Address Contract Verified
Address
0x2A73e899389cABa2a2f648BaBA35e67f5C00EFee
Balance
0 ETH
Nonce
69
Code Size
15400 bytes
Creator
0x2F2298a4...8552 at tx 0x7697fc17...2a5643
Indexed Transactions
0
Contract Bytecode
15400 bytes
0x60806040526004361015610011575f80fd5b5f3560e01c80630b5af9f8146103e25780631bdfe053146103785780632d9a4a9d14610365578063451d27b8146101865780638ca06ea614610118578063ca6ec89a146100d6578063e233c366146100995763e54f48df14610071575f80fd5b3461009557602061008d61008436610592565b929190916108a4565b604051908152f35b5f80fd5b34610095576100aa61008436610592565b5f526001602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b34610095576100ed6100e736610527565b91610814565b5f525f602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b34610095575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261009557602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000009a9fa8338dd5e5b2188006f1cd2ef26d921650c2168152f35b346100955761019436610592565b926101a1848385846108a4565b93845f52600160205273ffffffffffffffffffffffffffffffffffffffff60405f20541661033d576101d384836106b5565b604051611b438082019082821067ffffffffffffffff83111761031057838688878695610204956120b08839610860565b03905ff080156103055773ffffffffffffffffffffffffffffffffffffffff1693855f52600160205260405f2073ffffffffffffffffffffffffffffffffffffffff86167fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560028410156102d857606073ffffffffffffffffffffffffffffffffffffffff63ffffffff7f0c00ff77242aa7973d8bb5cb73ecc1733bf615b0aaf967a50c2b7672f9110da3936020998360405197168752898b880152604087015216941692a4604051908152f35b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b6040513d5f823e3d90fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f63ed5285000000000000000000000000000000000000000000000000000000005f5260045ffd5b3461009557602061008d6100e736610527565b346100955760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100955760043573ffffffffffffffffffffffffffffffffffffffff811681036100955760243563ffffffff81168103610095576103e0916106b5565b005b34610095576103f036610527565b6103fd8183859495610814565b91825f525f60205273ffffffffffffffffffffffffffffffffffffffff60405f20541661033d5761042e84826106b5565b6040516117f180820182811067ffffffffffffffff8211176103105784878561045d9386956108bf873961062b565b03905ff080156103055773ffffffffffffffffffffffffffffffffffffffff1692805f525f60205260405f2073ffffffffffffffffffffffffffffffffffffffff85167fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560028310156102d8577f1f9e05a536e40324537d577d17a8b32d1d2a2894f53cce4c730bc82235d6ab58604073ffffffffffffffffffffffffffffffffffffffff63ffffffff6020988351958987528a87015216941692a4604051908152f35b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60609101126100955760043573ffffffffffffffffffffffffffffffffffffffff81168103610095579060243563ffffffff81168103610095579060443560028110156100955790565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60809101126100955760043573ffffffffffffffffffffffffffffffffffffffff81168103610095579060243563ffffffff8116810361009557906044356002811015610095579060643573ffffffffffffffffffffffffffffffffffffffff811681036100955790565b9060028210156102d85752565b60409063ffffffff610665949695939673ffffffffffffffffffffffffffffffffffffffff6060840198168352166020820152019061061e565b565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761031057604052565b5190811515820361009557565b9063ffffffff9073ffffffffffffffffffffffffffffffffffffffff604051937f873e960000000000000000000000000000000000000000000000000000000000855216600484015216602482015260608160448173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000009a9fa8338dd5e5b2188006f1cd2ef26d921650c2165afa908115610305575f5f915f936107b9575b5061078957501561076157565b7f39db717e000000000000000000000000000000000000000000000000000000005f5260045ffd5b61ffff907f80b1d95f000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b925050506060813d60601161080c575b816107d660609383610667565b81010312610095576107e7816106a8565b60208201519161ffff8316830361009557604061080491016106a8565b91905f610754565b3d91506107c9565b919061085a9061082e60405193849260208401968761062b565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282610667565b51902090565b929361089e73ffffffffffffffffffffffffffffffffffffffff92969563ffffffff60609585608089019a168852166020870152604086019061061e565b16910152565b929061082e61085a9260405194859360208501978861086056fe6101608060405234610106576060816117f18038038091610020828561010a565b8339810103126101065761003381610141565b9060208101519063ffffffff82168203610106576040015160028110156101065760ff61007e61007761008593868496336080528160a05260c0528160e052610185565b9416610155565b9216610155565b6101205261010052610095610368565b6101405260405161143090816103c1823960805181610193015260a05181818161027d0152610d72015260c0518181816104d80152610d94015260e0518161052c0152610100518181816104420152610e220152610120518181816101260152610e4901526101405181610db50152f35b5f80fd5b601f909101601f19168101906001600160401b0382119082101761012d57604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361010657565b604d811161016357600a0a90565b634e487b7160e01b5f52601160045260245ffd5b519060ff8216820361010657565b604051630b2339af60e21b81529192915f91829190606090829060049082906001600160a01b03165afa9081156102b1575f916102fd575b5060405163313ce56760e01b81526001600160a01b039190911694602082600481895afa9182156102b1575f926102bc575b50606060049660405197888092630a40bee560e41b82525afa9586156102b1575f9661025b575b506002811015610247576001810361023057505050508190565b5f9591929493955015610241575050565b93509150565b634e487b7160e01b5f52602160045260245ffd5b9095506060813d6060116102a9575b816102776060938361010a565b81010312610106576002815110156101065760408161029b60206102a29401610141565b5001610177565b945f610216565b3d915061026a565b6040513d5f823e3d90fd5b9591506020863d6020116102f5575b816102d86020938361010a565b810103126101065760606102ed600497610177565b9296506101ef565b3d91506102cb565b90506060813d606011610360575b816103186060938361010a565b81010312610106578051906001600160a01b03821682036101065760208101516001600160a01b0381160361010657604001516001600160a01b03811603610106575f6101bd565b3d915061030b565b60e0516002811015610247578061037f5750600290565b60010361038b57600190565b60405162461bcd60e51b815260206004820152600d60248201526c1b9bdd081cdd5c1c1bdc9d1959609a1b6044820152606490fdfe6080806040526004361015610012575f80fd5b5f3560e01c9081630aa33a24146104fc5750806326d895451461049e578063313ce567146104655780634ae5fa9b1461040d57806354fd4d50146103d45780637284e416146102a157806380f55605146102335780639a6fc8f5146101b7578063c45a015514610149578063ee81d997146100f15763feaf968c14610095575f80fd5b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed5760a06100cd610d5b565b604051905f825260208201525f60408201524260608201525f6080820152f35b5f80fd5b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100ed5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed5760043569ffffffffffffffffffff81168091036100ed5761020b5760a06100cd610d5b565b7fbfbe031f000000000000000000000000000000000000000000000000000000005f5260045ffd5b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed576040516060810181811067ffffffffffffffff8211176103a757604052602281527f50656e646c6520436861696e6c696e6b2d636f6d70617469626c65204f72616360208201527f6c6500000000000000000000000000000000000000000000000000000000000060408201526040519060208252818151918260208301525f5b83811061038f5750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f835f604080968601015201168101030190f35b60208282018101516040878401015285935001610350565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed57602060405160018152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed57602060405160128152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed57602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100ed575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ed577f000000000000000000000000000000000000000000000000000000000000000090600282101561055c576020918152f35b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b8181029291811591840414171561059c57565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81156105d3570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b9061060a826106b1565b9081811061062057505061061d91610a04565b90565b610631610636929361061d95610a04565b610589565b6105c9565b610644816106b1565b909190808310610661575061061d9261065c91610a04565b610d30565b915061061d9261065c91610a04565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176103a757604052565b90606073ffffffffffffffffffffffffffffffffffffffff926004604051809581937f2c8ce6bc000000000000000000000000000000000000000000000000000000008352165afa9182156108c0575f905f9361096e575b50602073ffffffffffffffffffffffffffffffffffffffff916004604051809481937f3ba0b9a9000000000000000000000000000000000000000000000000000000008352165afa9081156108c0575f9161093c575b5073ffffffffffffffffffffffffffffffffffffffff81931690604051917fd2a3584e000000000000000000000000000000000000000000000000000000008352602083600481845afa9283156108c0575f93610908575b50604051907f516399df000000000000000000000000000000000000000000000000000000008252602082600481845afa9182156108c0575f926108cb575b5081610819575b5015610807575090565b9080821115610814575090565b905090565b60049150602090604051928380927f60e0a9e10000000000000000000000000000000000000000000000000000000082525afa9081156108c0575f91610875575b506fffffffffffffffffffffffffffffffff1643145f6107fd565b90506020813d6020116108b8575b8161089060209383610670565b810103126100ed57516fffffffffffffffffffffffffffffffff811681036100ed575f61085a565b3d9150610883565b6040513d5f823e3d90fd5b9091506020813d602011610900575b816108e760209383610670565b810103126100ed575180151581036100ed57905f6107f6565b3d91506108da565b9092506020813d602011610934575b8161092460209383610670565b810103126100ed5751915f6107b7565b3d9150610917565b90506020813d602011610966575b8161095760209383610670565b810103126100ed57515f61075f565b3d915061094a565b9250506060823d6060116109fc575b8161098a60609383610670565b810103126100ed5781519173ffffffffffffffffffffffffffffffffffffffff831683036100ed57602081015173ffffffffffffffffffffffffffffffffffffffff8116036100ed57604001519173ffffffffffffffffffffffffffffffffffffffff831683036100ed576020610709565b3d915061097d565b73ffffffffffffffffffffffffffffffffffffffff16604051907fe184c9be000000000000000000000000000000000000000000000000000000008252602082600481845afa9182156108c0575f92610cfc575b50428211610a6f57505050670de0b6b3a764000090565b60405190610a7e606083610670565b600282526020820191604036843763ffffffff610a9a82610eae565b95168095526040519283917f883bdbfd000000000000000000000000000000000000000000000000000000008352602483019060206004850152518091526044830191905f5b818110610cdd575050509181805f9403915afa9081156108c0575f91610c1d575b50805160011015610bf0577affffffffffffffffffffffffffffffffffffffffffffffffffffff610b388160408401511692610eae565b511690037affffffffffffffffffffffffffffffffffffffffffffffffffffff811161059c5782156105d35742820391821161059c57610b98927affffffffffffffffffffffffffffffffffffffffffffffffffffff8092160416610589565b6301e1338090047f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81116100ed57610bcf90610f3a565b5f81126100ed5780156105d3576ec097ce7bc90715b34b9f10000000000490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b90503d805f833e610c2e8183610670565b8101906020818303126100ed5780519067ffffffffffffffff82116100ed570181601f820112156100ed5780519167ffffffffffffffff83116103a7578260051b916020830193610c826040519586610670565b84526020808501938201019182116100ed57602001915b818310610ca9575050505f610b01565b82517affffffffffffffffffffffffffffffffffffffffffffffffffffff811681036100ed57815260209283019201610c99565b825163ffffffff16845286945060209384019390920191600101610ae0565b9091506020813d602011610d28575b81610d1860209383610670565b810103126100ed5751905f610a58565b3d9150610d0b565b90670de0b6b3a7640000820291808304670de0b6b3a7640000149015171561059c5761061d916105c9565b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000167f00000000000000000000000000000000000000000000000000000000000000007f000000000000000000000000000000000000000000000000000000000000000080600114610e9857600214610e10577f4e487b71000000000000000000000000000000000000000000000000000000005f52605160045260245ffd5b610e20610e4791610e6e9361063b565b7f000000000000000000000000000000000000000000000000000000000000000090610589565b7f0000000000000000000000000000000000000000000000000000000000000000906105c9565b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81116100ed5790565b50610ea9610e4791610e6e93610600565b610e20565b805115610bf05760200190565b15610ec257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f496e76616c6964206578706f6e656e74000000000000000000000000000000006044820152fd5b80156105d3576ec097ce7bc90715b34b9f10000000000590565b7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc0000811215806113e7575b610f6d90610ebb565b5f81126113d35761061d906806f05b59d3b2000000811261137c577ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e000000016111456064770195e54c5dd42177f53a27172fa9ec630262827000000000925b0268056bc75e2d631000009068ad78ebc5ac62000000811215611343575b6856bc75e2d6310000008112156112f9575b682b5e3af16b188000008112156112b1575b6815af1d78b58c400000811215611269575b680ad78ebc5ac6200000811215611222575b68056bc75e2d631000008112156111db575b6802b5e3af16b1880000811215611194575b68015af1d78b58c4000081121561114d575b600268056bc75e2d631000008280020505600368056bc75e2d631000008383020505600468056bc75e2d631000008483020505600568056bc75e2d631000008583020505600668056bc75e2d631000008683020505600768056bc75e2d63100000878302050590600868056bc75e2d63100000888402050592600968056bc75e2d6310000089860205059468056bc75e2d63100000600a8a88028290050597600b68056bc75e2d631000008c8b02050599600c68056bc75e2d631000008d8d0205059b0101010101010101010101010268056bc75e2d63100000900590565b026064900590565b6806f5f17757889379377ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000061118e9201920268056bc75e2d63100000900590565b90611066565b6808f00f760a4b2db55d7ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800006111d59201920268056bc75e2d63100000900590565b90611054565b680ebc5fb417461211107ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000061121c9201920268056bc75e2d63100000900590565b90611042565b68280e60114edb805d037ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000006112639201920268056bc75e2d63100000900590565b90611030565b690127fa27722cc06cc5e27fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000006112ab9201920268056bc75e2d63100000900590565b9061101e565b693f1fce3da636ea5cf8507fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000006112f39201920268056bc75e2d63100000900590565b9061100c565b6b02df0ab5a80a22c61ab5a7007fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf00000061133d9201920268056bc75e2d63100000900590565b90610ffa565b6e01855144814a7ff805980ff008400091507fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e00000001610fe8565b6803782dace9d900000081126113c6577ffffffffffffffffffffffffffffffffffffffffffffffffc87d25316270000000161114560646b1425982cf597cd205cef738092610fca565b6111456064600192610fca565b6113de905f03610f3a565b61061d90610f20565b5068070c1cc73b00c80000811315610f6456fea2646970667358221220e03ad7d4459225a4606885e8d874eb777e6871727c57469b68f82ecb4ec6637e64736f6c634300081b00336101a0806040523461018a57608081611b43803803809161002082856101e7565b83398101031261018a576100338161021e565b602082015163ffffffff8116810361018a57604083015191600283101561018a5761009560ff61008e6100876020968395610072606060049b0161021e565b97336080528160a05260c0528160e05261024e565b9416610240565b9216610240565b61012052610100526100a5610426565b6101405261016081905260405163313ce56760e01b815292839182906001600160a01b03165afa80156101dc575f906101a2575b60ff915016604d811161018e57600a0a6001600160ff1b03811161018a57610180526040516116c4908161047f8239608051816101c7015260a0518181816102b20152610853015260c05181818161057b0152610875015260e05181610627015261010051818181610477015261090301526101205181818161015a015261092a0152610140518161089601526101605181818161051d01526108070152610180518181816105d401526109b30152f35b5f80fd5b634e487b7160e01b5f52601160045260245ffd5b506020813d6020116101d4575b816101bc602093836101e7565b8101031261018a576101cf60ff91610232565b6100d9565b3d91506101af565b6040513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761020a57604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361018a57565b519060ff8216820361018a57565b604d811161018e57600a0a90565b604051630b2339af60e21b81529192915f91829190606090829060049082906001600160a01b03165afa9081156101dc575f916103bb575b5060405163313ce56760e01b81526001600160a01b039190911694602082600481895afa9182156101dc575f9261037a575b50606060049660405197888092630a40bee560e41b82525afa9586156101dc575f96610324575b50600281101561031057600181036102f957505050508190565b5f959192949395501561030a575050565b93509150565b634e487b7160e01b5f52602160045260245ffd5b9095506060813d606011610372575b81610340606093836101e7565b8101031261018a5760028151101561018a57604081610364602061036b940161021e565b5001610232565b945f6102df565b3d9150610333565b9591506020863d6020116103b3575b81610396602093836101e7565b8101031261018a5760606103ab600497610232565b9296506102b8565b3d9150610389565b90506060813d60601161041e575b816103d6606093836101e7565b8101031261018a578051906001600160a01b038216820361018a5760208101516001600160a01b0381160361018a57604001516001600160a01b0381160361018a575f610286565b3d91506103c9565b60e0516002811015610310578061043d5750600290565b60010361044957600190565b60405162461bcd60e51b815260206004820152600d60248201526c1b9bdd081cdd5c1c1bdc9d1959609a1b6044820152606490fdfe6080806040526004361015610012575f80fd5b5f3560e01c9081630aa33a24146105f757508063172009a61461059f57806326d8954514610541578063289d77cc146104d3578063313ce5671461049a5780634ae5fa9b1461044257806354fd4d50146104095780637284e416146102d657806380f55605146102685780639a6fc8f5146101eb578063c45a01551461017d578063ee81d997146101255763feaf968c146100ab575f80fd5b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101215761011d6100e46107c3565b6040805169ffffffffffffffffffff968716815260208101959095528401929092526060830152909116608082015290819060a0820190565b0390f35b5f80fd5b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101215760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346101215760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101215760043569ffffffffffffffffffff8116809103610121576102405761011d6100e46107c3565b7fbfbe031f000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610121576040516060810181811067ffffffffffffffff8211176103dc57604052602281527f50656e646c6520436861696e6c696e6b2d636f6d70617469626c65204f72616360208201527f6c6500000000000000000000000000000000000000000000000000000000000060408201526040519060208252818151918260208301525f5b8381106103c45750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f835f604080968601015201168101030190f35b60208282018101516040878401015285935001610385565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405160018152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101215760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405160128152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261012157602060405163ffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101215760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610121575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610121577f0000000000000000000000000000000000000000000000000000000000000000906002821015610657576020918152f35b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b8181029291811591840414171561069757565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81156106ce570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b9061070582610aa3565b9081811061071b57505061071891610deb565b90565b61072c610731929361071895610deb565b610684565b6106c4565b61073f81610aa3565b90919080831061075c57506107189261075791610deb565b611117565b91506107189261075791610deb565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176103dc57604052565b519069ffffffffffffffffffff8216820361012157565b604051907ffeaf968c00000000000000000000000000000000000000000000000000000000825260a08260048173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610a98575f925f92610a42575b505f9273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000167f00000000000000000000000000000000000000000000000000000000000000007f000000000000000000000000000000000000000000000000000000000000000080600114610a2c576002146108f1577f4e487b71000000000000000000000000000000000000000000000000000000005f52605160045260245ffd5b6109016109289161094f93610736565b7f000000000000000000000000000000000000000000000000000000000000000090610684565b7f0000000000000000000000000000000000000000000000000000000000000000906106c4565b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161012157818102917f800000000000000000000000000000000000000000000000000000000000000081145f831216610697578183051490151715610697577f00000000000000000000000000000000000000000000000000000000000000009081156106ce577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82147f80000000000000000000000000000000000000000000000000000000000000008214166106975705915f915f90565b50610a3d6109289161094f936106fb565b610901565b9250905060a0823d60a011610a90575b81610a5f60a0938361076b565b8101031261012157610a70826107ac565b506020820151610a876080606085015194016107ac565b5091905f610839565b3d9150610a52565b6040513d5f823e3d90fd5b90606073ffffffffffffffffffffffffffffffffffffffff926004604051809581937f2c8ce6bc000000000000000000000000000000000000000000000000000000008352165afa918215610a98575f905f93610d55575b50602073ffffffffffffffffffffffffffffffffffffffff916004604051809481937f3ba0b9a9000000000000000000000000000000000000000000000000000000008352165afa908115610a98575f91610d23575b5073ffffffffffffffffffffffffffffffffffffffff81931690604051917fd2a3584e000000000000000000000000000000000000000000000000000000008352602083600481845afa928315610a98575f93610cef575b50604051907f516399df000000000000000000000000000000000000000000000000000000008252602082600481845afa918215610a98575f92610cb2575b5081610c0b575b5015610bf9575090565b9080821115610c06575090565b905090565b60049150602090604051928380927f60e0a9e10000000000000000000000000000000000000000000000000000000082525afa908115610a98575f91610c67575b506fffffffffffffffffffffffffffffffff1643145f610bef565b90506020813d602011610caa575b81610c826020938361076b565b8101031261012157516fffffffffffffffffffffffffffffffff81168103610121575f610c4c565b3d9150610c75565b9091506020813d602011610ce7575b81610cce6020938361076b565b810103126101215751801515810361012157905f610be8565b3d9150610cc1565b9092506020813d602011610d1b575b81610d0b6020938361076b565b810103126101215751915f610ba9565b3d9150610cfe565b90506020813d602011610d4d575b81610d3e6020938361076b565b8101031261012157515f610b51565b3d9150610d31565b9250506060823d606011610de3575b81610d716060938361076b565b810103126101215781519173ffffffffffffffffffffffffffffffffffffffff8316830361012157602081015173ffffffffffffffffffffffffffffffffffffffff81160361012157604001519173ffffffffffffffffffffffffffffffffffffffff83168303610121576020610afb565b3d9150610d64565b73ffffffffffffffffffffffffffffffffffffffff16604051907fe184c9be000000000000000000000000000000000000000000000000000000008252602082600481845afa918215610a98575f926110e3575b50428211610e5657505050670de0b6b3a764000090565b60405190610e6560608361076b565b600282526020820191604036843763ffffffff610e8182611142565b95168095526040519283917f883bdbfd000000000000000000000000000000000000000000000000000000008352602483019060206004850152518091526044830191905f5b8181106110c4575050509181805f9403915afa908115610a98575f91611004575b50805160011015610fd7577affffffffffffffffffffffffffffffffffffffffffffffffffffff610f1f8160408401511692611142565b511690037affffffffffffffffffffffffffffffffffffffffffffffffffffff81116106975782156106ce5742820391821161069757610f7f927affffffffffffffffffffffffffffffffffffffffffffffffffffff8092160416610684565b6301e1338090047f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811161012157610fb6906111ce565b5f81126101215780156106ce576ec097ce7bc90715b34b9f10000000000490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b90503d805f833e611015818361076b565b8101906020818303126101215780519067ffffffffffffffff8211610121570181601f820112156101215780519167ffffffffffffffff83116103dc578260051b916020830193611069604051958661076b565b845260208085019382010191821161012157602001915b818310611090575050505f610ee8565b82517affffffffffffffffffffffffffffffffffffffffffffffffffffff8116810361012157815260209283019201611080565b825163ffffffff16845286945060209384019390920191600101610ec7565b9091506020813d60201161110f575b816110ff6020938361076b565b810103126101215751905f610e3f565b3d91506110f2565b90670de0b6b3a7640000820291808304670de0b6b3a7640000149015171561069757610718916106c4565b805115610fd75760200190565b1561115657565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f496e76616c6964206578706f6e656e74000000000000000000000000000000006044820152fd5b80156106ce576ec097ce7bc90715b34b9f10000000000590565b7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008112158061167b575b6112019061114f565b5f811261166757610718906806f05b59d3b20000008112611610577ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e000000016113d96064770195e54c5dd42177f53a27172fa9ec630262827000000000925b0268056bc75e2d631000009068ad78ebc5ac620000008112156115d7575b6856bc75e2d63100000081121561158d575b682b5e3af16b18800000811215611545575b6815af1d78b58c4000008112156114fd575b680ad78ebc5ac62000008112156114b6575b68056bc75e2d6310000081121561146f575b6802b5e3af16b1880000811215611428575b68015af1d78b58c400008112156113e1575b600268056bc75e2d631000008280020505600368056bc75e2d631000008383020505600468056bc75e2d631000008483020505600568056bc75e2d631000008583020505600668056bc75e2d631000008683020505600768056bc75e2d63100000878302050590600868056bc75e2d63100000888402050592600968056bc75e2d6310000089860205059468056bc75e2d63100000600a8a88028290050597600b68056bc75e2d631000008c8b02050599600c68056bc75e2d631000008d8d0205059b0101010101010101010101010268056bc75e2d63100000900590565b026064900590565b6806f5f17757889379377ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00006114229201920268056bc75e2d63100000900590565b906112fa565b6808f00f760a4b2db55d7ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800006114699201920268056bc75e2d63100000900590565b906112e8565b680ebc5fb417461211107ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000006114b09201920268056bc75e2d63100000900590565b906112d6565b68280e60114edb805d037ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000006114f79201920268056bc75e2d63100000900590565b906112c4565b690127fa27722cc06cc5e27fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c0000061153f9201920268056bc75e2d63100000900590565b906112b2565b693f1fce3da636ea5cf8507fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000006115879201920268056bc75e2d63100000900590565b906112a0565b6b02df0ab5a80a22c61ab5a7007fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000006115d19201920268056bc75e2d63100000900590565b9061128e565b6e01855144814a7ff805980ff008400091507fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000000161127c565b6803782dace9d9000000811261165a577ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000016113d960646b1425982cf597cd205cef73809261125e565b6113d9606460019261125e565b611672905f036111ce565b610718906111b4565b5068070c1cc73b00c800008113156111f856fea2646970667358221220db2ecd3ee882e3d20b069a55e4f58330ab5ebfeb5a49b684c38c682e3bf50f8e64736f6c634300081b0033a2646970667358221220a70227712fb2f6e55f53287eabf2e75e3a4f25ba8a8c1be97c72bdb0b7617ba264736f6c634300081b0033
Verified Source Code Full Match
Compiler: v0.8.27+commit.40a35a09
EVM: shanghai
Optimization: Yes (1000000 runs)
AggregatorV3Interface.sol 32 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(uint80 _roundId)
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
function latestRoundData()
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
}
IERC20Metadata.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
Errors.sol 182 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library Errors {
// BulkSeller
error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
error BulkNotMaintainer();
error BulkNotAdmin();
error BulkSellerAlreadyExisted(address token, address SY, address bulk);
error BulkSellerInvalidToken(address token, address SY);
error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);
// APPROX
error ApproxFail();
error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
error ApproxBinarySearchInputInvalid(
uint256 approxGuessMin,
uint256 approxGuessMax,
uint256 minGuessMin,
uint256 maxGuessMax
);
// MARKET + MARKET MATH CORE
error MarketExpired();
error MarketZeroAmountsInput();
error MarketZeroAmountsOutput();
error MarketZeroLnImpliedRate();
error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
error MarketExchangeRateBelowOne(int256 exchangeRate);
error MarketProportionMustNotEqualOne();
error MarketRateScalarBelowZero(int256 rateScalar);
error MarketScalarRootBelowZero(int256 scalarRoot);
error MarketProportionTooHigh(int256 proportion, int256 maxProportion);
error OracleUninitialized();
error OracleTargetTooOld(uint32 target, uint32 oldest);
error OracleZeroCardinality();
error MarketFactoryExpiredPt();
error MarketFactoryInvalidPt();
error MarketFactoryMarketExists();
error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot);
error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent);
error MarketFactoryZeroTreasury();
error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);
error MFNotPendleMarket(address addr);
// ROUTER
error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);
error RouterTimeRangeZero();
error RouterCallbackNotPendleMarket(address caller);
error RouterInvalidAction(bytes4 selector);
error RouterInvalidFacet(address facet);
error RouterKyberSwapDataZero();
error SimulationResults(bool success, bytes res);
// YIELD CONTRACT
error YCExpired();
error YCNotExpired();
error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
error YCNothingToRedeem();
error YCPostExpiryDataNotSet();
error YCNoFloatingSy();
// YieldFactory
error YCFactoryInvalidExpiry();
error YCFactoryYieldContractExisted();
error YCFactoryZeroExpiryDivisor();
error YCFactoryZeroTreasury();
error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);
// SY
error SYInvalidTokenIn(address token);
error SYInvalidTokenOut(address token);
error SYZeroDeposit();
error SYZeroRedeem();
error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
// SY-specific
error SYQiTokenMintFailed(uint256 errCode);
error SYQiTokenRedeemFailed(uint256 errCode);
error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);
error SYCurveInvalidPid();
error SYCurve3crvPoolNotFound();
error SYApeDepositAmountTooSmall(uint256 amountDeposited);
error SYBalancerInvalidPid();
error SYInvalidRewardToken(address token);
error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);
error SYBalancerReentrancy();
error NotFromTrustedRemote(uint16 srcChainId, bytes path);
error ApxETHNotEnoughBuffer();
// Liquidity Mining
error VCInactivePool(address pool);
error VCPoolAlreadyActive(address pool);
error VCZeroVePendle(address user);
error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
error VCEpochNotFinalized(uint256 wTime);
error VCPoolAlreadyAddAndRemoved(address pool);
error VEInvalidNewExpiry(uint256 newExpiry);
error VEExceededMaxLockTime();
error VEInsufficientLockTime();
error VENotAllowedReduceExpiry();
error VEZeroAmountLocked();
error VEPositionNotExpired();
error VEZeroPosition();
error VEZeroSlope(uint128 bias, uint128 slope);
error VEReceiveOldSupply(uint256 msgTime);
error GCNotPendleMarket(address caller);
error GCNotVotingController(address caller);
error InvalidWTime(uint256 wTime);
error ExpiryInThePast(uint256 expiry);
error ChainNotSupported(uint256 chainId);
error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
error FDEpochLengthMismatch();
error FDInvalidPool(address pool);
error FDPoolAlreadyExists(address pool);
error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
error FDInvalidStartEpoch(uint256 startEpoch);
error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);
error BDInvalidEpoch(uint256 epoch, uint256 startTime);
// Cross-Chain
error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
error MsgNotFromReceiveEndpoint(address sender);
error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
error ApproxDstExecutionGasNotSet();
error InvalidRetryData();
// GENERIC MSG
error ArrayLengthMismatch();
error ArrayEmpty();
error ArrayOutOfBounds();
error ZeroAddress();
error FailedToSendEther();
error InvalidMerkleProof();
error OnlyLayerZeroEndpoint();
error OnlyYT();
error OnlyYCFactory();
error OnlyWhitelisted();
// Swap Aggregator
error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}
LogExpMath.sol 495 lines
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.8.0;
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
unchecked {
require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
unchecked {
// The real natural logarithm is not defined for negative numbers or zero.
require(a > 0, "out of bounds");
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
}
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
require(x < 2 ** 255, "x out of bounds");
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
require(y < MILD_EXPONENT_BOUND, "y out of bounds");
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
"product out of bounds"
);
return uint256(exp(logx_times_y));
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
unchecked {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
unchecked {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
}
PMath.sol 220 lines
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.8.0;
/* solhint-disable private-vars-leading-underscore, reason-string */
library PMath {
uint256 internal constant ONE = 1e18; // 18 decimal places
int256 internal constant IONE = 1e18; // 18 decimal places
function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
return (a >= b ? a - b : 0);
}
}
function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
require(a >= b, "negative");
return a - b; // no unchecked since if b is very negative, a - b might overflow
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
unchecked {
return product / ONE;
}
}
function mulDown(int256 a, int256 b) internal pure returns (int256) {
int256 product = a * b;
unchecked {
return product / IONE;
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 aInflated = a * ONE;
unchecked {
return aInflated / b;
}
}
function divDown(int256 a, int256 b) internal pure returns (int256) {
int256 aInflated = a * IONE;
unchecked {
return aInflated / b;
}
}
function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
return (a + b - 1) / b;
}
function rawDivUp(int256 a, int256 b) internal pure returns (int256) {
return (a + b - 1) / b;
}
function tweakUp(uint256 a, uint256 factor) internal pure returns (uint256) {
return mulDown(a, ONE + factor);
}
function tweakDown(uint256 a, uint256 factor) internal pure returns (uint256) {
return mulDown(a, ONE - factor);
}
/// @return res = min(a + b, bound)
/// @dev This function should handle arithmetic operation and bound check without overflow/underflow
function addWithUpperBound(uint256 a, uint256 b, uint256 bound) internal pure returns (uint256 res) {
unchecked {
if (type(uint256).max - b < a) res = bound;
else res = min(bound, a + b);
}
}
/// @return res = max(a - b, bound)
/// @dev This function should handle arithmetic operation and bound check without overflow/underflow
function subWithLowerBound(uint256 a, uint256 b, uint256 bound) internal pure returns (uint256 res) {
unchecked {
if (b > a) res = bound;
else res = max(a - b, bound);
}
}
function clamp(uint256 x, uint256 lower, uint256 upper) internal pure returns (uint256 res) {
res = x;
if (x < lower) res = lower;
else if (x > upper) res = upper;
}
// @author Uniswap
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
function square(uint256 x) internal pure returns (uint256) {
return x * x;
}
function squareDown(uint256 x) internal pure returns (uint256) {
return mulDown(x, x);
}
function abs(int256 x) internal pure returns (uint256) {
return uint256(x > 0 ? x : -x);
}
function neg(int256 x) internal pure returns (int256) {
return x * (-1);
}
function neg(uint256 x) internal pure returns (int256) {
return Int(x) * (-1);
}
function max(uint256 x, uint256 y) internal pure returns (uint256) {
return (x > y ? x : y);
}
function max(int256 x, int256 y) internal pure returns (int256) {
return (x > y ? x : y);
}
function min(uint256 x, uint256 y) internal pure returns (uint256) {
return (x < y ? x : y);
}
function min(int256 x, int256 y) internal pure returns (int256) {
return (x < y ? x : y);
}
/*///////////////////////////////////////////////////////////////
SIGNED CASTS
//////////////////////////////////////////////////////////////*/
function Int(uint256 x) internal pure returns (int256) {
require(x <= uint256(type(int256).max));
return int256(x);
}
function Int128(int256 x) internal pure returns (int128) {
require(type(int128).min <= x && x <= type(int128).max);
return int128(x);
}
function Int128(uint256 x) internal pure returns (int128) {
return Int128(Int(x));
}
/*///////////////////////////////////////////////////////////////
UNSIGNED CASTS
//////////////////////////////////////////////////////////////*/
function Uint(int256 x) internal pure returns (uint256) {
require(x >= 0);
return uint256(x);
}
function Uint32(uint256 x) internal pure returns (uint32) {
require(x <= type(uint32).max);
return uint32(x);
}
function Uint64(uint256 x) internal pure returns (uint64) {
require(x <= type(uint64).max);
return uint64(x);
}
function Uint112(uint256 x) internal pure returns (uint112) {
require(x <= type(uint112).max);
return uint112(x);
}
function Uint96(uint256 x) internal pure returns (uint96) {
require(x <= type(uint96).max);
return uint96(x);
}
function Uint128(uint256 x) internal pure returns (uint128) {
require(x <= type(uint128).max);
return uint128(x);
}
function Uint192(uint256 x) internal pure returns (uint192) {
require(x <= type(uint192).max);
return uint192(x);
}
function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
}
function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return a >= b && a <= mulDown(b, ONE + eps);
}
function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
return a <= b && a >= mulDown(b, ONE - eps);
}
}
MiniHelpers.sol 16 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library MiniHelpers {
function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
return (expiry <= block.timestamp);
}
function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
return (expiry <= blockTime);
}
function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
}
}
MarketMathCore.sol 417 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../libraries/math/PMath.sol";
import "../libraries/math/LogExpMath.sol";
import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";
struct MarketState {
int256 totalPt;
int256 totalSy;
int256 totalLp;
address treasury;
/// immutable variables ///
int256 scalarRoot;
uint256 expiry;
/// fee data ///
uint256 lnFeeRateRoot;
uint256 reserveFeePercent; // base 100
/// last trade data ///
uint256 lastLnImpliedRate;
}
// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
int256 rateScalar;
int256 totalAsset;
int256 rateAnchor;
int256 feeRate;
}
// solhint-disable ordering
library MarketMathCore {
using PMath for uint256;
using PMath for int256;
using LogExpMath for int256;
using PYIndexLib for PYIndex;
int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
int256 internal constant PERCENTAGE_DECIMALS = 100;
uint256 internal constant DAY = 86400;
uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;
int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;
using PMath for uint256;
using PMath for int256;
/*///////////////////////////////////////////////////////////////
UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
//////////////////////////////////////////////////////////////*/
function addLiquidity(
MarketState memory market,
uint256 syDesired,
uint256 ptDesired,
uint256 blockTime
) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) {
(int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(
market,
syDesired.Int(),
ptDesired.Int(),
blockTime
);
lpToReserve = _lpToReserve.Uint();
lpToAccount = _lpToAccount.Uint();
syUsed = _syUsed.Uint();
ptUsed = _ptUsed.Uint();
}
function removeLiquidity(
MarketState memory market,
uint256 lpToRemove
) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
(int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());
netSyToAccount = _syToAccount.Uint();
netPtToAccount = _ptToAccount.Uint();
}
function swapExactPtForSy(
MarketState memory market,
PYIndex index,
uint256 exactPtToMarket,
uint256 blockTime
) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
market,
index,
exactPtToMarket.neg(),
blockTime
);
netSyToAccount = _netSyToAccount.Uint();
netSyFee = _netSyFee.Uint();
netSyToReserve = _netSyToReserve.Uint();
}
function swapSyForExactPt(
MarketState memory market,
PYIndex index,
uint256 exactPtToAccount,
uint256 blockTime
) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
(int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
market,
index,
exactPtToAccount.Int(),
blockTime
);
netSyToMarket = _netSyToAccount.neg().Uint();
netSyFee = _netSyFee.Uint();
netSyToReserve = _netSyToReserve.Uint();
}
/*///////////////////////////////////////////////////////////////
CORE FUNCTIONS
//////////////////////////////////////////////////////////////*/
function addLiquidityCore(
MarketState memory market,
int256 syDesired,
int256 ptDesired,
uint256 blockTime
) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
if (market.totalLp == 0) {
lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
lpToReserve = MINIMUM_LIQUIDITY;
syUsed = syDesired;
ptUsed = ptDesired;
} else {
int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
if (netLpByPt < netLpBySy) {
lpToAccount = netLpByPt;
ptUsed = ptDesired;
syUsed = (market.totalSy * lpToAccount).rawDivUp(market.totalLp);
} else {
lpToAccount = netLpBySy;
syUsed = syDesired;
ptUsed = (market.totalPt * lpToAccount).rawDivUp(market.totalLp);
}
}
if (lpToAccount <= 0 || syUsed <= 0 || ptUsed <= 0) revert Errors.MarketZeroAmountsOutput();
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.totalSy += syUsed;
market.totalPt += ptUsed;
market.totalLp += lpToAccount + lpToReserve;
}
function removeLiquidityCore(
MarketState memory market,
int256 lpToRemove
) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;
if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.totalLp = market.totalLp.subNoNeg(lpToRemove);
market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
}
function executeTradeCore(
MarketState memory market,
PYIndex index,
int256 netPtToAccount,
uint256 blockTime
) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
if (market.totalPt <= netPtToAccount)
revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);
(netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount);
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
_setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime);
}
function getMarketPreCompute(
MarketState memory market,
PYIndex index,
uint256 blockTime
) internal pure returns (MarketPreCompute memory res) {
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
uint256 timeToExpiry = market.expiry - blockTime;
res.rateScalar = _getRateScalar(market, timeToExpiry);
res.totalAsset = index.syToAsset(market.totalSy);
if (market.totalPt == 0 || res.totalAsset == 0)
revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);
res.rateAnchor = _getRateAnchor(
market.totalPt,
market.lastLnImpliedRate,
res.totalAsset,
res.rateScalar,
timeToExpiry
);
res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
}
function calcTrade(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
int256 netPtToAccount
) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
int256 preFeeExchangeRate = _getExchangeRate(
market.totalPt,
comp.totalAsset,
comp.rateScalar,
comp.rateAnchor,
netPtToAccount
);
int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
int256 fee = comp.feeRate;
if (netPtToAccount > 0) {
int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);
fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee);
} else {
fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg();
}
int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
int256 netAssetToAccount = preFeeAssetToAccount - fee;
netSyToAccount = netAssetToAccount < 0
? index.assetToSyUp(netAssetToAccount)
: index.assetToSy(netAssetToAccount);
netSyFee = index.assetToSy(fee);
netSyToReserve = index.assetToSy(netAssetToReserve);
}
function _setNewMarketStateTrade(
MarketState memory market,
MarketPreCompute memory comp,
PYIndex index,
int256 netPtToAccount,
int256 netSyToAccount,
int256 netSyToReserve,
uint256 blockTime
) internal pure {
uint256 timeToExpiry = market.expiry - blockTime;
market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);
market.lastLnImpliedRate = _getLnImpliedRate(
market.totalPt,
index.syToAsset(market.totalSy),
comp.rateScalar,
comp.rateAnchor,
timeToExpiry
);
if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
}
function _getRateAnchor(
int256 totalPt,
uint256 lastLnImpliedRate,
int256 totalAsset,
int256 rateScalar,
uint256 timeToExpiry
) internal pure returns (int256 rateAnchor) {
int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);
if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);
{
int256 proportion = totalPt.divDown(totalPt + totalAsset);
int256 lnProportion = _logProportion(proportion);
rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
}
}
/// @notice Calculates the current market implied rate.
/// @return lnImpliedRate the implied rate
function _getLnImpliedRate(
int256 totalPt,
int256 totalAsset,
int256 rateScalar,
int256 rateAnchor,
uint256 timeToExpiry
) internal pure returns (uint256 lnImpliedRate) {
// This will check for exchange rates < PMath.IONE
int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);
// exchangeRate >= 1 so its ln >= 0
uint256 lnRate = exchangeRate.ln().Uint();
lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
}
/// @notice Converts an implied rate to an exchange rate given a time to expiry. The
/// formula is E = e^rt
function _getExchangeRateFromImpliedRate(
uint256 lnImpliedRate,
uint256 timeToExpiry
) internal pure returns (int256 exchangeRate) {
uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;
exchangeRate = LogExpMath.exp(rt.Int());
}
function _getExchangeRate(
int256 totalPt,
int256 totalAsset,
int256 rateScalar,
int256 rateAnchor,
int256 netPtToAccount
) internal pure returns (int256 exchangeRate) {
int256 numerator = totalPt.subNoNeg(netPtToAccount);
int256 proportion = (numerator.divDown(totalPt + totalAsset));
if (proportion > MAX_MARKET_PROPORTION)
revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);
int256 lnProportion = _logProportion(proportion);
exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;
if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
}
function _logProportion(int256 proportion) internal pure returns (int256 res) {
if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne();
int256 logitP = proportion.divDown(PMath.IONE - proportion);
res = logitP.ln();
}
function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) {
rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
}
function setInitialLnImpliedRate(
MarketState memory market,
PYIndex index,
int256 initialAnchor,
uint256 blockTime
) internal pure {
/// ------------------------------------------------------------
/// CHECKS
/// ------------------------------------------------------------
if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
/// ------------------------------------------------------------
/// MATH
/// ------------------------------------------------------------
int256 totalAsset = index.syToAsset(market.totalSy);
uint256 timeToExpiry = market.expiry - blockTime;
int256 rateScalar = _getRateScalar(market, timeToExpiry);
/// ------------------------------------------------------------
/// WRITE
/// ------------------------------------------------------------
market.lastLnImpliedRate = _getLnImpliedRate(
market.totalPt,
totalAsset,
rateScalar,
initialAnchor,
timeToExpiry
);
}
}
PYIndex.sol 50 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";
import "./SYUtils.sol";
import "../libraries/math/PMath.sol";
type PYIndex is uint256;
library PYIndexLib {
using PMath for uint256;
using PMath for int256;
function newIndex(IPYieldToken YT) internal returns (PYIndex) {
return PYIndex.wrap(YT.pyIndexCurrent());
}
function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
}
function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
}
function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
}
function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
uint256 _index = PYIndex.unwrap(index);
return SYUtils.syToAssetUp(_index, syAmount);
}
function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
int256 sign = syAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
}
function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
}
function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
}
}
SYUtils.sol 22 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
library SYUtils {
uint256 internal constant ONE = 1e18;
function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
return (syAmount * exchangeRate) / ONE;
}
function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
return (syAmount * exchangeRate + ONE - 1) / ONE;
}
function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
return (assetAmount * ONE) / exchangeRate;
}
function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
}
}
IPChainlinkOracle.sol 11 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";
enum PendleOracleType {
PT_TO_SY,
PT_TO_ASSET
}
interface IPChainlinkOracle is AggregatorV3Interface {}
IPChainlinkOracleFactory.sol 22 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IPChainlinkOracle.sol";
interface IPChainlinkOracleFactory {
event OracleCreated(
address indexed market,
uint32 indexed twapDuration,
PendleOracleType indexed baseOracleType,
address oracle,
bytes32 oracleId
);
event OracleWithQuoteCreated(
address indexed market,
uint32 indexed twapDuration,
PendleOracleType indexed baseOracleType,
address quoteOracle,
address oracle,
bytes32 oracleId
);
}
IPGauge.sol 11 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IPGauge {
function totalActiveSupply() external view returns (uint256);
function activeBalance(address user) external view returns (uint256);
// only available for newer factories. please check the verified contracts
event RedeemRewards(address indexed user, uint256[] rewardsOut);
}
IPInterestManagerYT.sol 8 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IPInterestManagerYT {
event CollectInterestFee(uint256 amountInterestFee);
function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}
IPMarket.sol 93 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IPPrincipalToken.sol";
import "./IPYieldToken.sol";
import "./IStandardizedYield.sol";
import "./IPGauge.sol";
import "../core/Market/MarketMathCore.sol";
interface IPMarket is IERC20Metadata, IPGauge {
event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed);
event Burn(
address indexed receiverSy,
address indexed receiverPt,
uint256 netLpBurned,
uint256 netSyOut,
uint256 netPtOut
);
event Swap(
address indexed caller,
address indexed receiver,
int256 netPtOut,
int256 netSyOut,
uint256 netSyFee,
uint256 netSyToReserve
);
event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate);
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
function mint(
address receiver,
uint256 netSyDesired,
uint256 netPtDesired
) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);
function burn(
address receiverSy,
address receiverPt,
uint256 netLpToBurn
) external returns (uint256 netSyOut, uint256 netPtOut);
function swapExactPtForSy(
address receiver,
uint256 exactPtIn,
bytes calldata data
) external returns (uint256 netSyOut, uint256 netSyFee);
function swapSyForExactPt(
address receiver,
uint256 exactPtOut,
bytes calldata data
) external returns (uint256 netSyIn, uint256 netSyFee);
function redeemRewards(address user) external returns (uint256[] memory);
function readState(address router) external view returns (MarketState memory market);
function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative);
function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;
function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT);
function getRewardTokens() external view returns (address[] memory);
function isExpired() external view returns (bool);
function expiry() external view returns (uint256);
function observations(
uint256 index
) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);
function _storage()
external
view
returns (
int128 totalPt,
int128 totalSy,
uint96 lastLnImpliedRate,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext
);
}
IPPrincipalToken.sol 21 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface IPPrincipalToken is IERC20Metadata {
function burnByYT(address user, uint256 amount) external;
function mintByYT(address user, uint256 amount) external;
function initialize(address _YT) external;
function SY() external view returns (address);
function YT() external view returns (address);
function factory() external view returns (address);
function expiry() external view returns (uint256);
function isExpired() external view returns (bool);
}
IPPYLpOracle.sol 25 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IPPYLpOracle {
event SetBlockCycleNumerator(uint16 newBlockCycleNumerator);
function getPtToAssetRate(address market, uint32 duration) external view returns (uint256);
function getYtToAssetRate(address market, uint32 duration) external view returns (uint256);
function getLpToAssetRate(address market, uint32 duration) external view returns (uint256);
function getPtToSyRate(address market, uint32 duration) external view returns (uint256);
function getYtToSyRate(address market, uint32 duration) external view returns (uint256);
function getLpToSyRate(address market, uint32 duration) external view returns (uint256);
function getOracleState(address market, uint32 duration)
external
view
returns (bool increaseCardinalityRequired, uint16 cardinalityRequired, bool oldestObservationSatisfied);
function blockCycleNumerator() external view returns (uint16);
}
IPYieldToken.sol 62 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";
interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
event NewInterestIndex(uint256 indexed newIndex);
event Mint(
address indexed caller,
address indexed receiverPT,
address indexed receiverYT,
uint256 amountSyToMint,
uint256 amountPYOut
);
event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut);
event RedeemRewards(address indexed user, uint256[] amountRewardsOut);
event RedeemInterest(address indexed user, uint256 interestOut);
event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee);
function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);
function redeemPY(address receiver) external returns (uint256 amountSyOut);
function redeemPYMulti(
address[] calldata receivers,
uint256[] calldata amountPYToRedeems
) external returns (uint256[] memory amountSyOuts);
function redeemDueInterestAndRewards(
address user,
bool redeemInterest,
bool redeemRewards
) external returns (uint256 interestOut, uint256[] memory rewardsOut);
function rewardIndexesCurrent() external returns (uint256[] memory);
function pyIndexCurrent() external returns (uint256);
function pyIndexStored() external view returns (uint256);
function getRewardTokens() external view returns (address[] memory);
function SY() external view returns (address);
function PT() external view returns (address);
function factory() external view returns (address);
function expiry() external view returns (uint256);
function isExpired() external view returns (bool);
function doCacheIndexSameBlock() external view returns (bool);
function pyIndexLastUpdatedBlock() external view returns (uint128);
}
IRewardManager.sol 6 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
interface IRewardManager {
function userReward(address token, address user) external view returns (uint128 index, uint128 accrued);
}
IStandardizedYield.sol 167 lines
// SPDX-License-Identifier: GPL-3.0-or-later
/*
* MIT License
* ===========
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
*/
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface IStandardizedYield is IERC20Metadata {
/// @dev Emitted when any base tokens is deposited to mint shares
event Deposit(
address indexed caller,
address indexed receiver,
address indexed tokenIn,
uint256 amountDeposited,
uint256 amountSyOut
);
/// @dev Emitted when any shares are redeemed for base tokens
event Redeem(
address indexed caller,
address indexed receiver,
address indexed tokenOut,
uint256 amountSyToRedeem,
uint256 amountTokenOut
);
/// @dev check `assetInfo()` for more information
enum AssetType {
TOKEN,
LIQUIDITY
}
/// @dev Emitted when (`user`) claims their rewards
event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);
/**
* @notice mints an amount of shares by depositing a base token.
* @param receiver shares recipient address
* @param tokenIn address of the base tokens to mint shares
* @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
* @param minSharesOut reverts if amount of shares minted is lower than this
* @return amountSharesOut amount of shares minted
* @dev Emits a {Deposit} event
*
* Requirements:
* - (`tokenIn`) must be a valid base token.
*/
function deposit(
address receiver,
address tokenIn,
uint256 amountTokenToDeposit,
uint256 minSharesOut
) external payable returns (uint256 amountSharesOut);
/**
* @notice redeems an amount of base tokens by burning some shares
* @param receiver recipient address
* @param amountSharesToRedeem amount of shares to be burned
* @param tokenOut address of the base token to be redeemed
* @param minTokenOut reverts if amount of base token redeemed is lower than this
* @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
* @return amountTokenOut amount of base tokens redeemed
* @dev Emits a {Redeem} event
*
* Requirements:
* - (`tokenOut`) must be a valid base token.
*/
function redeem(
address receiver,
uint256 amountSharesToRedeem,
address tokenOut,
uint256 minTokenOut,
bool burnFromInternalBalance
) external returns (uint256 amountTokenOut);
/**
* @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
* @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
he can mint must be X * exchangeRate / 1e18
* @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
& division
*/
function exchangeRate() external view returns (uint256 res);
/**
* @notice claims reward for (`user`)
* @param user the user receiving their rewards
* @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
* @dev
* Emits a `ClaimRewards` event
* See {getRewardTokens} for list of reward tokens
*/
function claimRewards(address user) external returns (uint256[] memory rewardAmounts);
/**
* @notice get the amount of unclaimed rewards for (`user`)
* @param user the user to check for
* @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
*/
function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);
function rewardIndexesCurrent() external returns (uint256[] memory indexes);
function rewardIndexesStored() external view returns (uint256[] memory indexes);
/**
* @notice returns the list of reward token addresses
*/
function getRewardTokens() external view returns (address[] memory);
/**
* @notice returns the address of the underlying yield token
*/
function yieldToken() external view returns (address);
/**
* @notice returns all tokens that can mint this SY
*/
function getTokensIn() external view returns (address[] memory res);
/**
* @notice returns all tokens that can be redeemed by this SY
*/
function getTokensOut() external view returns (address[] memory res);
function isValidTokenIn(address token) external view returns (bool);
function isValidTokenOut(address token) external view returns (bool);
function previewDeposit(
address tokenIn,
uint256 amountTokenToDeposit
) external view returns (uint256 amountSharesOut);
function previewRedeem(
address tokenOut,
uint256 amountSharesToRedeem
) external view returns (uint256 amountTokenOut);
/**
* @notice This function contains information to interpret what the asset is
* @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens,
2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain)
* @return assetAddress the address of the asset
* @return assetDecimals the decimals of the asset
*/
function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals);
}
PendleChainlinkOracle.sol 134 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import "../../../interfaces/IPChainlinkOracle.sol";
import "../PendleLpOracleLib.sol";
/**
* @dev The round data returned from this contract will follow:
* - There will be only one round (roundId=0)
* - startedAt=0, updatedAt=block.timestamp
*/
contract PendleChainlinkOracle is IPChainlinkOracle {
error InvalidRoundId();
// solhint-disable immutable-vars-naming
address public immutable factory;
address public immutable market;
uint32 public immutable twapDuration;
PendleOracleType public immutable baseOracleType;
uint256 public immutable fromTokenScale;
uint256 public immutable toTokenScale;
function(IPMarket, uint32) internal view returns (uint256) private immutable _getRawPendlePrice;
modifier roundIdIsZero(uint80 roundId) {
if (roundId != 0) {
revert InvalidRoundId();
}
_;
}
constructor(address _market, uint32 _twapDuration, PendleOracleType _baseOracleType) {
factory = msg.sender;
market = _market;
twapDuration = _twapDuration;
baseOracleType = _baseOracleType;
(uint256 fromTokenDecimals, uint256 toTokenDecimals) = _readDecimals(_market, _baseOracleType);
(fromTokenScale, toTokenScale) = (10 ** fromTokenDecimals, 10 ** toTokenDecimals);
_getRawPendlePrice = _getRawPendlePriceFunc();
}
// =================================================================
// CHAINLINK INTERFACE
// =================================================================
/**
* @notice The round data returned from this contract will follow:
* - answer will satisfy 1 natural unit of PendleToken = (answer/1e18) natural unit of OutputToken
* - In other words, 10**(PendleToken.decimals) = (answer/1e18) * 10**(OutputToken.decimals)
* @param roundId always 0 for this contract
* @param answer The answer (in 18 decimals)
* @param startedAt always 0 for this contract
* @param updatedAt always block.timestamp for this contract
* @param answeredInRound always 0 for this contract
*/
function latestRoundData()
public
view
virtual
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
roundId = 0;
answer = _getPendleTokenPrice();
startedAt = 0;
updatedAt = block.timestamp;
answeredInRound = 0;
}
function getRoundData(
uint80 roundId
) external view roundIdIsZero(roundId) returns (uint80, int256, uint256, uint256, uint80) {
return latestRoundData();
}
function decimals() external pure returns (uint8) {
return 18;
}
function description() external pure returns (string memory) {
return "Pendle Chainlink-compatible Oracle";
}
function version() external pure returns (uint256) {
return 1;
}
// =================================================================
// PRICING FUNCTIONS
// =================================================================
function _getPendleTokenPrice() internal view returns (int256) {
return _descalePrice(_getRawPendlePrice(IPMarket(market), twapDuration));
}
function _descalePrice(uint256 price) private view returns (int256 unwrappedPrice) {
return PMath.Int((price * fromTokenScale) / toTokenScale);
}
// =================================================================
// USE ONLY AT INITIALIZATION
// =================================================================
function _getRawPendlePriceFunc()
internal
view
returns (function(IPMarket, uint32) internal view returns (uint256))
{
if (baseOracleType == PendleOracleType.PT_TO_SY) {
return PendlePYOracleLib.getPtToSyRate;
} else if (baseOracleType == PendleOracleType.PT_TO_ASSET) {
return PendlePYOracleLib.getPtToAssetRate;
} else {
revert("not supported");
}
}
function _readDecimals(
address _market,
PendleOracleType _oracleType
) internal view returns (uint8 _fromDecimals, uint8 _toDecimals) {
(IStandardizedYield SY, , ) = IPMarket(_market).readTokens();
uint8 syDecimals = SY.decimals();
(, , uint8 assetDecimals) = SY.assetInfo();
if (_oracleType == PendleOracleType.PT_TO_ASSET) {
return (assetDecimals, assetDecimals);
} else if (_oracleType == PendleOracleType.PT_TO_SY) {
return (assetDecimals, syDecimals);
}
}
}
PendleChainlinkOracleFactory.sol 121 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import "./PendleChainlinkOracle.sol";
import "./PendleChainlinkOracleWithQuote.sol";
import "../../../interfaces/IPChainlinkOracleFactory.sol";
import "../../../interfaces/IPPYLpOracle.sol";
contract PendleChainlinkOracleFactory is IPChainlinkOracleFactory {
error OracleAlreadyExists();
error OracleIncreaseCardinalityRequired(uint32 cardinalityRequired);
error OracleOldestObservationNotSatisfied();
// [keccak256(market, duration, baseOracleType)]
mapping(bytes32 oracleId => address oracleAddr) internal oracles;
// [keccak256(market, duration, baseOracleType, quoteOracle)]
mapping(bytes32 oracleId => address oracleAddr) internal oraclesWithQuote;
address public immutable pyLpOracle;
constructor(address _pyLpOracle) {
pyLpOracle = _pyLpOracle;
}
// =================================================================
// CREATE ORACLE
// =================================================================
function createOracle(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType
) external returns (address oracle) {
bytes32 oracleId = getOracleId(market, twapDuration, baseOracleType);
if (oracles[oracleId] != address(0)) revert OracleAlreadyExists();
checkMarketOracleState(market, twapDuration);
oracle = address(new PendleChainlinkOracle(market, twapDuration, baseOracleType));
oracles[oracleId] = oracle;
emit OracleCreated(market, twapDuration, baseOracleType, oracle, oracleId);
}
/**
* @dev quoteOracle must has Chainlink-compatible interface
*/
function createOracleWithQuote(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType,
address quoteOracle
) external returns (address oracle) {
bytes32 oracleId = getOracleWithQuoteId(market, twapDuration, baseOracleType, quoteOracle);
if (oraclesWithQuote[oracleId] != address(0)) revert OracleAlreadyExists();
checkMarketOracleState(market, twapDuration);
oracle = address(new PendleChainlinkOracleWithQuote(market, twapDuration, baseOracleType, quoteOracle));
oraclesWithQuote[oracleId] = oracle;
emit OracleWithQuoteCreated(market, twapDuration, baseOracleType, quoteOracle, oracle, oracleId);
}
// =================================================================
// GET ORACLE
// =================================================================
function getOracle(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType
) public view returns (address) {
return oracles[getOracleId(market, twapDuration, baseOracleType)];
}
function getOracleWithQuote(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType,
address quoteOracle
) public view returns (address) {
return oraclesWithQuote[getOracleWithQuoteId(market, twapDuration, baseOracleType, quoteOracle)];
}
function getOracleId(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType
) public pure returns (bytes32) {
return keccak256(abi.encode(market, twapDuration, baseOracleType));
}
function getOracleWithQuoteId(
address market,
uint32 twapDuration,
PendleOracleType baseOracleType,
address quoteOracle
) public pure returns (bytes32) {
return keccak256(abi.encode(market, twapDuration, baseOracleType, quoteOracle));
}
// =================================================================
// CHECK ORACLE STATE
// =================================================================
function checkMarketOracleState(address market, uint32 twapDuration) public view {
(bool increaseCardinalityRequired, uint32 cardinalityRequired, bool oldestObservationSatisfied) = IPPYLpOracle(
pyLpOracle
).getOracleState(market, twapDuration);
if (increaseCardinalityRequired) {
// call IPMarket(market).increaseObservationsCardinalityNext(cardinalityRequired) then wait for twapDuration seconds
revert OracleIncreaseCardinalityRequired(cardinalityRequired);
}
if (!oldestObservationSatisfied) {
// wait for twapDuration seconds
revert OracleOldestObservationNotSatisfied();
}
}
}
PendleChainlinkOracleWithQuote.sol 50 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import "./PendleChainlinkOracle.sol";
/**
* @dev The round data returned from this contract will follow:
* - There will be only one round (roundId=0)
* - startedAt=0, updatedAt=quoteOracle.updatedAt()
*/
contract PendleChainlinkOracleWithQuote is PendleChainlinkOracle {
// solhint-disable immutable-vars-naming
address public immutable quoteOracle;
int256 public immutable quoteScale;
constructor(
address _market,
uint32 _twapDuration,
PendleOracleType _baseOracleType,
address _quoteOracle
) PendleChainlinkOracle(_market, _twapDuration, _baseOracleType) {
quoteOracle = _quoteOracle;
quoteScale = PMath.Int(10 ** AggregatorV3Interface(_quoteOracle).decimals());
}
/**
* @notice The round data returned from this contract will follow:
* - answer will satisfy 1 natural unit of PendleToken = (answer/1e18) natural unit of quoteToken
* - In other words, 10**(PendleToken.decimals) = (answer/1e18) * 10**(quoteToken.decimals)
* @return roundId always 0 for this contract
* @return answer The answer (in 18 decimals)
* @return startedAt always 0 for this contract
* @return updatedAt will be the same as quoteOracle.updatedAt()
* @return answeredInRound always 0 for this contract
*/
function latestRoundData()
public
view
override
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
{
(, int256 quoteAnswer, , uint256 quoteUpdatedAt, ) = AggregatorV3Interface(quoteOracle).latestRoundData();
roundId = 0;
answer = (_getPendleTokenPrice() * quoteAnswer) / quoteScale;
updatedAt = quoteUpdatedAt;
startedAt = 0;
answeredInRound = 0;
}
}
PendleLpOracleLib.sol 86 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "./PendlePYOracleLib.sol";
library PendleLpOracleLib {
using PendlePYOracleLib for IPMarket;
using PMath for uint256;
using PMath for int256;
using MarketMathCore for MarketState;
/**
* This function returns the approximated twap rate LP/asset on market, but take into account the current rate of SY
This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
* @param market market to get rate from
* @param duration twap duration
*/
function getLpToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = market.getSYandPYIndexCurrent();
uint256 lpToAssetRateRaw = _getLpToAssetRateRaw(market, duration, pyIndex);
if (syIndex >= pyIndex) {
return lpToAssetRateRaw;
} else {
return (lpToAssetRateRaw * syIndex) / pyIndex;
}
}
/**
* This function returns the approximated twap rate LP/asset on market, but take into account the current rate of SY
This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
* @param market market to get rate from
* @param duration twap duration
*/
function getLpToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = market.getSYandPYIndexCurrent();
uint256 lpToAssetRateRaw = _getLpToAssetRateRaw(market, duration, pyIndex);
if (syIndex >= pyIndex) {
return lpToAssetRateRaw.divDown(syIndex);
} else {
return lpToAssetRateRaw.divDown(pyIndex);
}
}
function _getLpToAssetRateRaw(
IPMarket market,
uint32 duration,
uint256 pyIndex
) private view returns (uint256 lpToAssetRateRaw) {
MarketState memory state = market.readState(address(0));
int256 totalHypotheticalAsset;
if (state.expiry <= block.timestamp) {
// 1 PT = 1 Asset post-expiry
totalHypotheticalAsset = state.totalPt + PYIndexLib.syToAsset(PYIndex.wrap(pyIndex), state.totalSy);
} else {
MarketPreCompute memory comp = state.getMarketPreCompute(PYIndex.wrap(pyIndex), block.timestamp);
(int256 rateOracle, int256 rateHypTrade) = _getPtRatesRaw(market, state, duration);
int256 cParam = LogExpMath.exp(comp.rateScalar.mulDown((rateOracle - comp.rateAnchor)));
int256 tradeSize = (cParam.mulDown(comp.totalAsset) - state.totalPt).divDown(
PMath.IONE + cParam.divDown(rateHypTrade)
);
totalHypotheticalAsset =
comp.totalAsset -
tradeSize.divDown(rateHypTrade) +
(state.totalPt + tradeSize).divDown(rateOracle);
}
lpToAssetRateRaw = totalHypotheticalAsset.divDown(state.totalLp).Uint();
}
function _getPtRatesRaw(
IPMarket market,
MarketState memory state,
uint32 duration
) private view returns (int256 rateOracle, int256 rateHypTrade) {
uint256 lnImpliedRate = market.getMarketLnImpliedRate(duration);
uint256 timeToExpiry = state.expiry - block.timestamp;
rateOracle = MarketMathCore._getExchangeRateFromImpliedRate(lnImpliedRate, timeToExpiry);
int256 rateLastTrade = MarketMathCore._getExchangeRateFromImpliedRate(state.lastLnImpliedRate, timeToExpiry);
rateHypTrade = (rateLastTrade + rateOracle) / 2;
}
}
PendlePYOracleLib.sol 102 lines
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPMarket.sol";
import "../../core/libraries/math/PMath.sol";
// This library can & should be integrated directly for optimal gas usage.
// If you prefer not to integrate it directly, the PendlePtOracle contract (a pre-deployed version of this contract) can be used.
library PendlePYOracleLib {
using PMath for uint256;
using PMath for int256;
/**
* This function returns the twap rate PT/Asset on market, but take into account the current rate of SY
This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
* @param market market to get rate from
* @param duration twap duration
*/
function getPtToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
if (syIndex >= pyIndex) {
return getPtToAssetRateRaw(market, duration);
} else {
return (getPtToAssetRateRaw(market, duration) * syIndex) / pyIndex;
}
}
/**
* This function returns the twap rate YT/Asset on market, but take into account the current rate of SY
This is to account for special cases where underlying asset becomes insolvent and has decreasing exchangeRate
* @param market market to get rate from
* @param duration twap duration
*/
function getYtToAssetRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
if (syIndex >= pyIndex) {
return getYtToAssetRateRaw(market, duration);
} else {
return (getYtToAssetRateRaw(market, duration) * syIndex) / pyIndex;
}
}
/// @notice Similar to getPtToAsset but returns the rate in SY instead
function getPtToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
if (syIndex >= pyIndex) {
return getPtToAssetRateRaw(market, duration).divDown(syIndex);
} else {
return getPtToAssetRateRaw(market, duration).divDown(pyIndex);
}
}
/// @notice Similar to getPtToAsset but returns the rate in SY instead
function getYtToSyRate(IPMarket market, uint32 duration) internal view returns (uint256) {
(uint256 syIndex, uint256 pyIndex) = getSYandPYIndexCurrent(market);
if (syIndex >= pyIndex) {
return getYtToAssetRateRaw(market, duration).divDown(syIndex);
} else {
return getYtToAssetRateRaw(market, duration).divDown(pyIndex);
}
}
/// @notice returns the raw rate without taking into account whether SY is solvent
function getPtToAssetRateRaw(IPMarket market, uint32 duration) internal view returns (uint256) {
uint256 expiry = market.expiry();
if (expiry <= block.timestamp) {
return PMath.ONE;
} else {
uint256 lnImpliedRate = getMarketLnImpliedRate(market, duration);
uint256 timeToExpiry = expiry - block.timestamp;
uint256 assetToPtRate = MarketMathCore._getExchangeRateFromImpliedRate(lnImpliedRate, timeToExpiry).Uint();
return PMath.ONE.divDown(assetToPtRate);
}
}
/// @notice returns the raw rate without taking into account whether SY is solvent
function getYtToAssetRateRaw(IPMarket market, uint32 duration) internal view returns (uint256) {
return PMath.ONE - getPtToAssetRateRaw(market, duration);
}
function getSYandPYIndexCurrent(IPMarket market) internal view returns (uint256 syIndex, uint256 pyIndex) {
(IStandardizedYield SY, , IPYieldToken YT) = market.readTokens();
syIndex = SY.exchangeRate();
uint256 pyIndexStored = YT.pyIndexStored();
if (YT.doCacheIndexSameBlock() && YT.pyIndexLastUpdatedBlock() == block.number) {
pyIndex = pyIndexStored;
} else {
pyIndex = PMath.max(syIndex, pyIndexStored);
}
}
function getMarketLnImpliedRate(IPMarket market, uint32 duration) internal view returns (uint256) {
uint32[] memory durations = new uint32[](2);
durations[0] = duration;
uint216[] memory lnImpliedRateCumulative = market.observe(durations);
return (lnImpliedRateCumulative[1] - lnImpliedRateCumulative[0]) / duration;
}
}
Read Contract
checkMarketOracleState 0x1bdfe053
getOracle 0xca6ec89a → address
getOracleId 0x2d9a4a9d → bytes32
getOracleWithQuote 0xe233c366 → address
getOracleWithQuoteId 0xe54f48df → bytes32
pyLpOracle 0x8ca06ea6 → address
Write Contract 2 functions
These functions modify contract state and require a wallet transaction to execute.
createOracle 0x0b5af9f8
address market
uint32 twapDuration
uint8 baseOracleType
returns: address
createOracleWithQuote 0x451d27b8
address market
uint32 twapDuration
uint8 baseOracleType
address quoteOracle
returns: address
Recent Transactions
No transactions found for this address