputIdx = nextOutputIndex();
require(nextOutputIdx > 0, "L2OutputOracle: not bootstrapped");
require(
block.timestamp - l2Outputs[l2Outputs.length - 1].timestamp < timeLimitOutputRootSubmissionSeconds,
"L2OutputOracle: Over time limit for L2 output proposal"
);
bytes32 l1BlockHash = _getBlockHash(_l1BlockNumber);
if (l1BlockHash == bytes32(0)) {
l1BlockHash = historicBlockHashes[_l1BlockNumber];
if (l1BlockHash == bytes32(0)) {
revert L1BlockHashNotCheckpointed();
}
}
Types.AggregationOutputs memory publicValues = Types.AggregationOutputs({
l1Head: l1BlockHash,
claimNonce: _claimNonce,
claimSenderAddress: _claimSenderAddress,
l2PreRoot: l2Outputs[latestOutputIndex()].outputRoot,
claimRoot: _outputRoot,
claimBlockNum: _l2BlockNumber,
rollupConfigHash: rollupConfigHash,
rangeVkeyCommitment: rangeVkeyCommitment,
proverAddress: _proverAddress
});
ISP1Verifier(verifierV3).verifyProof(aggregationVkey, abi.encode(publicValues), _proof);
emit OutputProposed(_outputRoot, nextOutputIdx, _l2BlockNumber, block.timestamp);
_insertL2Output(
Types.OutputProposal({
outputRoot: _outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)
}),
Types.OutputProposalExtension({
senderNonce: _claimNonce,
senderAddress: _claimSenderAddress
})
);
}
/// @notice Checkpoints a block hash at a given block number.
/// @param _blockNumber Block number to checkpoint the hash at.
/// @dev If the block hash is not available, this will revert.
function checkpointBlockHash(uint256 _blockNumber) external {
bytes32 blockHash = _getBlockHash(_blockNumber);
if (blockHash == bytes32(0)) {
revert L1BlockHashNotAvailable();
}
historicBlockHashes[_blockNumber] = blockHash;
}
/// @notice Returns just the relevant information for the OptimismPortal for a withdrawal by index.
/// This isolates the OptimismPortal implementation from the implementation details of the L2OO.
/// @param _l2OutputIndex Index of the output information to return.
/// @return outputRoot The output root.
/// @return finalizedTimestamp The timestamp when this output can be considered finalized.
function getL2OutputRootWithFinalization(uint256 _l2OutputIndex)
external
view
returns (bytes32 outputRoot, uint256 finalizedTimestamp)
{
Types.OutputProposal memory proposal = l2Outputs[_l2OutputIndex];
outputRoot = proposal.outputRoot;
finalizedTimestamp = proposal.timestamp + finalizationPeriodSeconds;
}
/// @notice Query whether an output has been finalized, which requires that both 1) the finalization period passed
/// and 2) withdrawals have not been paused centrally through the superchain config contract before the
/// finalization period passed
/// @param _l2OutputIndex Index of the output to check.
/// @return isFinalized Whether the output can be considered to be finalized or still be deleted
function isL2OutputFinalized(uint256 _l2OutputIndex) public view returns (bool isFinalized) {
uint256 finalizationTimestamp = l2Outputs[_l2OutputIndex].timestamp + finalizationPeriodSeconds;
uint256 pausedTimestamp = superchainConfig.pausedTimestamp();
// If withdrawals (controlled via superchain config) were paused before the output was finalized, we also
// consider it not finalized
return block.timestamp >= finalizationTimestamp
&& (pausedTimestamp == 0 || pausedTimestamp >= finalizationTimestamp);
}
/// @notice Returns an output by index. Needed to return a struct instead of a tuple.
/// @param _l2OutputIndex Index of the output to return.
/// @return The output at the given index.
function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
return l2Outputs[_l2OutputIndex];
}
/// @notice Returns an output extension by index. Needed to return a struct instead of a tuple.
/// @param _l2OutputIndex Index of the output to return.
/// @return The output at the given index.
function getL2OutputExtension(uint256 _l2OutputIndex) external view returns (Types.OutputProposalExtension memory) {
return l2OutputsExtension[_l2OutputIndex];
}
/// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return Index of the first checkpoint that commits to the given L2 block number.
function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
// Make sure an output for this block number has actually been proposed.
if (_l2BlockNumber > latestBlockNumber() || l2Outputs.length == 0) {
revert BlockNotProposed();
}
// Find the output via binary search, guaranteed to exist.
uint256 lo = 0;
uint256 hi = l2Outputs.length;
while (lo < hi) {
uint256 mid = (lo + hi) / 2;
if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
/// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return First checkpoint that commits to the given L2 block number.
function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
}
/// @notice Returns the number of outputs that have been proposed.
/// Will revert if no outputs have been proposed yet.
/// @return The number of outputs that have been proposed.
function latestOutputIndex() public view returns (uint256) {
return l2Outputs.length - 1;
}
/// @notice Returns the index of the next output to be proposed.
/// @return The index of the next output to be proposed.
function nextOutputIndex() public view returns (uint256) {
return l2Outputs.length;
}
/// @notice Returns the block number of the latest submitted L2 output proposal.
/// If no proposals been submitted yet then this function will return the starting
/// block number.
/// @return Latest submitted L2 block number.
function latestBlockNumber() public view returns (uint256) {
return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
}
/// @notice Computes the block number of the next L2 block that needs to be checkpointed.
/// @return Next L2 block number.
function nextBlockNumber() public view returns (uint256) {
return latestBlockNumber() + 1;
}
/// @notice Returns the L2 timestamp corresponding to a given L2 block number.
/// @param _l2BlockNumber The L2 block number of the target block.
/// @return L2 timestamp of the given block.
function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
}
/// @notice always have an owner
function renounceOwnership() public override {
revert();
}
/// @dev Internal function to retrieve the block hash defaulting to EIP-2935 history storage contract.
function _getBlockHash(uint256 blockNumber) private view returns (bytes32 hash) {
// If within 256-block history window, use opcode
hash = blockhash(blockNumber);
if (hash != bytes32(0)) {
return hash;
}
assembly ("memory-safe") {
// Store the blockNumber in scratch space
mstore(0x00, blockNumber)
mstore(0x20, 0)
// call history storage address
pop(staticcall(gas(), HISTORY_STORAGE_ADDRESS, 0x00, 0x20, 0x20, 0x20))
// load result
hash := mload(0x20)
}
}
}
Types.sol 134 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
/// @notice The public values committed to for an OP Succinct aggregation program.
struct AggregationOutputs {
bytes32 l1Head;
uint64 claimNonce;
address claimSenderAddress;
bytes32 l2PreRoot;
bytes32 claimRoot;
uint256 claimBlockNum;
bytes32 rollupConfigHash;
bytes32 rangeVkeyCommitment;
address proverAddress;
}
/// @notice Extension for v2 L2OutputOracle proposals that will be stored alongside
/// a regular OutputProposal
/// @custom:field batchIndex index of the batch that was used to prove the transition
/// @custom:field batchHash hash of the batch that was used to prove the transition
/// @custom:field poseidonStateRoot poseidon (zktrie) output root after the transition
struct OutputProposalEx {
uint256 batchIndex;
bytes32 batchHash;
bytes32 poseidonStateRoot;
}
/// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
/// timestamp that the output root is posted. This timestamp is used to verify that the
/// finalization period has passed since the output root was submitted.
/// @custom:field outputRoot Hash of the L2 output.
/// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
/// @custom:field l2BlockNumber L2 block number that the output corresponds to.
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/// @notice Generic extension data for OutputProposal to allow flexible future additions.
/// @dev This struct can be extended with new fields without breaking backwards compatibility.
/// All fields are packed to optimize storage. When adding new fields in the future,
/// simply add them to this struct - existing data will have zero values for new fields.
/// @custom:field senderNonce Last seen sender nonce.
/// @custom:field senderAddress Last seen sender address.
struct OutputProposalExtension {
uint64 senderNonce;
address senderAddress;
}
/// @notice Struct representing the elements that are hashed together to generate an output root
/// which itself represents a snapshot of the L2 state.
/// @custom:field version Version of the output root.
/// @custom:field stateRoot Root of the state trie at the block of this output.
/// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
/// @custom:field latestBlockhash Hash of the block this output was generated from.
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/// @notice Struct representing the configuration of the L2 chain.
/// @custom:field _l2ChainId The chain id of the L2.
/// @custom:field _l2BlockTime The time per L2 block, in seconds.
/// @custom:field _startingBlockNumber The number of the first L2 block.
/// @custom:field _startingTimestamp The timestamp of the first L2 block.
struct L2Chain {
uint256 l2ChainId;
uint256 l2BlockTime;
uint256 startingBlockNumber;
uint256 startingTimestamp;
}
/// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
/// user (as opposed to a system deposit transaction generated by the system).
/// @custom:field from Address of the sender of the transaction.
/// @custom:field to Address of the recipient of the transaction.
/// @custom:field isCreation True if the transaction is a contract creation.
/// @custom:field value Value to send to the recipient.
/// @custom:field mint Amount of ETH to mint.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
/// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
/// @custom:field logIndex Index of the log in the block the transaction was submitted in.
struct UserDepositTransaction {
address from;
address to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/// @notice Struct representing a withdrawal transaction.
/// @custom:field nonce Nonce of the withdrawal transaction
/// @custom:field sender Address of the sender of the transaction.
/// @custom:field target Address of the recipient of the transaction.
/// @custom:field value Value to send to the recipient.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
struct WithdrawalTransaction {
uint256 nonce;
address sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
/// @notice Struct representing an Ethereum account state.
/// @custom:field nonce Nonce of the account
/// @custom:field balance Eth balance of the account.
/// @custom:field storageRoot Root of the account storage trie.
/// @custom:field codeHash Hash of the account bytecode.
struct AccountState {
uint256 nonce;
uint256 balance;
bytes32 storageRoot;
bytes32 codeHash;
}
struct ResolverData {
address l2Contract;
bytes data;
}
}
Hashing.sol 124 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";
/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
/// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
/// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
/// system.
/// @param _tx User deposit transaction to hash.
/// @return Hash of the RLP encoded L2 deposit transaction.
function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
/// of the L2 transaction that corresponds to a deposit is unique and is
/// deterministically generated from L1 transaction data.
/// @param _l1BlockHash Hash of the L1 block where the deposit was included.
/// @param _logIndex The index of the log that created the deposit transaction.
/// @return Hash of the deposit transaction's "source hash".
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/// @notice Hashes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 0) {
return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
}
/// @notice Hashes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
}
/// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
/// @param _tx Withdrawal transaction to hash.
/// @return Hashed withdrawal transaction.
function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
}
/// @notice Hashes the various elements of an output root proof into an output root hash which
/// can be used to check if the proof is valid.
/// @param _outputRootProof Output root proof which should hash to an output root.
/// @return Hashed output root proof.
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
return keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}
StateVerifier.sol 80 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
import { Types } from "src/libraries/Types.sol";
/// @title StateVerifier
/// @notice Verifies merkle proofs for account state, storage proof for ERC20 balance and storage proof of ERC721 token
/// ownership.
library StateVerifier {
/// @notice Verfies merkle proof for account state.
/// @param _account Address of the account to verify.
/// @param _accountState State of the account, nonce, balance, storageRoot, and codeHash.
/// @param _proof Merkle trie inclusion proof for the desired account.
/// @param _stateRoot Root of the merkle trie of the blockchain state.
function verifyAccountState(
address _account,
Types.AccountState memory _accountState,
bytes[] memory _proof,
bytes32 _stateRoot
)
public
pure
returns (bool)
{
//Account value on the state trie is composed of the following components RLP encoded
bytes[] memory input = new bytes[](4);
input[0] = RLPWriter.writeUint(_accountState.nonce);
input[1] = RLPWriter.writeUint(_accountState.balance);
input[2] = RLPWriter.writeBytes(abi.encode(_accountState.storageRoot));
input[3] = RLPWriter.writeBytes(abi.encode(_accountState.codeHash));
bytes memory value = RLPWriter.writeList(input);
//Verify the Account balance, nonce, storageRoot, codeHash are correct given the stateRoot
return SecureMerkleTrie.verifyInclusionProof(abi.encodePacked(_account), value, _proof, _stateRoot);
}
/// @notice Verifies merkle proof of storage slot
/// @param _storageKey Storage slot corresponding to the user ERC20 balance.
/// @param _tokenBalance User token balance.
/// @param _storageProof Merkle trie inclusion proof for the desired user balance.
/// @param _storageRoot Root of the merkle trie of the account storage.
function verifyERC20Balance(
bytes32 _storageKey,
uint256 _tokenBalance,
bytes[] memory _storageProof,
bytes32 _storageRoot
)
public
pure
returns (bool)
{
//Verify the balance for the user address is correct
return SecureMerkleTrie.verifyInclusionProof(
abi.encodePacked(_storageKey), RLPWriter.writeUint(_tokenBalance), _storageProof, _storageRoot
);
}
/// @notice Verifies merkle proof of storage slot
/// @param _storageKey Storage slot corresponding to the owner of ERC721 token.
/// @param _owner Address of the token owner.
/// @param _storageProof Merkle trie inclusion proof for the desired token owner.
/// @param _storageRoot Root of the merkle trie of the account storage.
function verifyERC721Owner(
bytes32 _storageKey,
address _owner,
bytes[] memory _storageProof,
bytes32 _storageRoot
)
public
pure
returns (bool)
{
//Verify the owner of the corresponding tokenId is correct
return SecureMerkleTrie.verifyInclusionProof(
abi.encodePacked(_storageKey), RLPWriter.writeAddress(_owner), _storageProof, _storageRoot
);
}
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
ResolverRegistry.sol 157 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { L1CrossDomainMessenger } from "src/L1/L1CrossDomainMessenger.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { Types } from "src/libraries/Types.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { CREATE3 } from "@rari-capital/solmate/src/utils/CREATE3.sol";
import { Bytes32AddressLib } from "@rari-capital/solmate/src/utils/Bytes32AddressLib.sol";
/// @title ResolverRegistry
/// @notice Contract to register Resolver contracts that will produce the storage slot corresponding to an user
/// ERC20token balance, ownership of an ERC721 token, or the ability to resolve the balance of ETH or ERC20 held by a
/// smart contract on L2 that a user is entilted to. Also includes default resolver implemetations for contracts
/// that did not register resolvers.
contract ResolverRegistry is Initializable, ISemver {
using Bytes32AddressLib for bytes32;
/// @notice Messenger contract on this domain.
CrossDomainMessenger public messenger;
///@notice A list of Contract addresses on L2 to corresponding Resolver contract on L1.
mapping(address => address) public resolvers;
/// @notice Semantic version.
/// @custom:semver 1.0.0
string public constant version = "1.0.0";
/// @notice Event emitted when a resolver is registered for a l2Contract.
/// @param l2Contract Address of the l2Contract to which a resolver was registered.
/// @param newResolver Address of the resolver that was reigstered.
event ResolverAdded(address indexed l2Contract, address indexed newResolver);
constructor() {
initialize({ _messenger: CrossDomainMessenger(address(0)) });
}
/// @notice Initializer.
/// @param _messenger Contract for the CrossDomainMessenger on this network.
function initialize(CrossDomainMessenger _messenger) public initializer {
messenger = _messenger;
}
/// @notice Function to register resolver contracts.
/// @dev This function can only be used by performing a cross chain call from L2 cross domain messenger.
/// @param _resolver Adress of the resolver contract.
function setResolver(address _resolver) external {
require(msg.sender == address(messenger));
address sender = messenger.xDomainMessageSender();
resolvers[sender] = _resolver;
emit ResolverAdded(sender, _resolver);
}
/// @notice Function for the l2contract deployer to register a resolver contract.
/// @param _resolver Address of the resolver contract.
/// @param _l2Contract Address of the l2Contract that the resolver is being registered for.
/// @param _nonce Nonce of the the transaction that deployed the l2Contract.
function setResolverByDeployer(address _resolver, address _l2Contract, uint64 _nonce) external {
L2OutputOracle l2Oracle = _getL2OutputOracle();
Types.OutputProposal memory lastSubmittedRoot = l2Oracle.getL2Output(l2Oracle.latestOutputIndex());
uint256 timeLimitOutputRootSubmissionSeconds = l2Oracle.timeLimitOutputRootSubmissionSeconds() * 2;
require(
lastSubmittedRoot.timestamp + timeLimitOutputRootSubmissionSeconds < block.timestamp,
"ResolverRegistry: Not enough time has passed to register resolver on L1"
);
bytes[] memory input = new bytes[](2);
input[0] = RLPWriter.writeAddress(msg.sender);
input[1] = RLPWriter.writeUint(_nonce);
require(
_l2Contract == keccak256(RLPWriter.writeList(input)).fromLast20Bytes(),
"ResolverRegistry: Not contract deployer"
);
resolvers[_l2Contract] = _resolver;
emit ResolverAdded(_l2Contract, _resolver);
}
/// @notice Function for the l2contract deployer to register a resolver contract that was deployed using create2.
/// @param _resolver Address of the resolver contract.
/// @param _l2Contract Address of the l2Contract that the resolver is being registered for.
/// @param _factory Address of the factory contract that was used to deploy the _l2contract.
/// @param _salt Salt that was used in conjuction with the msg.sender to set the salt of create2 opcode.
/// @param _byteCodeHash Hash of the bytecode of _l2Contract.
function setResolverByDeployer2(
address _resolver,
address _l2Contract,
address _factory,
bytes32 _salt,
bytes32 _byteCodeHash
)
external
{
L2OutputOracle l2Oracle = _getL2OutputOracle();
Types.OutputProposal memory lastSubmittedRoot = l2Oracle.getL2Output(l2Oracle.latestOutputIndex());
uint256 timeLimitOutputRootSubmissionSeconds = l2Oracle.timeLimitOutputRootSubmissionSeconds() * 2;
require(
lastSubmittedRoot.timestamp + timeLimitOutputRootSubmissionSeconds < block.timestamp,
"ResolverRegistry: Not enough time has passed to register resolver on L1"
);
address computedContractAddress = keccak256(
abi.encodePacked(
bytes1(0xff), _factory, keccak256(abi.encode(msg.sender, l2Oracle.l2ChainId(), _salt)), _byteCodeHash
)
).fromLast20Bytes();
require(_l2Contract == computedContractAddress, "ResolverRegistry: Not contract deployer");
resolvers[_l2Contract] = _resolver;
emit ResolverAdded(_l2Contract, _resolver);
}
/// @notice Function for the l2contract deployer to register a resolver contract that was deployed using create3.
/// @param _resolver Address of the resolver contract.
/// @param _l2Contract Address of the l2Contract that the resolver is being registered for.
/// @param _factory Address of the factory contract that was used to deploy the _l2contract.
/// @param _salt Salt that was used in conjuction with the msg.sender to set the salt of create2 opcode.
function setResolverByDeployer3(address _resolver, address _l2Contract, address _factory, bytes32 _salt) external {
L2OutputOracle l2Oracle = _getL2OutputOracle();
Types.OutputProposal memory lastSubmittedRoot = l2Oracle.getL2Output(l2Oracle.latestOutputIndex());
uint256 timeLimitOutputRootSubmissionSeconds = l2Oracle.timeLimitOutputRootSubmissionSeconds() * 2;
require(
lastSubmittedRoot.timestamp + timeLimitOutputRootSubmissionSeconds < block.timestamp,
"ResolverRegistry: Not enough time has passed to register resolver on L1"
);
address proxy = keccak256(
abi.encodePacked(
bytes1(0xFF),
_factory,
keccak256(abi.encode(msg.sender, l2Oracle.l2ChainId(), _salt)),
CREATE3.PROXY_BYTECODE_HASH
)
).fromLast20Bytes();
address computedContractAddress = keccak256(abi.encodePacked(hex"d694", proxy, hex"01")).fromLast20Bytes();
require(_l2Contract == computedContractAddress, "ResolverRegistry: Not contract deployer");
resolvers[_l2Contract] = _resolver;
emit ResolverAdded(_l2Contract, _resolver);
}
function _getL2OutputOracle() internal view returns (L2OutputOracle) {
return OptimismPortal(L1CrossDomainMessenger(address(messenger)).portal()).l2Oracle();
}
}
IEscapeResolver.sol 34 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Types } from "src/libraries/Types.sol";
/// @title IEscapeResolver
/// @notice Functions that Escape Resolvers must implement to allow users to remove their funds from L2 contract.
interface IEscapeResolver {
/// @notice Function to determine how much ETH a given user is entitled to remove.
/// @param _user Address of the user
/// @param _state State of corresponding L2 contract that owns the ETH.
/// @param _data Extra data needed to determine how much ETH the user can remove.
function userEscapableETHBalance(
address _user,
Types.AccountState memory _state,
bytes memory _data
)
external
returns (uint256);
/// @notice Function to determine how much ERC20 a given user is entitled to remove.
/// @param _user Address of the user.
/// @param _token L2 Token address that the user wants to escape.
/// @param _stateRoot Last valid state root of the L2 Blockchain.
/// @param _data Extra data needed to determine how much ERC20 the user can remove.
function userEscapableERC20Balance(
address _user,
address _token,
bytes32 _stateRoot,
bytes memory _data
)
external
returns (uint256);
}
ReentrancyGuardUpgradeable.sol 105 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
struct ReentrancyGuardStorage {
uint256 _status;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
assembly {
$.slot := ReentrancyGuardStorageLocation
}
}
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
$._status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// On the first call to nonReentrant, _status will be NOT_ENTERED
if ($._status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
$._status = ENTERED;
}
function _nonReentrantAfter() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
$._status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
return $._status == ENTERED;
}
}
ERC165Checker.sol 124 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface.
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) &&
!supportsERC165InterfaceUnchecked(account, INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*/
function getSupportedInterfaces(
address account,
bytes4[] memory interfaceIds
) internal view returns (bool[] memory) {
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
*
* Some precompiled contracts will falsely indicate support for a given interface, so caution
* should be exercised when using this function.
*
* Interface identification is specified in ERC-165.
*/
function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeCall(IERC165.supportsInterface, (interfaceId));
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
SafeCall.sol 149 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
/// @notice Performs a low level call without copying any returndata.
/// @dev Passes no calldata to the call context.
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
0, // inloc
0, // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Perform a low level call with all gas without copying any returndata
/// @param _target Address to call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _value) internal returns (bool success_) {
success_ = send(_target, gasleft(), _value);
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Helper function to determine if there is sufficient gas remaining within the context
/// to guarantee that the minimum gas requirement for a call will be met as well as
/// optionally reserving a specified amount of gas for after the call has concluded.
/// @param _minGas The minimum amount of gas that may be passed to the target context.
/// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
/// of the target context.
/// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
/// context as well as reserve `_reservedGas` for the caller after the execution of
/// the target context.
/// @dev !!!!! FOOTGUN ALERT !!!!!
/// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
/// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
/// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
/// still possible to self-rekt by initiating a withdrawal with a minimum gas limit
/// that does not account for the `memory_expansion_cost` & `code_execution_cost`
/// factors of the dynamic cost of the `CALL` opcode.
/// 2.) This function should *directly* precede the external call if possible. There is an
/// added buffer to account for gas consumed between this check and the call, but it
/// is only 5,700 gas.
/// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
/// frame may be passed to a subcontext, we need to ensure that the gas will not be
/// truncated.
/// 4.) Use wisely. This function is not a silver bullet.
function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
bool _hasMinGas;
assembly {
// Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
_hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
}
return _hasMinGas;
}
/// @notice Perform a low level call without copying any returndata. This function
/// will revert if the call cannot be performed with the specified minimum
/// gas.
/// @param _target Address to call
/// @param _minGas The minimum amount of gas that may be passed to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function callWithMinGas(
address _target,
uint256 _minGas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool)
{
bool _success;
bool _hasMinGas = hasMinGas(_minGas, 0);
assembly {
// Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
if iszero(_hasMinGas) {
// Store the "Error(string)" selector in scratch space.
mstore(0, 0x08c379a0)
// Store the pointer to the string length in scratch space.
mstore(32, 32)
// Store the string.
//
// SAFETY:
// - We pad the beginning of the string with two zero bytes as well as the
// length (24) to ensure that we override the free memory pointer at offset
// 0x40. This is necessary because the free memory pointer is likely to
// be greater than 1 byte when this function is called, but it is incredibly
// unlikely that it will be greater than 3 bytes. As for the data within
// 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
// - It's fine to clobber the free memory pointer, we're reverting.
mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
// Revert with 'Error("SafeCall: Not enough gas")'
revert(28, 100)
}
// The call will be supplied at least ((_minGas * 64) / 63) gas due to the
// above assertion. This ensures that, in all circumstances (except for when the
// `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
// factors of the dynamic cost of the `CALL` opcode), the call will receive at least
// the minimum amount of gas specified.
_success :=
call(
gas(), // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0x00, // outloc
0x00 // outlen
)
}
return _success;
}
}
EOA.sol 25 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title EOA
/// @notice A library for detecting if an address is an EOA.
library EOA {
/// @notice Returns true if sender address is an EOA.
/// @return isEOA_ True if the sender address is an EOA.
function isSenderEOA() internal view returns (bool isEOA_) {
if (msg.sender == tx.origin) {
isEOA_ = true;
} else if (address(msg.sender).code.length == 23) {
// If the sender is not the origin, check for 7702 delegated EOAs.
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 0x20))
extcodecopy(caller(), ptr, 0, 0x20)
isEOA_ := eq(shr(232, mload(ptr)), 0xEF0100)
}
} else {
// If more or less than 23 bytes of code, not a 7702 delegated EOA.
isEOA_ = false;
}
}
}
IOptimismMintableERC20.sol 18 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/// @title IOptimismMintableERC20
/// @notice This interface is available on the OptimismMintableERC20 contract.
/// We declare it as a separate interface so that it can be used in
/// custom implementations of OptimismMintableERC20.
interface IOptimismMintableERC20 is IERC165 {
function remoteToken() external view returns (address);
function bridge() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
OptimismMintableERC20.sol 138 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { ISemver } from "src/universal/ISemver.sol";
/// @title OptimismMintableERC20
/// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
/// to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
/// use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
/// Designed to be backwards compatible with the older StandardL2ERC20 token which was only
/// meant for use on L2.
contract OptimismMintableERC20 is IOptimismMintableERC20, ERC20, ISemver {
/// @notice Address of the corresponding version of this token on the remote chain.
address public immutable REMOTE_TOKEN;
/// @notice Address of the StandardBridge on this network.
address public immutable BRIDGE;
/// @notice Decimals of the token
uint8 private immutable DECIMALS;
/// @notice Emitted whenever tokens are minted for an account.
/// @param account Address of the account tokens are being minted for.
/// @param amount Amount of tokens minted.
event Mint(address indexed account, uint256 amount);
/// @notice Emitted whenever tokens are burned from an account.
/// @param account Address of the account tokens are being burned from.
/// @param amount Amount of tokens burned.
event Burn(address indexed account, uint256 amount);
/// @notice A modifier that only allows the bridge to call
modifier onlyBridge() {
require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
_;
}
/// @notice Semantic version.
/// @custom:semver 1.3.0
string public constant version = "1.3.0";
/// @param _bridge Address of the L2 standard bridge.
/// @param _remoteToken Address of the corresponding L1 token.
/// @param _name ERC20 name.
/// @param _symbol ERC20 symbol.
constructor(
address _bridge,
address _remoteToken,
string memory _name,
string memory _symbol,
uint8 _decimals
)
ERC20(_name, _symbol)
{
REMOTE_TOKEN = _remoteToken;
BRIDGE = _bridge;
DECIMALS = _decimals;
}
/// @notice Allows the StandardBridge on this network to mint tokens.
/// @param _to Address to mint tokens to.
/// @param _amount Amount of tokens to mint.
function mint(
address _to,
uint256 _amount
)
external
virtual
override(IOptimismMintableERC20)
onlyBridge
{
_mint(_to, _amount);
emit Mint(_to, _amount);
}
/// @notice Allows the StandardBridge on this network to burn tokens.
/// @param _from Address to burn tokens from.
/// @param _amount Amount of tokens to burn.
function burn(
address _from,
uint256 _amount
)
external
virtual
override(IOptimismMintableERC20)
onlyBridge
{
_burn(_from, _amount);
emit Burn(_from, _amount);
}
/// @notice ERC165 interface check function.
/// @param _interfaceId Interface ID to check.
/// @return Whether or not the interface is supported by this contract.
function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
bytes4 iface1 = type(IERC165).interfaceId;
// Interface corresponding to the updated OptimismMintableERC20 (this contract).
bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
return _interfaceId == iface1 || _interfaceId == iface3;
}
/// @custom:legacy
/// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
function l1Token() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for the bridge. Use BRIDGE going forward.
function l2Bridge() public view returns (address) {
return BRIDGE;
}
/// @custom:legacy
/// @notice Legacy getter for REMOTE_TOKEN.
function remoteToken() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for BRIDGE.
function bridge() public view returns (address) {
return BRIDGE;
}
/// @dev Returns the number of decimals used to get its user representation.
/// For example, if `decimals` equals `2`, a balance of `505` tokens should
/// be displayed to a user as `5.05` (`505 / 10 ** 2`).
/// NOTE: This information is only used for _display_ purposes: it in
/// no way affects any of the arithmetic of the contract, including
/// {IERC20-balanceOf} and {IERC20-transfer}.
function decimals() public view override returns (uint8) {
return DECIMALS;
}
}
Initializable.sol 228 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
Encoding.sol 314 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
/// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
/// to the L2 system. Useful for searching for a deposit in the L2 system. The
/// transaction is prefixed with 0x7e to identify its EIP-2718 type.
/// @param _tx User deposit transaction to encode.
/// @return RLP encoded L2 deposit transaction.
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 0) {
return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,address,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Adds a version number into the first two bytes of a message nonce.
/// @param _nonce Message nonce to encode into.
/// @param _version Version number to encode into the message nonce.
/// @return Message nonce with version encoded into the first two bytes.
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/// @notice Pulls the version out of a version-encoded nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @return Nonce without encoded version.
/// @return Version of the message.
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
/// @param baseFeeScalar L1 base fee Scalar
/// @param blobBaseFeeScalar L1 blob base fee Scalar
/// @param sequenceNumber Number of L2 blocks since epoch start.
/// @param timestamp L1 timestamp.
/// @param number L1 blocknumber.
/// @param baseFee L1 base fee.
/// @param blobBaseFee L1 blob base fee.
/// @param hash L1 blockhash.
/// @param batcherHash Versioned hash to authenticate batcher by.
function encodeSetL1BlockValuesEcotone(
uint32 baseFeeScalar,
uint32 blobBaseFeeScalar,
uint64 sequenceNumber,
uint64 timestamp,
uint64 number,
uint256 baseFee,
uint256 blobBaseFee,
bytes32 hash,
bytes32 batcherHash
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
return abi.encodePacked(
functionSignature,
baseFeeScalar,
blobBaseFeeScalar,
sequenceNumber,
timestamp,
number,
baseFee,
blobBaseFee,
hash,
batcherHash
);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotoneExclusions
/// @param baseFeeScalar L1 base fee Scalar
/// @param blobBaseFeeScalar L1 blob base fee Scalar
/// @param sequenceNumber Number of L2 blocks since epoch start.
/// @param timestamp L1 timestamp.
/// @param number L1 blocknumber.
/// @param baseFee L1 base fee.
/// @param blobBaseFee L1 blob base fee.
/// @param hash L1 blockhash.
/// @param batcherHash Versioned hash to authenticate batcher by.
/// @param depositExclusions Deposit exclusions for this epoch.
function encodeSetL1BlockValuesEcotoneExclusions(
uint32 baseFeeScalar,
uint32 blobBaseFeeScalar,
uint64 sequenceNumber,
uint64 timestamp,
uint64 number,
uint256 baseFee,
uint256 blobBaseFee,
bytes32 hash,
bytes32 batcherHash,
bytes memory depositExclusions
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotoneExclusions()"));
return abi.encodePacked(
functionSignature,
baseFeeScalar,
blobBaseFeeScalar,
sequenceNumber,
timestamp,
number,
baseFee,
blobBaseFee,
hash,
batcherHash,
uint256(depositExclusions.length),
depositExclusions
);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
/// @param _baseFeeScalar L1 base fee Scalar
/// @param _blobBaseFeeScalar L1 blob base fee Scalar
/// @param _sequenceNumber Number of L2 blocks since epoch start.
/// @param _timestamp L1 timestamp.
/// @param _number L1 blocknumber.
/// @param _baseFee L1 base fee.
/// @param _blobBaseFee L1 blob base fee.
/// @param _hash L1 blockhash.
/// @param _batcherHash Versioned hash to authenticate batcher by.
/// @param _operatorFeeScalar Operator fee scalar.
/// @param _operatorFeeConstant Operator fee constant.
function encodeSetL1BlockValuesIsthmus(
uint32 _baseFeeScalar,
uint32 _blobBaseFeeScalar,
uint64 _sequenceNumber,
uint64 _timestamp,
uint64 _number,
uint256 _baseFee,
uint256 _blobBaseFee,
bytes32 _hash,
bytes32 _batcherHash,
uint32 _operatorFeeScalar,
uint64 _operatorFeeConstant
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmus()"));
return abi.encodePacked(
functionSignature,
_baseFeeScalar,
_blobBaseFeeScalar,
_sequenceNumber,
_timestamp,
_number,
_baseFee,
_blobBaseFee,
_hash,
_batcherHash,
_operatorFeeScalar,
_operatorFeeConstant
);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesIsthmus
/// @param _sequenceNumber Number of L2 blocks since epoch start.
/// @param _timestamp L1 timestamp.
/// @param _number L1 blocknumber.
/// @param _baseFee L1 base fee.
/// @param _blobBaseFee L1 blob base fee.
/// @param _hash L1 blockhash.
/// @param _batcherHash Versioned hash to authenticate batcher by.
/// @param _operatorFeeScalar Operator fee scalar.
/// @param _operatorFeeConstant Operator fee constant.
/// @param depositExclusions Deposit exclusions for this epoch.
function encodeSetL1BlockValuesIsthmusExclusions(
uint64 _sequenceNumber,
uint64 _timestamp,
uint64 _number,
uint256 _baseFee,
uint256 _blobBaseFee,
bytes32 _hash,
bytes32 _batcherHash,
uint32 _operatorFeeScalar,
uint64 _operatorFeeConstant,
bytes memory depositExclusions
)
internal
pure
returns (bytes memory)
{
// hardcode some values and split packing to avoid stack too deep
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesIsthmusExclusions()"));
bytes memory output = abi.encodePacked(
functionSignature,
uint32(1),
uint32(2),
_sequenceNumber,
_timestamp,
_number,
_baseFee,
_blobBaseFee,
_hash,
_batcherHash);
return abi.encodePacked(output,
_operatorFeeScalar,
_operatorFeeConstant,
uint256(depositExclusions.length),
depositExclusions
);
}
}
SystemConfig.sol 464 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { Storage } from "src/libraries/Storage.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @title SystemConfig
/// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
/// All configuration is stored on L1 and picked up by L2 as part of the derviation of
/// the L2 chain.
contract SystemConfig is OwnableUpgradeable, ISemver {
/// @notice Enum representing different types of updates.
/// @custom:value BATCHER Represents an update to the batcher hash.
/// @custom:value FEE_SCALARS Represents an update to txn fee config on L2.
/// @custom:value GAS_LIMIT Represents an update to gas limit on L2.
/// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe
/// block distrubution.
enum UpdateType {
BATCHER,
FEE_SCALARS,
GAS_LIMIT,
UNSAFE_BLOCK_SIGNER,
EIP_1559_PARAMS,
OPERATOR_FEE_PARAMS
}
/// @notice Struct representing the addresses of L1 system contracts. These should be the
/// proxies and are network specific.
struct Addresses {
address l1CrossDomainMessenger;
address l1ERC721Bridge;
address l1StandardBridge;
address l2OutputOracle;
address optimismPortal;
address optimismMintableERC20Factory;
}
/// @notice Struct representing the gas configuration
struct GasConfig {
uint32 basefeeScalar;
uint32 blobbasefeeScalar;
uint32 operatorFeeScalar;
uint64 operatorFeeConstant;
uint64 gasLimit;
}
/// @notice Version identifier, used for upgrades.
uint256 public constant VERSION = 0;
/// @notice Storage slot that the unsafe block signer is stored at.
/// Storing it at this deterministic storage slot allows for decoupling the storage
/// layout from the way that `solc` lays out storage. The `op-node` uses a storage
/// proof to fetch this value.
/// @dev NOTE: this value will be migrated to another storage slot in a future version.
/// User input should not be placed in storage in this contract until this migration
/// happens. It is unlikely that keccak second preimage resistance will be broken,
/// but it is better to be safe than sorry.
bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
/// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
/// @notice Storage slot that the L1ERC721Bridge address is stored at.
bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
/// @notice Storage slot that the L1StandardBridge address is stored at.
bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
/// @notice Storage slot that the L2OutputOracle address is stored at.
bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
/// @notice Storage slot that the OptimismPortal address is stored at.
bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
/// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
/// @notice Storage slot that the batch inbox address is stored at.
bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
/// @notice Storage slot for block at which the op-node can start searching for logs from.
bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
/// @notice Max transaction gas post Osaka activation
uint256 public constant OSAKA_TX_MAX_GAS = 16_777_216;
/// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
/// Deprecated since the Ecotone network upgrade
uint256 public overhead;
/// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
/// The most significant byte is used to determine the version since the
/// Ecotone network upgrade.
uint256 public scalar;
/// @notice Identifier for the batcher.
/// For version 1 of this configuration, this is represented as an address left-padded
/// with zeros to 32 bytes.
bytes32 public batcherHash;
/// @notice L2 block gas limit.
uint64 public gasLimit;
/// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
uint32 public basefeeScalar;
/// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
uint32 public blobbasefeeScalar;
/// @notice The configuration for the deposit fee market.
/// Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
/// Set as internal with a getter so that the struct is returned instead of a tuple.
ResourceMetering.ResourceConfig internal _resourceConfig;
/// @notice The EIP-1559 base fee max change denominator.
uint32 public eip1559Denominator;
/// @notice The EIP-1559 elasticity multiplier.
uint32 public eip1559Elasticity;
/// @notice The operator fee scalar.
uint32 public operatorFeeScalar;
/// @notice The operator fee constant.
uint64 public operatorFeeConstant;
/// @notice Emitted when configuration is updated.
/// @param version SystemConfig version.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
/// @notice Semantic version.
/// @custom:semver 1.12.0
string public constant version = "1.12.0";
/// @notice Constructs the SystemConfig contract. Cannot set
/// the owner to `address(0)` due to the Ownable contract's
/// implementation, so set it to `address(0xdEaD)`
/// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
/// in the singleton and is skipped by initialize when setting the start block.
constructor() {
Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
initialize({
_owner: address(0xdEaD),
_gasConfig: SystemConfig.GasConfig({
basefeeScalar: 0,
blobbasefeeScalar: 0,
operatorFeeScalar: 0,
operatorFeeConstant: 0,
gasLimit: 1
}),
_batcherHash: bytes32(0),
_unsafeBlockSigner: address(0),
_config: ResourceMetering.ResourceConfig({
maxResourceLimit: 1,
elasticityMultiplier: 1,
baseFeeMaxChangeDenominator: 2,
_spacer: 0,
minimumBaseFee: 0,
systemTxMaxGas: 0,
maximumBaseFee: 0
}),
_batchInbox: address(0),
_addresses: SystemConfig.Addresses({
l1CrossDomainMessenger: address(0),
l1ERC721Bridge: address(0),
l1StandardBridge: address(0),
l2OutputOracle: address(0),
optimismPortal: address(0),
optimismMintableERC20Factory: address(0)
})
});
}
/// @notice Initializer.
/// The resource config must be set before the require check.
/// @param _owner Initial owner of the contract.
/// @param _gasConfig Initial gas config.
/// @param _batcherHash Initial batcher hash.
/// @param _unsafeBlockSigner Initial unsafe block signer address.
/// @param _config Initial ResourceConfig.
/// @param _batchInbox Batch inbox address. An identifier for the op-node to find
/// canonical data.
/// @param _addresses Set of L1 contract addresses. These should be the proxies.
function initialize(
address _owner,
SystemConfig.GasConfig memory _gasConfig,
bytes32 _batcherHash,
address _unsafeBlockSigner,
ResourceMetering.ResourceConfig memory _config,
address _batchInbox,
SystemConfig.Addresses memory _addresses
)
public
initializer
{
__Ownable_init(_owner);
// These are set in ascending order of their UpdateTypes.
_setBatcherHash(_batcherHash);
_setGasConfigEcotone({ _basefeeScalar: _gasConfig.basefeeScalar, _blobbasefeeScalar: _gasConfig.blobbasefeeScalar });
_setGasLimit(_gasConfig.gasLimit);
_setOperatorFeeScalars(_gasConfig.operatorFeeScalar, _gasConfig.operatorFeeConstant);
Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
_setStartBlock();
_setResourceConfig(_config);
require(_gasConfig.gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
}
/// @notice Returns the minimum L2 gas limit that can be safely set for the system to
/// operate. The L2 gas limit must be larger than or equal to the amount of
/// gas that is allocated for deposits per block plus the amount of gas that
/// is allocated for the system transaction.
/// This function is used to determine if changes to parameters are safe.
/// @return uint64 Minimum gas limit.
function minimumGasLimit() public view returns (uint64) {
return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
}
/// @notice High level getter for the unsafe block signer address.
/// Unsafe blocks can be propagated across the p2p network if they are signed by the
/// key corresponding to this address.
/// @return addr_ Address of the unsafe block signer.
// solhint-disable-next-line ordering
function unsafeBlockSigner() public view returns (address addr_) {
addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
}
/// @notice Getter for the L1CrossDomainMessenger address.
function l1CrossDomainMessenger() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
}
/// @notice Getter for the L1ERC721Bridge address.
function l1ERC721Bridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
}
/// @notice Getter for the L1StandardBridge address.
function l1StandardBridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
}
/// @notice Getter for the L2OutputOracle address.
function l2OutputOracle() external view returns (address addr_) {
addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
}
/// @notice Getter for the OptimismPortal address.
function optimismPortal() external view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
}
/// @notice Getter for the OptimismMintableERC20Factory address.
function optimismMintableERC20Factory() external view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
}
/// @notice Getter for the BatchInbox address.
function batchInbox() external view returns (address addr_) {
addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
}
/// @notice Getter for the StartBlock number.
function startBlock() external view returns (uint256 startBlock_) {
startBlock_ = Storage.getUint(START_BLOCK_SLOT);
}
/// @notice Updates the unsafe block signer address. Can only be called by the owner.
/// @param _unsafeBlockSigner New unsafe block signer address.
function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
_setUnsafeBlockSigner(_unsafeBlockSigner);
}
/// @notice Updates the unsafe block signer address.
/// @param _unsafeBlockSigner New unsafe block signer address.
function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
bytes memory data = abi.encode(_unsafeBlockSigner);
emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
}
/// @notice Updates the batcher hash. Can only be called by the owner.
/// @param _batcherHash New batcher hash.
function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
_setBatcherHash(_batcherHash);
}
/// @notice Internal function for updating the batcher hash.
/// @param _batcherHash New batcher hash.
function _setBatcherHash(bytes32 _batcherHash) internal {
batcherHash = _batcherHash;
bytes memory data = abi.encode(_batcherHash);
emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
}
/// @notice Updates gas config. Can only be called by the owner.
/// Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
_setGasConfig(_overhead, _scalar);
}
/// @notice Internal function for updating the gas config.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max.");
overhead = _overhead;
scalar = _scalar;
bytes memory data = abi.encode(_overhead, _scalar);
emit ConfigUpdate(VERSION, UpdateType.FEE_SCALARS, data);
}
/// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner.
/// @param _basefeeScalar New basefeeScalar value.
/// @param _blobbasefeeScalar New blobbasefeeScalar value.
function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner {
_setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar);
}
/// @notice Internal function for updating the fee scalars as of the Ecotone upgrade.
/// @param _basefeeScalar New basefeeScalar value.
/// @param _blobbasefeeScalar New blobbasefeeScalar value.
function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal {
basefeeScalar = _basefeeScalar;
blobbasefeeScalar = _blobbasefeeScalar;
scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar;
bytes memory data = abi.encode(overhead, scalar);
emit ConfigUpdate(VERSION, UpdateType.FEE_SCALARS, data);
}
/// @notice Updates the L2 gas limit. Can only be called by the owner.
/// @param _gasLimit New gas limit.
function setGasLimit(uint64 _gasLimit) external onlyOwner {
_setGasLimit(_gasLimit);
}
/// @notice Internal function for updating the L2 gas limit.
/// @param _gasLimit New gas limit.
function _setGasLimit(uint64 _gasLimit) internal {
require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
gasLimit = _gasLimit;
bytes memory data = abi.encode(_gasLimit);
emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
}
/// @notice Updates the operator fee parameters. Can only be called by the owner.
/// @param _operatorFeeScalar operator fee scalar.
/// @param _operatorFeeConstant operator fee constant.
function setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) external onlyOwner {
_setOperatorFeeScalars(_operatorFeeScalar, _operatorFeeConstant);
}
/// @notice Internal function for updating the operator fee parameters.
function _setOperatorFeeScalars(uint32 _operatorFeeScalar, uint64 _operatorFeeConstant) internal {
operatorFeeScalar = _operatorFeeScalar;
operatorFeeConstant = _operatorFeeConstant;
bytes memory data = abi.encode(uint256(_operatorFeeScalar) << 64 | _operatorFeeConstant);
emit ConfigUpdate(VERSION, UpdateType.OPERATOR_FEE_PARAMS, data);
}
/// @notice Updates the EIP-1559 parameters of the chain. Can only be called by the owner.
/// @param _denominator EIP-1559 base fee max change denominator.
/// @param _elasticity EIP-1559 elasticity multiplier.
function setEIP1559Params(uint32 _denominator, uint32 _elasticity) external onlyOwner {
_setEIP1559Params(_denominator, _elasticity);
}
/// @notice Internal function for updating the EIP-1559 parameters.
function _setEIP1559Params(uint32 _denominator, uint32 _elasticity) internal {
// require the parameters have sane values:
require(_denominator >= 1, "SystemConfig: denominator must be >= 1");
require(_elasticity >= 1, "SystemConfig: elasticity must be >= 1");
eip1559Denominator = _denominator;
eip1559Elasticity = _elasticity;
bytes memory data = abi.encode(uint256(_denominator) << 32 | uint64(_elasticity));
emit ConfigUpdate(VERSION, UpdateType.EIP_1559_PARAMS, data);
}
/// @notice Sets the start block in a backwards compatible way. Proxies
/// that were initialized before the startBlock existed in storage
/// can have their start block set by a user provided override.
/// A start block of 0 indicates that there is no override and the
/// start block will be set by `block.number`.
/// @dev This logic is used to patch legacy deployments with new storage values.
/// Use the override if it is provided as a non zero value and the value
/// has not already been set in storage. Use `block.number` if the value
/// has already been set in storage
function _setStartBlock() internal {
if (Storage.getUint(START_BLOCK_SLOT) == 0) {
Storage.setUint(START_BLOCK_SLOT, block.number);
}
}
/// @notice A getter for the resource config.
/// Ensures that the struct is returned instead of a tuple.
/// @return ResourceConfig
function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
return _resourceConfig;
}
/// @notice An external setter for the resource config.
/// In the future, this method may emit an event that the `op-node` picks up
/// for when the resource config is changed.
/// @param _config The new resource config values.
function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
_setResourceConfig(_config);
}
/// @notice An internal setter for the resource config.
/// Ensures that the config is sane before storing it by checking for invariants.
/// @param _config The new resource config.
function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
// Min base fee must be less than or equal to max base fee.
require(
_config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
);
// Base fee change denominator must be greater than 1.
require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
// Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
// The gas limit must be increased before these values can be increased.
require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
// Elasticity multiplier must be greater than 0.
require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
// No precision loss when computing target resource limit.
require(
((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
== _config.maxResourceLimit,
"SystemConfig: precision loss with target resource limit"
);
require(_config.maxResourceLimit < OSAKA_TX_MAX_GAS, "SystemConfig: maxResourceLimit too high");
_resourceConfig = _config;
}
}
SecureMerkleTrie.sol 49 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { MerkleTrie } from "./MerkleTrie.sol";
/// @title SecureMerkleTrie
/// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
/// keys. Ethereum's state trie hashes input keys before storing them.
library SecureMerkleTrie {
/// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
bytes memory key = _getSecureKey(_key);
valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
bytes memory key = _getSecureKey(_key);
value_ = MerkleTrie.get(key, _proof, _root);
}
/// @notice Computes the hashed version of the input key.
/// @param _key Key to hash.
/// @return hash_ Hashed version of the key.
function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
hash_ = abi.encodePacked(keccak256(_key));
}
}
AddressAliasHelper.sol 43 lines
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright 2019-2021, Offchain Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity ^0.8.0;
library AddressAliasHelper {
uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
/// @notice Utility function that converts the address in the L1 that submitted a tx to
/// the inbox to the msg.sender viewed in the L2
/// @param l1Address the address in the L1 that triggered the tx to L2
/// @return l2Address L2 address as viewed in msg.sender
function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
unchecked {
l2Address = address(uint160(l1Address) + offset);
}
}
/// @notice Utility function that converts the msg.sender viewed in the L2 to the
/// address in the L1 that submitted a tx to the inbox
/// @param l2Address L2 address as viewed in msg.sender
/// @return l1Address the address in the L1 that triggered the tx to L2
function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
unchecked {
l1Address = address(uint160(l2Address) - offset);
}
}
}
ResourceMetering.sol 191 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";
/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
/// updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
/// @notice Error returned when too much gas resource is consumed.
error OutOfGas();
/// @notice Represents the various parameters that control the way in which resources are
/// metered. Corresponds to the EIP-1559 resource metering system.
/// @custom:field prevBaseFee Base fee from the previous block(s).
/// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
/// @custom:field prevBlockNum Last block number that the base fee was updated.
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
/// market. These values should be set with care as it is possible to set them in
/// a way that breaks the deposit gas market. The target resource limit is defined as
/// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
/// single word. There is additional space for additions in the future.
/// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that
/// can be purchased per block.
/// @custom:field elasticityMultiplier Determines the target resource limit along with
/// the resource limit.
/// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block.
/// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this
/// value.
/// @custom:field systemTxMaxGas The amount of gas supplied to the system
/// transaction. This should be set to the same
/// number that the op-node sets as the gas limit
/// for the system transaction.
/// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this
/// value.
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint16 _spacer;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
/// @notice EIP-1559 style gas parameters.
ResourceParams public params;
/// @notice Legacy slot of prevTxCount
uint256 private spacer_1_0_32;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
event GasBurned(uint256 gasAmount, address indexed sender);
/// @notice Meters access to a function based an amount of a requested resource.
/// @param _amount Amount of the resource requested.
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Run the metering function.
_metered(_amount, initialGas);
}
/// @notice An internal function that holds all of the logic for metering a resource.
/// @param _amount Amount of the resource requested.
/// @param _initialGas The amount of gas before any modifier execution.
function _metered(uint64 _amount, uint256 _initialGas) internal {
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
ResourceConfig memory config = _resourceConfig();
int256 targetResourceLimit =
int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
/ (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp({
_value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp({
_value: Arithmetic.cdexp({
_coefficient: newBaseFee,
_denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
_exponent: int256(blockDiff - 1)
}),
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
revert OutOfGas();
}
// Determine the amount of ETH to be paid.
uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = _initialGas - gasleft();
if (gasCost > usedGas) {
// We calculate gasToBurn based on the resourceCosts, but reserve some Gas for an event
// that keeps track of the GasBurned. There we add the costs for the event because we
// would be burning it otherwise
uint256 gasToBurn = gasCost - usedGas;
// Gas Costs For Event:
// 375 Per LOG* operation.
// 375 per indexed parameter
// 8 Per byte in a LOG* operation's data.
// 375 + 375 + 256 + 160 = 1166 (uint256 32 bytes, address 20bytes)
uint256 estimatedEventGasCosts = 1200;
// Ensure gasToBurn is greater than estimatedEventGasCosts to avoid underflow
if (gasToBurn > estimatedEventGasCosts) {
emit GasBurned(gasToBurn - estimatedEventGasCosts, tx.origin);
// Subtract estimatedEventGasCosts because the event emission accounts for this already
Burn.gas(gasToBurn - estimatedEventGasCosts);
} else {
// Handle case where gasToBurn is not enough to cover estimatedEventGasCosts
// Emit event with what we have and burn zero gas
emit GasBurned(estimatedEventGasCosts, tx.origin);
Burn.gas(0);
}
}
}
/// @notice Virtual function that returns the resource config.
/// Contracts that inherit this contract must implement this function.
/// @return ResourceConfig
function _resourceConfig() internal virtual returns (ResourceConfig memory);
/// @notice Sets initial resource parameter values.
/// This function must either be called by the initializer function of an upgradeable
/// child contract.
// solhint-disable-next-line func-name-mixedcase
function __ResourceMetering_init() internal onlyInitializing {
if (params.prevBlockNum == 0) {
params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
}
}
}
WithdrawTreeVerifier.sol 61 lines
// SPDX-License-Identifier: MIT
/// @notice the original idea is by Scroll
/// https://github.com/scroll-tech/scroll-contracts/blob/main/src/libraries/verifier/WithdrawTrieVerifier.sol
pragma solidity ^0.8.20;
// solhint-disable no-inline-assembly
library WithdrawTreeVerifier {
/// @dev Verify the merkle proof given root, leaf node and proof.
///
/// Vulnerability:
/// The initially provided message hash can be hashed with the first hash of the proof,
/// thereby giving an intermediate node of the trie. This can then be used with a shortened
/// proof to pass the verification, which may lead to replayability.
///
/// However, it is designed to verify the withdraw trie in `L2ToL1MessagePasser`.
/// The `_hash` givenin the parameter is always a leaf node. It is always computed by
/// hashing a transaction. Therefore we can assume the length of proof is correct and
/// cannot be shortened.
/// @param _root The expected root node hash of the withdraw trie.
/// @param _hash The leaf node hash of the withdraw trie.
/// @param _nonce The index of the leaf node from left to right, starting from 0.
/// @param _proof The concatenated merkle proof verified the leaf node.
function verifyMerkleProof(
bytes32 _root,
bytes32 _hash,
uint256 _nonce,
bytes calldata _proof
) internal pure returns (bool) {
require(_proof.length % 32 == 0, "Invalid proof");
uint256 _length = _proof.length / 32;
for (uint256 i = 0; i < _length; i++) {
bytes32 item;
assembly {
// Use .offset to get the correct calldata position
item := calldataload(add(_proof.offset, mul(i, 0x20)))
// item := mload(add(add(_proof, 0x20), mul(i, 0x20)))
}
if (_nonce % 2 == 0) {
_hash = _efficientHash(_hash, item);
} else {
_hash = _efficientHash(item, _hash);
}
_nonce /= 2;
}
return _hash == _root;
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
AccessControlDefaultAdminRulesUpgradeable.sol 425 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.20;
import {IAccessControlDefaultAdminRules} from "@openzeppelin/contracts/access/extensions/IAccessControlDefaultAdminRules.sol";
import {AccessControlUpgradeable} from "../AccessControlUpgradeable.sol";
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC5313} from "@openzeppelin/contracts/interfaces/IERC5313.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Extension of {AccessControl} that allows specifying special rules to manage
* the `DEFAULT_ADMIN_ROLE` holder, which is a sensitive role with special permissions
* over other roles that may potentially have privileged rights in the system.
*
* If a specific role doesn't have an admin role assigned, the holder of the
* `DEFAULT_ADMIN_ROLE` will have the ability to grant it and revoke it.
*
* This contract implements the following risk mitigations on top of {AccessControl}:
*
* * Only one account holds the `DEFAULT_ADMIN_ROLE` since deployment until it's potentially renounced.
* * Enforces a 2-step process to transfer the `DEFAULT_ADMIN_ROLE` to another account.
* * Enforces a configurable delay between the two steps, with the ability to cancel before the transfer is accepted.
* * The delay can be changed by scheduling, see {changeDefaultAdminDelay}.
* * It is not possible to use another role to manage the `DEFAULT_ADMIN_ROLE`.
*
* Example usage:
*
* ```solidity
* contract MyToken is AccessControlDefaultAdminRules {
* constructor() AccessControlDefaultAdminRules(
* 3 days,
* msg.sender // Explicit initial `DEFAULT_ADMIN_ROLE` holder
* ) {}
* }
* ```
*/
abstract contract AccessControlDefaultAdminRulesUpgradeable is Initializable, IAccessControlDefaultAdminRules, IERC5313, AccessControlUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.AccessControlDefaultAdminRules
struct AccessControlDefaultAdminRulesStorage {
// pending admin pair read/written together frequently
address _pendingDefaultAdmin;
uint48 _pendingDefaultAdminSchedule; // 0 == unset
uint48 _currentDelay;
address _currentDefaultAdmin;
// pending delay pair read/written together frequently
uint48 _pendingDelay;
uint48 _pendingDelaySchedule; // 0 == unset
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControlDefaultAdminRules")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessControlDefaultAdminRulesStorageLocation = 0xeef3dac4538c82c8ace4063ab0acd2d15cdb5883aa1dff7c2673abb3d8698400;
function _getAccessControlDefaultAdminRulesStorage() private pure returns (AccessControlDefaultAdminRulesStorage storage $) {
assembly {
$.slot := AccessControlDefaultAdminRulesStorageLocation
}
}
/**
* @dev Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
*/
function __AccessControlDefaultAdminRules_init(uint48 initialDelay, address initialDefaultAdmin) internal onlyInitializing {
__AccessControlDefaultAdminRules_init_unchained(initialDelay, initialDefaultAdmin);
}
function __AccessControlDefaultAdminRules_init_unchained(uint48 initialDelay, address initialDefaultAdmin) internal onlyInitializing {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
if (initialDefaultAdmin == address(0)) {
revert AccessControlInvalidDefaultAdmin(address(0));
}
$._currentDelay = initialDelay;
_grantRole(DEFAULT_ADMIN_ROLE, initialDefaultAdmin);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlDefaultAdminRules).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC5313-owner}.
*/
function owner() public view virtual returns (address) {
return defaultAdmin();
}
///
/// Override AccessControl role management
///
/**
* @dev See {AccessControl-grantRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function grantRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super.grantRole(role, account);
}
/**
* @dev See {AccessControl-revokeRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function revokeRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super.revokeRole(role, account);
}
/**
* @dev See {AccessControl-renounceRole}.
*
* For the `DEFAULT_ADMIN_ROLE`, it only allows renouncing in two steps by first calling
* {beginDefaultAdminTransfer} to the `address(0)`, so it's required that the {pendingDefaultAdmin} schedule
* has also passed when calling this function.
*
* After its execution, it will not be possible to call `onlyRole(DEFAULT_ADMIN_ROLE)` functions.
*
* NOTE: Renouncing `DEFAULT_ADMIN_ROLE` will leave the contract without a {defaultAdmin},
* thereby disabling any functionality that is only available for it, and the possibility of reassigning a
* non-administrated role.
*/
function renounceRole(bytes32 role, address account) public virtual override(AccessControlUpgradeable, IAccessControl) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
(address newDefaultAdmin, uint48 schedule) = pendingDefaultAdmin();
if (newDefaultAdmin != address(0) || !_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
revert AccessControlEnforcedDefaultAdminDelay(schedule);
}
delete $._pendingDefaultAdminSchedule;
}
super.renounceRole(role, account);
}
/**
* @dev See {AccessControl-_grantRole}.
*
* For `DEFAULT_ADMIN_ROLE`, it only allows granting if there isn't already a {defaultAdmin} or if the
* role has been previously renounced.
*
* NOTE: Exposing this function through another mechanism may make the `DEFAULT_ADMIN_ROLE`
* assignable again. Make sure to guarantee this is the expected behavior in your implementation.
*/
function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
if (role == DEFAULT_ADMIN_ROLE) {
if (defaultAdmin() != address(0)) {
revert AccessControlEnforcedDefaultAdminRules();
}
$._currentDefaultAdmin = account;
}
return super._grantRole(role, account);
}
/**
* @dev See {AccessControl-_revokeRole}.
*/
function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
delete $._currentDefaultAdmin;
}
return super._revokeRole(role, account);
}
/**
* @dev See {AccessControl-_setRoleAdmin}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual override {
if (role == DEFAULT_ADMIN_ROLE) {
revert AccessControlEnforcedDefaultAdminRules();
}
super._setRoleAdmin(role, adminRole);
}
///
/// AccessControlDefaultAdminRules accessors
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdmin() public view virtual returns (address) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
return $._currentDefaultAdmin;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdmin() public view virtual returns (address newAdmin, uint48 schedule) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
return ($._pendingDefaultAdmin, $._pendingDefaultAdminSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelay() public view virtual returns (uint48) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
uint48 schedule = $._pendingDelaySchedule;
return (_isScheduleSet(schedule) && _hasSchedulePassed(schedule)) ? $._pendingDelay : $._currentDelay;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdminDelay() public view virtual returns (uint48 newDelay, uint48 schedule) {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
schedule = $._pendingDelaySchedule;
return (_isScheduleSet(schedule) && !_hasSchedulePassed(schedule)) ? ($._pendingDelay, schedule) : (0, 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelayIncreaseWait() public view virtual returns (uint48) {
return 5 days;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdmin/pendingDefaultAdmin
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function beginDefaultAdminTransfer(address newAdmin) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_beginDefaultAdminTransfer(newAdmin);
}
/**
* @dev See {beginDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _beginDefaultAdminTransfer(address newAdmin) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + defaultAdminDelay();
_setPendingDefaultAdmin(newAdmin, newSchedule);
emit DefaultAdminTransferScheduled(newAdmin, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function cancelDefaultAdminTransfer() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_cancelDefaultAdminTransfer();
}
/**
* @dev See {cancelDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _cancelDefaultAdminTransfer() internal virtual {
_setPendingDefaultAdmin(address(0), 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function acceptDefaultAdminTransfer() public virtual {
(address newDefaultAdmin, ) = pendingDefaultAdmin();
if (_msgSender() != newDefaultAdmin) {
// Enforce newDefaultAdmin explicit acceptance.
revert AccessControlInvalidDefaultAdmin(_msgSender());
}
_acceptDefaultAdminTransfer();
}
/**
* @dev See {acceptDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _acceptDefaultAdminTransfer() internal virtual {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
(address newAdmin, uint48 schedule) = pendingDefaultAdmin();
if (!_isScheduleSet(schedule) || !_hasSchedulePassed(schedule)) {
revert AccessControlEnforcedDefaultAdminDelay(schedule);
}
_revokeRole(DEFAULT_ADMIN_ROLE, defaultAdmin());
_grantRole(DEFAULT_ADMIN_ROLE, newAdmin);
delete $._pendingDefaultAdmin;
delete $._pendingDefaultAdminSchedule;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdminDelay/pendingDefaultAdminDelay
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function changeDefaultAdminDelay(uint48 newDelay) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_changeDefaultAdminDelay(newDelay);
}
/**
* @dev See {changeDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _changeDefaultAdminDelay(uint48 newDelay) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + _delayChangeWait(newDelay);
_setPendingDelay(newDelay, newSchedule);
emit DefaultAdminDelayChangeScheduled(newDelay, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function rollbackDefaultAdminDelay() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_rollbackDefaultAdminDelay();
}
/**
* @dev See {rollbackDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _rollbackDefaultAdminDelay() internal virtual {
_setPendingDelay(0, 0);
}
/**
* @dev Returns the amount of seconds to wait after the `newDelay` will
* become the new {defaultAdminDelay}.
*
* The value returned guarantees that if the delay is reduced, it will go into effect
* after a wait that honors the previously set delay.
*
* See {defaultAdminDelayIncreaseWait}.
*/
function _delayChangeWait(uint48 newDelay) internal view virtual returns (uint48) {
uint48 currentDelay = defaultAdminDelay();
// When increasing the delay, we schedule the delay change to occur after a period of "new delay" has passed, up
// to a maximum given by defaultAdminDelayIncreaseWait, by default 5 days. For example, if increasing from 1 day
// to 3 days, the new delay will come into effect after 3 days. If increasing from 1 day to 10 days, the new
// delay will come into effect after 5 days. The 5 day wait period is intended to be able to fix an error like
// using milliseconds instead of seconds.
//
// When decreasing the delay, we wait the difference between "current delay" and "new delay". This guarantees
// that an admin transfer cannot be made faster than "current delay" at the time the delay change is scheduled.
// For example, if decreasing from 10 days to 3 days, the new delay will come into effect after 7 days.
return
newDelay > currentDelay
? uint48(Math.min(newDelay, defaultAdminDelayIncreaseWait())) // no need to safecast, both inputs are uint48
: currentDelay - newDelay;
}
///
/// Private setters
///
/**
* @dev Setter of the tuple for pending admin and its schedule.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function _setPendingDefaultAdmin(address newAdmin, uint48 newSchedule) private {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
(, uint48 oldSchedule) = pendingDefaultAdmin();
$._pendingDefaultAdmin = newAdmin;
$._pendingDefaultAdminSchedule = newSchedule;
// An `oldSchedule` from `pendingDefaultAdmin()` is only set if it hasn't been accepted.
if (_isScheduleSet(oldSchedule)) {
// Emit for implicit cancellations when another default admin was scheduled.
emit DefaultAdminTransferCanceled();
}
}
/**
* @dev Setter of the tuple for pending delay and its schedule.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function _setPendingDelay(uint48 newDelay, uint48 newSchedule) private {
AccessControlDefaultAdminRulesStorage storage $ = _getAccessControlDefaultAdminRulesStorage();
uint48 oldSchedule = $._pendingDelaySchedule;
if (_isScheduleSet(oldSchedule)) {
if (_hasSchedulePassed(oldSchedule)) {
// Materialize a virtual delay
$._currentDelay = $._pendingDelay;
} else {
// Emit for implicit cancellations when another delay was scheduled.
emit DefaultAdminDelayChangeCanceled();
}
}
$._pendingDelay = newDelay;
$._pendingDelaySchedule = newSchedule;
}
///
/// Private helpers
///
/**
* @dev Defines if an `schedule` is considered set. For consistency purposes.
*/
function _isScheduleSet(uint48 schedule) private pure returns (bool) {
return schedule != 0;
}
/**
* @dev Defines if an `schedule` is considered passed. For consistency purposes.
*/
function _hasSchedulePassed(uint48 schedule) private view returns (bool) {
return schedule < block.timestamp;
}
}
Storage.sol 88 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
/// @notice Returns an address stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getAddress(bytes32 _slot) internal view returns (address addr_) {
assembly {
addr_ := sload(_slot)
}
}
/// @notice Stores an address in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _address The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
/// in arbitrary storage slots.
function setAddress(bytes32 _slot, address _address) internal {
assembly {
sstore(_slot, _address)
}
}
/// @notice Returns a uint256 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getUint(bytes32 _slot) internal view returns (uint256 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setUint(bytes32 _slot, uint256 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bytes32 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The bytes32 value to store.
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBytes32(bytes32 _slot, bytes32 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the bool in.
/// @param _value The bool value to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBool(bytes32 _slot, bool _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bool stored in an arbitrary storage slot.
/// @param _slot The storage slot to retrieve the bool from.
function getBool(bytes32 _slot) internal view returns (bool value_) {
assembly {
value_ := sload(_slot)
}
}
}
Ownable2StepUpgradeable.sol 80 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
struct Ownable2StepStorage {
address _pendingOwner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;
function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
assembly {
$.slot := Ownable2StepStorageLocation
}
}
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
function __Ownable2Step_init() internal onlyInitializing {
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
return $._pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
$._pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
Ownable2StepStorage storage $ = _getOwnable2StepStorage();
delete $._pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
ISP1Verifier.sol 24 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/// @title SP1 Verifier Interface
/// @author Succinct Labs
/// @notice This contract is the interface for the SP1 Verifier.
interface ISP1Verifier {
/// @notice Verifies a proof with given public values and vkey.
/// @dev It is expected that the first 4 bytes of proofBytes must match the first 4 bytes of
/// target verifier's VERIFIER_HASH.
/// @param programVKey The verification key for the RISC-V program.
/// @param publicValues The public values encoded as bytes.
/// @param proofBytes The proof of the program execution the SP1 zkVM encoded as bytes.
function verifyProof(
bytes32 programVKey,
bytes calldata publicValues,
bytes calldata proofBytes
) external view;
}
interface ISP1VerifierWithHash is ISP1Verifier {
/// @notice Returns the hash of the verifier.
function VERIFIER_HASH() external pure returns (bytes32);
}
RLPWriter.sol 163 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
/// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
/// modifications to improve legibility.
library RLPWriter {
/// @notice RLP encodes a byte string.
/// @param _in The byte string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
if (_in.length == 1 && uint8(_in[0]) < 128) {
out_ = _in;
} else {
out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
}
/// @notice RLP encodes a list of RLP encoded byte byte strings.
/// @param _in The list of RLP encoded byte strings.
/// @return list_ The RLP encoded list of items in bytes.
function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
list_ = _flatten(_in);
list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
}
/// @notice RLP encodes a string.
/// @param _in The string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeString(string memory _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(bytes(_in));
}
/// @notice RLP encodes an address.
/// @param _in The address to encode.
/// @return out_ The RLP encoded address in bytes.
function writeAddress(address _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(abi.encodePacked(_in));
}
/// @notice RLP encodes a uint.
/// @param _in The uint256 to encode.
/// @return out_ The RLP encoded uint256 in bytes.
function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(_toBinary(_in));
}
/// @notice RLP encodes a bool.
/// @param _in The bool to encode.
/// @return out_ The RLP encoded bool in bytes.
function writeBool(bool _in) internal pure returns (bytes memory out_) {
out_ = new bytes(1);
out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
}
/// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
/// @param _len The length of the string or the payload.
/// @param _offset 128 if item is string, 192 if item is list.
/// @return out_ RLP encoded bytes.
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
if (_len < 56) {
out_ = new bytes(1);
out_[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
out_ = new bytes(lenLen + 1);
out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
}
}
}
/// @notice Encode integer in big endian binary form with no leading zeroes.
/// @param _x The integer to encode.
/// @return out_ RLP encoded bytes.
function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
out_ = new bytes(32 - i);
for (uint256 j = 0; j < out_.length; j++) {
out_[j] = b[i++];
}
}
/// @custom:attribution https://github.com/Arachnid/solidity-stringutils
/// @notice Copies a piece of memory to another location.
/// @param _dest Destination location.
/// @param _src Source location.
/// @param _len Length of memory to copy.
function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256 ** (32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
/// @notice Flattens a list of byte strings into one byte string.
/// @param _list List of byte strings to flatten.
/// @return out_ The flattened byte string.
function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
out_ = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(out_, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
CREATE3.sol 82 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
import {Bytes32AddressLib} from "./Bytes32AddressLib.sol";
/// @notice Deploy to deterministic addresses without an initcode factor.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/CREATE3.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/create3/blob/master/contracts/Create3.sol)
library CREATE3 {
using Bytes32AddressLib for bytes32;
//--------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//--------------------------------------------------------------------------------//
// 0x36 | 0x36 | CALLDATASIZE | size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 0 size //
// 0x37 | 0x37 | CALLDATACOPY | //
// 0x36 | 0x36 | CALLDATASIZE | size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 size //
// 0x34 | 0x34 | CALLVALUE | value 0 size //
// 0xf0 | 0xf0 | CREATE | newContract //
//--------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//--------------------------------------------------------------------------------//
// 0x67 | 0x67XXXXXXXXXXXXXXXX | PUSH8 bytecode | bytecode //
// 0x3d | 0x3d | RETURNDATASIZE | 0 bytecode //
// 0x52 | 0x52 | MSTORE | //
// 0x60 | 0x6008 | PUSH1 08 | 8 //
// 0x60 | 0x6018 | PUSH1 18 | 24 8 //
// 0xf3 | 0xf3 | RETURN | //
//--------------------------------------------------------------------------------//
bytes internal constant PROXY_BYTECODE = hex"67_36_3d_3d_37_36_3d_34_f0_3d_52_60_08_60_18_f3";
bytes32 internal constant PROXY_BYTECODE_HASH = keccak256(PROXY_BYTECODE);
function deploy(
bytes32 salt,
bytes memory creationCode,
uint256 value
) internal returns (address deployed) {
bytes memory proxyChildBytecode = PROXY_BYTECODE;
address proxy;
assembly {
// Deploy a new contract with our pre-made bytecode via CREATE2.
// We start 32 bytes into the code to avoid copying the byte length.
proxy := create2(0, add(proxyChildBytecode, 32), mload(proxyChildBytecode), salt)
}
require(proxy != address(0), "DEPLOYMENT_FAILED");
deployed = getDeployed(salt);
(bool success, ) = proxy.call{value: value}(creationCode);
require(success && deployed.code.length != 0, "INITIALIZATION_FAILED");
}
function getDeployed(bytes32 salt) internal view returns (address) {
address proxy = keccak256(
abi.encodePacked(
// Prefix:
bytes1(0xFF),
// Creator:
address(this),
// Salt:
salt,
// Bytecode hash:
PROXY_BYTECODE_HASH
)
).fromLast20Bytes();
return
keccak256(
abi.encodePacked(
// 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01)
// 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex)
hex"d6_94",
proxy,
hex"01" // Nonce of the proxy contract (1)
)
).fromLast20Bytes();
}
}
Bytes32AddressLib.sol 14 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Library for converting between addresses and bytes32 values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
library Bytes32AddressLib {
function fromLast20Bytes(bytes32 bytesValue) internal pure returns (address) {
return address(uint160(uint256(bytesValue)));
}
function fillLast12Bytes(address addressValue) internal pure returns (bytes32) {
return bytes32(bytes20(addressValue));
}
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
ERC20.sol 316 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
OwnableUpgradeable.sol 119 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
MerkleTrie.sol 220 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Bytes } from "../Bytes.sol";
import { RLPReader } from "../rlp/RLPReader.sol";
/// @title MerkleTrie
/// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
/// inclusion proofs. By default, this library assumes a hexary trie. One can change the
/// trie radix constant to support other trie radixes.
library MerkleTrie {
/// @notice Struct representing a node in the trie.
/// @custom:field encoded The RLP-encoded node.
/// @custom:field decoded The RLP-decoded node.
struct TrieNode {
bytes encoded;
RLPReader.RLPItem[] decoded;
}
/// @notice Determines the number of elements per branch node.
uint256 internal constant TREE_RADIX = 16;
/// @notice Branch nodes have TREE_RADIX elements and one value element.
uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
/// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
/// @notice Prefix for even-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
/// @notice Prefix for odd-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_ODD = 1;
/// @notice Prefix for even-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_EVEN = 2;
/// @notice Prefix for odd-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_ODD = 3;
/// @notice Verifies a proof that a given key/value pair is present in the trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
valid_ = Bytes.equal(_value, get(_key, _proof, _root));
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
require(_key.length > 0, "MerkleTrie: empty key");
TrieNode[] memory proof = _parseProof(_proof);
bytes memory key = Bytes.toNibbles(_key);
bytes memory currentNodeID = abi.encodePacked(_root);
uint256 currentKeyIndex = 0;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < proof.length; i++) {
TrieNode memory currentNode = proof[i];
// Key index should never exceed total key length or we'll be out of bounds.
require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid large internal hash"
);
} else {
// Nodes smaller than 32 bytes aren't hashed.
require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// Value is the last element of the decoded list (for branch nodes). There's
// some ambiguity in the Merkle trie specification because bytes(0) is a
// valid value to place into the trie, but for branch nodes bytes(0) can exist
// even when the value wasn't explicitly placed there. Geth treats a value of
// bytes(0) as "key does not exist" and so we do the same.
value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
return value_;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIndex += 1;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - (prefix % 2);
bytes memory pathRemainder = Bytes.slice(path, offset);
bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
// Whether this is a leaf node or an extension node, the path remainder MUST be a
// prefix of the key remainder (or be equal to the key remainder) or the proof is
// considered invalid.
require(
pathRemainder.length == sharedNibbleLength,
"MerkleTrie: path remainder must share all nibbles with key"
);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
// Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
// the key remainder must be exactly equal to the path remainder. We already
// did the necessary byte comparison, so it's more efficient here to check that
// the key remainder length equals the shared nibble length, which implies
// equality with the path remainder (since we already did the same check with
// the path remainder and the shared nibble length).
require(
keyRemainder.length == sharedNibbleLength,
"MerkleTrie: key remainder must be identical to path remainder"
);
// Our Merkle Trie is designed specifically for the purposes of the Ethereum
// state trie. Empty values are not allowed in the state trie, so we can safely
// say that if the value is empty, the key should not exist and the proof is
// invalid.
value_ = RLPReader.readBytes(currentNode.decoded[1]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
return value_;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
// Prefix of 0 or 1 means this is an extension node. We move onto the next node
// in the proof and increment the key index by the length of the path remainder
// which is equal to the shared nibble length.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIndex += sharedNibbleLength;
} else {
revert("MerkleTrie: received a node with an unknown prefix");
}
} else {
revert("MerkleTrie: received an unparseable node");
}
}
revert("MerkleTrie: ran out of proof elements");
}
/// @notice Parses an array of proof elements into a new array that contains both the original
/// encoded element and the RLP-decoded element.
/// @param _proof Array of proof elements to parse.
/// @return proof_ Proof parsed into easily accessible structs.
function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
uint256 length = _proof.length;
proof_ = new TrieNode[](length);
for (uint256 i = 0; i < length;) {
proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
unchecked {
++i;
}
}
}
/// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
/// specification, but nodes < 32 bytes are not actually hashed.
/// @param _node Node to pull an ID for.
/// @return id_ ID for the node, depending on the size of its contents.
function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
}
/// @notice Gets the path for a leaf or extension node.
/// @param _node Node to get a path for.
/// @return nibbles_ Node path, converted to an array of nibbles.
function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
}
/// @notice Utility; determines the number of nibbles shared between two nibble arrays.
/// @param _a First nibble array.
/// @param _b Second nibble array.
/// @return shared_ Number of shared nibbles.
function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
for (; shared_ < max && _a[shared_] == _b[shared_];) {
unchecked {
++shared_;
}
}
}
}
Burn.sol 16 lines
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
/// @notice Burns a given amount of gas.
/// @param _amount Amount of gas to burn.
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
Arithmetic.sol 55 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// Libraries
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
/// @notice Clamps a value between a minimum and maximum.
/// @param _value The value to clamp.
/// @param _min The minimum value.
/// @param _max The maximum value.
/// @return The clamped value.
function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/// @notice (c)oefficient (d)enominator (exp)onentiation function.
/// Returns the result of: c * (1 - 1/d)^exp.
/// @param _coefficient Coefficient of the function.
/// @param _denominator Fractional denominator.
/// @param _exponent Power function exponent.
/// @return Result of c * (1 - 1/d)^exp.
function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
/// @notice Saturating addition.
/// @param _x The first value.
/// @param _y The second value.
/// @return z_ The sum of the two values, or the maximum value if the sum overflows.
/// @dev Returns `min(2 ** 256 - 1, x + y)`.
/// @dev Taken from Solady
/// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L673
function saturatingAdd(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
assembly ("memory-safe") {
z_ := or(sub(0, lt(add(_x, _y), _x)), add(_x, _y))
}
}
/// @notice Saturating multiplication.
/// @param _x The first value.
/// @param _y The second value.
/// @return z_ The product of the two values, or the maximum value if the product overflows.
/// @dev Returns `min(2 ** 256 - 1, x * y).
/// @dev Taken from Solady
/// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L681
function saturatingMul(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
assembly ("memory-safe") {
z_ := or(sub(or(iszero(_x), eq(div(mul(_x, _y), _x), _y)), 1), mul(_x, _y))
}
}
}
IAccessControlDefaultAdminRules.sol 192 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "../IAccessControl.sol";
/**
* @dev External interface of AccessControlDefaultAdminRules declared to support ERC165 detection.
*/
interface IAccessControlDefaultAdminRules is IAccessControl {
/**
* @dev The new default admin is not a valid default admin.
*/
error AccessControlInvalidDefaultAdmin(address defaultAdmin);
/**
* @dev At least one of the following rules was violated:
*
* - The `DEFAULT_ADMIN_ROLE` must only be managed by itself.
* - The `DEFAULT_ADMIN_ROLE` must only be held by one account at the time.
* - Any `DEFAULT_ADMIN_ROLE` transfer must be in two delayed steps.
*/
error AccessControlEnforcedDefaultAdminRules();
/**
* @dev The delay for transferring the default admin delay is enforced and
* the operation must wait until `schedule`.
*
* NOTE: `schedule` can be 0 indicating there's no transfer scheduled.
*/
error AccessControlEnforcedDefaultAdminDelay(uint48 schedule);
/**
* @dev Emitted when a {defaultAdmin} transfer is started, setting `newAdmin` as the next
* address to become the {defaultAdmin} by calling {acceptDefaultAdminTransfer} only after `acceptSchedule`
* passes.
*/
event DefaultAdminTransferScheduled(address indexed newAdmin, uint48 acceptSchedule);
/**
* @dev Emitted when a {pendingDefaultAdmin} is reset if it was never accepted, regardless of its schedule.
*/
event DefaultAdminTransferCanceled();
/**
* @dev Emitted when a {defaultAdminDelay} change is started, setting `newDelay` as the next
* delay to be applied between default admin transfer after `effectSchedule` has passed.
*/
event DefaultAdminDelayChangeScheduled(uint48 newDelay, uint48 effectSchedule);
/**
* @dev Emitted when a {pendingDefaultAdminDelay} is reset if its schedule didn't pass.
*/
event DefaultAdminDelayChangeCanceled();
/**
* @dev Returns the address of the current `DEFAULT_ADMIN_ROLE` holder.
*/
function defaultAdmin() external view returns (address);
/**
* @dev Returns a tuple of a `newAdmin` and an accept schedule.
*
* After the `schedule` passes, the `newAdmin` will be able to accept the {defaultAdmin} role
* by calling {acceptDefaultAdminTransfer}, completing the role transfer.
*
* A zero value only in `acceptSchedule` indicates no pending admin transfer.
*
* NOTE: A zero address `newAdmin` means that {defaultAdmin} is being renounced.
*/
function pendingDefaultAdmin() external view returns (address newAdmin, uint48 acceptSchedule);
/**
* @dev Returns the delay required to schedule the acceptance of a {defaultAdmin} transfer started.
*
* This delay will be added to the current timestamp when calling {beginDefaultAdminTransfer} to set
* the acceptance schedule.
*
* NOTE: If a delay change has been scheduled, it will take effect as soon as the schedule passes, making this
* function returns the new delay. See {changeDefaultAdminDelay}.
*/
function defaultAdminDelay() external view returns (uint48);
/**
* @dev Returns a tuple of `newDelay` and an effect schedule.
*
* After the `schedule` passes, the `newDelay` will get into effect immediately for every
* new {defaultAdmin} transfer started with {beginDefaultAdminTransfer}.
*
* A zero value only in `effectSchedule` indicates no pending delay change.
*
* NOTE: A zero value only for `newDelay` means that the next {defaultAdminDelay}
* will be zero after the effect schedule.
*/
function pendingDefaultAdminDelay() external view returns (uint48 newDelay, uint48 effectSchedule);
/**
* @dev Starts a {defaultAdmin} transfer by setting a {pendingDefaultAdmin} scheduled for acceptance
* after the current timestamp plus a {defaultAdminDelay}.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminRoleChangeStarted event.
*/
function beginDefaultAdminTransfer(address newAdmin) external;
/**
* @dev Cancels a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* A {pendingDefaultAdmin} not yet accepted can also be cancelled with this function.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function cancelDefaultAdminTransfer() external;
/**
* @dev Completes a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* After calling the function:
*
* - `DEFAULT_ADMIN_ROLE` should be granted to the caller.
* - `DEFAULT_ADMIN_ROLE` should be revoked from the previous holder.
* - {pendingDefaultAdmin} should be reset to zero values.
*
* Requirements:
*
* - Only can be called by the {pendingDefaultAdmin}'s `newAdmin`.
* - The {pendingDefaultAdmin}'s `acceptSchedule` should've passed.
*/
function acceptDefaultAdminTransfer() external;
/**
* @dev Initiates a {defaultAdminDelay} update by setting a {pendingDefaultAdminDelay} scheduled for getting
* into effect after the current timestamp plus a {defaultAdminDelay}.
*
* This function guarantees that any call to {beginDefaultAdminTransfer} done between the timestamp this
* method is called and the {pendingDefaultAdminDelay} effect schedule will use the current {defaultAdminDelay}
* set before calling.
*
* The {pendingDefaultAdminDelay}'s effect schedule is defined in a way that waiting until the schedule and then
* calling {beginDefaultAdminTransfer} with the new delay will take at least the same as another {defaultAdmin}
* complete transfer (including acceptance).
*
* The schedule is designed for two scenarios:
*
* - When the delay is changed for a larger one the schedule is `block.timestamp + newDelay` capped by
* {defaultAdminDelayIncreaseWait}.
* - When the delay is changed for a shorter one, the schedule is `block.timestamp + (current delay - new delay)`.
*
* A {pendingDefaultAdminDelay} that never got into effect will be canceled in favor of a new scheduled change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminDelayChangeScheduled event and may emit a DefaultAdminDelayChangeCanceled event.
*/
function changeDefaultAdminDelay(uint48 newDelay) external;
/**
* @dev Cancels a scheduled {defaultAdminDelay} change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function rollbackDefaultAdminDelay() external;
/**
* @dev Maximum time in seconds for an increase to {defaultAdminDelay} (that is scheduled using {changeDefaultAdminDelay})
* to take effect. Default to 5 days.
*
* When the {defaultAdminDelay} is scheduled to be increased, it goes into effect after the new delay has passed with
* the purpose of giving enough time for reverting any accidental change (i.e. using milliseconds instead of seconds)
* that may lock the contract. However, to avoid excessive schedules, the wait is capped by this function and it can
* be overrode for a custom {defaultAdminDelay} increase scheduling.
*
* IMPORTANT: Make sure to add a reasonable amount of time while overriding this value, otherwise,
* there's a risk of setting a high new delay that goes into effect almost immediately without the
* possibility of human intervention in the case of an input error (eg. set milliseconds instead of seconds).
*/
function defaultAdminDelayIncreaseWait() external view returns (uint48);
}
AccessControlUpgradeable.sol 233 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
struct AccessControlStorage {
mapping(bytes32 role => RoleData) _roles;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;
function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
assembly {
$.slot := AccessControlStorageLocation
}
}
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
function __AccessControl_init() internal onlyInitializing {
}
function __AccessControl_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
AccessControlStorage storage $ = _getAccessControlStorage();
return $._roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
AccessControlStorage storage $ = _getAccessControlStorage();
bytes32 previousAdminRole = getRoleAdmin(role);
$._roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
if (!hasRole(role, account)) {
$._roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
AccessControlStorage storage $ = _getAccessControlStorage();
if (hasRole(role, account)) {
$._roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
IAccessControl.sol 98 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
SafeCast.sol 1153 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
IERC5313.sol 16 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5313.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface for the Light Contract Ownership Standard.
*
* A standardized minimal interface required to identify an account that controls a contract
*/
interface IERC5313 {
/**
* @dev Gets the address of the owner.
*/
function owner() external view returns (address);
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
ContextUpgradeable.sol 34 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Bytes.sol 144 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Bytes
/// @notice Bytes is a library for manipulating byte arrays.
library Bytes {
/// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
/// @notice Slices a byte array with a given starting index and length. Returns a new byte array
/// as opposed to a pointer to the original array. Will throw if trying to slice more
/// bytes than exist in the array.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @param _length Length of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
unchecked {
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
}
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} { mstore(mc, mload(cc)) }
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
/// @notice Slices a byte array with a given starting index up to the end of the original byte
/// array. Returns a new array rathern than a pointer to the original.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
if (_start >= _bytes.length) {
return bytes("");
}
return slice(_bytes, _start, _bytes.length - _start);
}
/// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
/// Resulting nibble array will be exactly twice as long as the input byte array.
/// @param _bytes Input byte array to convert.
/// @return Resulting nibble array.
function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
bytes memory _nibbles;
assembly {
// Grab a free memory offset for the new array
_nibbles := mload(0x40)
// Load the length of the passed bytes array from memory
let bytesLength := mload(_bytes)
// Calculate the length of the new nibble array
// This is the length of the input array times 2
let nibblesLength := shl(0x01, bytesLength)
// Update the free memory pointer to allocate memory for the new array.
// To do this, we add the length of the new array + 32 bytes for the array length
// rounded up to the nearest 32 byte boundary to the current free memory pointer.
mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
// Store the length of the new array in memory
mstore(_nibbles, nibblesLength)
// Store the memory offset of the _bytes array's contents on the stack
let bytesStart := add(_bytes, 0x20)
// Store the memory offset of the nibbles array's contents on the stack
let nibblesStart := add(_nibbles, 0x20)
// Loop through each byte in the input array
for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
// Get the starting offset of the next 2 bytes in the nibbles array
let offset := add(nibblesStart, shl(0x01, i))
// Load the byte at the current index within the `_bytes` array
let b := byte(0x00, mload(add(bytesStart, i)))
// Pull out the first nibble and store it in the new array
mstore8(offset, shr(0x04, b))
// Pull out the second nibble and store it in the new array
mstore8(add(offset, 0x01), and(b, 0x0F))
}
}
return _nibbles;
}
/// @notice Compares two byte arrays by comparing their keccak256 hashes.
/// @param _bytes First byte array to compare.
/// @param _other Second byte array to compare.
/// @return True if the two byte arrays are equal, false otherwise.
function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
return keccak256(_bytes) == keccak256(_other);
}
}
RLPReader.sol 261 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.8;
/// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
/// @title RLPReader
/// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
/// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
/// various tweaks to improve readability.
library RLPReader {
/// @notice Custom pointer type to avoid confusion between pointers and uint256s.
type MemoryPointer is uint256;
/// @notice RLP item types.
/// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
/// @custom:value LIST_ITEM Represents an RLP list item.
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/// @notice Struct representing an RLP item.
/// @custom:field length Length of the RLP item.
/// @custom:field ptr Pointer to the RLP item in memory.
struct RLPItem {
uint256 length;
MemoryPointer ptr;
}
/// @notice Max list length that this library will accept.
uint256 internal constant MAX_LIST_LENGTH = 32;
/// @notice Converts bytes to a reference to memory position and length.
/// @param _in Input bytes to convert.
/// @return out_ Output memory reference.
function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
// Empty arrays are not RLP items.
require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
MemoryPointer ptr;
assembly {
ptr := add(_in, 32)
}
out_ = RLPItem({ length: _in.length, ptr: ptr });
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
(uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
out_ = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
(uint256 itemOffset, uint256 itemLength,) = _decodeLength(
RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
);
// We don't need to check itemCount < out.length explicitly because Solidity already
// handles this check on our behalf, we'd just be wasting gas.
out_[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out_, itemCount)
}
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
out_ = readList(toRLPItem(_in));
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
(uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
out_ = _copy(_in.ptr, itemOffset, itemLength);
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
out_ = readBytes(toRLPItem(_in));
}
/// @notice Reads the raw bytes of an RLP item.
/// @param _in RLP item to read.
/// @return out_ Raw RLP bytes.
function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
out_ = _copy(_in.ptr, 0, _in.length);
}
/// @notice Decodes the length of an RLP item.
/// @param _in RLP item to decode.
/// @return offset_ Offset of the encoded data.
/// @return length_ Length of the encoded data.
/// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
function _decodeLength(RLPItem memory _in)
private
pure
returns (uint256 offset_, uint256 length_, RLPItemType type_)
{
// Short-circuit if there's nothing to decode, note that we perform this check when
// the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
// that function and create an RLP item directly. So we need to check this anyway.
require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
MemoryPointer ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
// slither-disable-next-line variable-scope
uint256 strLen = prefix - 0x80;
require(
_in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
strLen != 1 || firstByteOfContent >= 0x80,
"RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
);
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
require(
_in.length > lenOfStrLen,
"RLPReader: length of content must be > than length of string length (long string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
);
uint256 strLen;
assembly {
strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
}
require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
require(
_in.length > lenOfStrLen + strLen,
"RLPReader: length of content must be greater than total length (long string)"
);
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
// slither-disable-next-line variable-scope
uint256 listLen = prefix - 0xc0;
require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
require(
_in.length > lenOfListLen,
"RLPReader: length of content must be > than length of list length (long list)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
);
uint256 listLen;
assembly {
listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
}
require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
require(
_in.length > lenOfListLen + listLen,
"RLPReader: length of content must be greater than total length (long list)"
);
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/// @notice Copies the bytes from a memory location.
/// @param _src Pointer to the location to read from.
/// @param _offset Offset to start reading from.
/// @param _length Number of bytes to read.
/// @return out_ Copied bytes.
function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
out_ = new bytes(_length);
if (_length == 0) {
return out_;
}
// Mostly based on Solidity's copy_memory_to_memory:
// https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
uint256 src = MemoryPointer.unwrap(_src) + _offset;
assembly {
let dest := add(out_, 32)
let i := 0
for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
if gt(i, _length) { mstore(add(dest, _length), 0) }
}
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
FixedPointMathLib.sol 366 lines
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
}
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function lnWad(int256 x) internal pure returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = int256(log2(uint256(x))) - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function log2(uint256 x) internal pure returns (uint256 r) {
require(x > 0, "UNDEFINED");
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
}
}
ERC165Upgradeable.sol 33 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165Upgradeable is Initializable, IERC165 {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
Read Contract
MESSENGER 0x927ede2d → address
OTHER_BRIDGE 0x7f46ddb2 → address
accessController 0xbc43cbaf → address
deposits 0x8f601f66 → uint256
escapedAmount 0x93d00123 → uint256
messenger 0x3cb747bf → address
otherBridge 0xc89701a2 → address
paused 0x5c975abb → bool
superchainConfig 0x35e80ab3 → address
version 0x54fd4d50 → string
Write Contract 9 functions
These functions modify contract state and require a wallet transaction to execute.
bridgeERC20 0x87087623
address _localToken
address _remoteToken
uint256 _amount
uint32 _minGasLimit
bytes _extraData
bridgeERC20To 0x540abf73
address _localToken
address _remoteToken
address _to
uint256 _amount
uint32 _minGasLimit
bytes _extraData
bridgeETH 0x09fc8843
uint32 _minGasLimit
bytes _extraData
bridgeETHTo 0xe11013dd
address _to
uint32 _minGasLimit
bytes _extraData
escapeERC20 0xf51e8089
address _localToken
address _remoteToken
bool _isRemoteTokenUpgradable
tuple _outputRootProof
tuple _accountState
bytes[] _stateProof
uint256 _tokenBalance
bytes[] _storageProof
escapeERC20ThroughResolver 0x4bdb5117
address _localToken
address _remoteToken
bool _isRemoteTokenUpgradable
tuple _outputRootProof
tuple _accountState
bytes[] _stateProof
uint256 _tokenBalance
bytes[] _storageProof
tuple _resolverData
finalizeBridgeERC20 0x0166a07a
address _localToken
address _remoteToken
address _from
address _to
uint256 _amount
bytes _extraData
finalizeBridgeETH 0x1635f5fd
address _from
address _to
uint256 _amount
bytes _extraData
initialize 0x485cc955
address _messenger
address _superchainConfig
Recent Transactions
No transactions found for this address