Address Contract Verified
Address
0x908dDb096BFb3AcB19e2280aAD858186ea4935C4
Balance
0 ETH
Nonce
1
Code Size
9791 bytes
Creator
0xc9c4199a...079C at tx 0x975c0bfe...531374
Indexed Transactions
0
Contract Bytecode
9791 bytes
0x608060405234801561000f575f80fd5b506004361061018f575f3560e01c806370a08231116100dd578063a457c2d711610088578063dd62ed3e11610063578063dd62ed3e1461038d578063e5106662146103d2578063fe4b84df146103f9575f80fd5b8063a457c2d714610354578063a9059cbb14610367578063d505accf1461037a575f80fd5b806384b0196e116100b857806384b0196e146103285780638867596f1461034357806395d89b411461034c575f80fd5b806370a08231146102ef57806379cc6790146103025780637ecebe0014610315575f80fd5b8063313ce5671161013d5780633e6c5311116101185780633e6c5311146102b65780633f6406f5146102c957806342966c68146102dc575f80fd5b8063313ce5671461028c5780633644e5151461029b57806339509351146102a3575f80fd5b80630dd886601161016d5780630dd886601461024e57806318160ddd1461026357806323b872dd14610279575f80fd5b8063036c151b1461019357806306fdde0314610216578063095ea7b31461022b575b5f80fd5b6101e36101a1366004612175565b60096020525f9081526040902080546001909101546fffffffffffffffffffffffffffffffff8082169170010000000000000000000000000000000090041683565b604080519384526fffffffffffffffffffffffffffffffff92831660208501529116908201526060015b60405180910390f35b61021e61040c565b60405161020d91906121ed565b61023e610239366004612227565b61049c565b604051901515815260200161020d565b61026161025c36600461224f565b6104b5565b005b61026b6109da565b60405190815260200161020d565b61023e6102873660046122c7565b6109ec565b6040516012815260200161020d565b61026b610a0f565b61023e6102b1366004612227565b610a1d565b61026b6102c4366004612300565b610a68565b61026b6102d7366004612175565b610b10565b6102616102ea366004612175565b610bb0565b61026b6102fd36600461232a565b610bbd565b610261610310366004612227565b610bf3565b61026b61032336600461232a565b610c0c565b610330610c36565b60405161020d9796959493929190612343565b61026b600b5481565b61021e610cd9565b61023e610362366004612227565b610ce8565b61023e610375366004612227565b610db8565b610261610388366004612400565b610dc5565b61026b61039b36600461246d565b73ffffffffffffffffffffffffffffffffffffffff9182165f90815260016020908152604080832093909416825291909152205490565b61026b7f000000000000000000000000000000000000000000000000000000000000000681565b610261610407366004612175565b610f81565b60606003805461041b90612495565b80601f016020809104026020016040519081016040528092919081815260200182805461044790612495565b80156104925780601f1061046957610100808354040283529160200191610492565b820191905f5260205f20905b81548152906001019060200180831161047557829003601f168201915b5050505050905090565b5f336104a9818585611153565b60019150505b92915050565b600b5415610524576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f4553453a20416c726561647920696e697469616c697a6564000000000000000060448201526064015b60405180910390fd5b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c9c4199adc4a5148b769cf8e5939419d92d4079c16146105c3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f4553453a2043616c6c6572206e6f74205f696e697469616c697a657200000000604482015260640161051b565b7f0000000000000000000000000000000000000000000000000000000000000006831061064c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f4553453a20496e76616c69642073746167650000000000000000000000000000604482015260640161051b565b5f838152600960209081526040808320600d9092528220549091805b84811015610916575f868683818110610683576106836124e0565b905060400201602001602081019061069b919061232a565b905073ffffffffffffffffffffffffffffffffffffffff811661071a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f4553453a20496e76616c69642042656e65666963696172790000000000000000604482015260640161051b565b5f888152600e6020908152604080832073ffffffffffffffffffffffffffffffffffffffff8516845290915290205460ff16156107b3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601e60248201527f4553453a2042656e656669636961727920616c72656164792061646465640000604482015260640161051b565b73ffffffffffffffffffffffffffffffffffffffff81165f818152600a60209081526040808320805460017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091821681179092558d8552600e8452828520958552949092528220805490931617909155878784818110610835576108356124e0565b604002919091013591505f905061271061084f878461253a565b610859919061257e565b9050801561086b5761086b8382611306565b5f61087682846125b6565b73ffffffffffffffffffffffffffffffffffffffff85165f90815260028a016020526040902081905590506108ab81876125c9565b95508460010194508373ffffffffffffffffffffffffffffffffffffffff168b7f87a2a26d2607234ccad00364d83bb52165a3a95129e439e15da8c058ddd1a7c88385604051610905929190918252602082015260400190565b60405180910390a350505050610668565b5080835f015f82825461092991906125c9565b9250508190555080600f5f82825461094191906125c9565b9091555050600f546b033b2e3c9fd0803ce80000009061096060025490565b61096a91906125c9565b11156109d2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600d60248201527f4553453a204f766572666c6f7700000000000000000000000000000000000000604482015260640161051b565b505050505050565b5f6109e3611402565b60025401905090565b5f336109f9858285611458565b610a0485858561152e565b506001949350505050565b5f610a186117a6565b905090565b335f81815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff871684529091528120549091906104a99082908690610a639087906125c9565b611153565b5f7f00000000000000000000000000000000000000000000000000000000000000068310610af2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f4553453a20496e76616c69642073746167650000000000000000000000000000604482015260640161051b565b5f838152600960205260409020610b0990836118dc565b9392505050565b5f7f00000000000000000000000000000000000000000000000000000000000000068210610b9a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601260248201527f4553453a20496e76616c69642073746167650000000000000000000000000000604482015260640161051b565b5f8281526009602052604090206104af9061190e565b610bba338261191c565b50565b5f610bc782611ae6565b73ffffffffffffffffffffffffffffffffffffffff83165f908152602081905260409020540192915050565b610bfe823383611458565b610c08828261191c565b5050565b73ffffffffffffffffffffffffffffffffffffffff81165f908152600760205260408120546104af565b5f60608082808083610c697f65657365650000000000000000000000000000000000000000000000000000056005611b92565b610c947f31000000000000000000000000000000000000000000000000000000000000016006611b92565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b60606004805461041b90612495565b335f81815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716845290915281205490919083811015610dab576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f7760448201527f207a65726f000000000000000000000000000000000000000000000000000000606482015260840161051b565b610a048286868403611153565b5f336104a981858561152e565b83421115610e2f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f45524332305065726d69743a206578706972656420646561646c696e65000000604482015260640161051b565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610e5d8c611c3b565b60408051602081019690965273ffffffffffffffffffffffffffffffffffffffff94851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f610ec482611c6f565b90505f610ed382878787611cb6565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610f6a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601e60248201527f45524332305065726d69743a20696e76616c6964207369676e61747572650000604482015260640161051b565b610f758a8a8a611153565b50505050505050505050565b600b5415610feb576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f4553453a20416c726561647920696e697469616c697a65640000000000000000604482015260640161051b565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c9c4199adc4a5148b769cf8e5939419d92d4079c161461108a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f4553453a2043616c6c6572206e6f74205f696e697469616c697a657200000000604482015260640161051b565b805f03611098575042611118565b428110806110b157506110ae426276a7006125c9565b81115b15611118576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601a60248201527f4553453a20496e76616c6964205447452074696d657374616d70000000000000604482015260640161051b565b600b8190556040518181527fc43e48cf47e9fa186d0f4096c61d1fcb54159799f935a2aa32e5589688ee36e19060200160405180910390a150565b73ffffffffffffffffffffffffffffffffffffffff83166111f5576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f7265737300000000000000000000000000000000000000000000000000000000606482015260840161051b565b73ffffffffffffffffffffffffffffffffffffffff8216611298576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f7373000000000000000000000000000000000000000000000000000000000000606482015260840161051b565b73ffffffffffffffffffffffffffffffffffffffff8381165f8181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b73ffffffffffffffffffffffffffffffffffffffff8216611383576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f206164647265737300604482015260640161051b565b61138e5f8383611cdc565b8060025f82825461139f91906125c9565b909155505073ffffffffffffffffffffffffffffffffffffffff82165f81815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b5f805b7f000000000000000000000000000000000000000000000000000000000000000681101561144f575f8181526009602052604090206114439061190e565b90910190600101611405565b50601054900390565b73ffffffffffffffffffffffffffffffffffffffff8381165f908152600160209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114611528578181101561151b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e6365000000604482015260640161051b565b6115288484848403611153565b50505050565b73ffffffffffffffffffffffffffffffffffffffff83166115d1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f6472657373000000000000000000000000000000000000000000000000000000606482015260840161051b565b73ffffffffffffffffffffffffffffffffffffffff8216611674576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f6573730000000000000000000000000000000000000000000000000000000000606482015260840161051b565b61167f838383611cdc565b73ffffffffffffffffffffffffffffffffffffffff83165f9081526020819052604090205481811015611734576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e63650000000000000000000000000000000000000000000000000000606482015260840161051b565b73ffffffffffffffffffffffffffffffffffffffff8481165f81815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a3611528565b5f3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000908ddb096bfb3acb19e2280aad858186ea4935c41614801561180b57507f000000000000000000000000000000000000000000000000000000000000000146145b1561183557507f9c233e847285efdd18566db4b7127acde621b1ac6609a5482e51a7b0f31023aa90565b610a18604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fcc98da09fb43733f60f885bdb40f6e6d0fce03c071a584f2e4373e450f5efe6b918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b73ffffffffffffffffffffffffffffffffffffffff81165f908152600283016020526040812054610b09908490611dc6565b5f6104af82835f0154611dc6565b73ffffffffffffffffffffffffffffffffffffffff82166119bf576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f7300000000000000000000000000000000000000000000000000000000000000606482015260840161051b565b6119ca825f83611cdc565b73ffffffffffffffffffffffffffffffffffffffff82165f9081526020819052604090205481811015611a7f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f6365000000000000000000000000000000000000000000000000000000000000606482015260840161051b565b73ffffffffffffffffffffffffffffffffffffffff83165f818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91016112f9565b505050565b73ffffffffffffffffffffffffffffffffffffffff81165f908152600a602052604081205460ff16611b1957505f919050565b5f5b7f0000000000000000000000000000000000000000000000000000000000000006811015611b66575f818152600960205260409020611b5a90846118dc565b90910190600101611b1b565b5073ffffffffffffffffffffffffffffffffffffffff9091165f908152600c6020526040902054900390565b606060ff8314611bac57611ba583611e5e565b90506104af565b818054611bb890612495565b80601f0160208091040260200160405190810160405280929190818152602001828054611be490612495565b8015611c2f5780601f10611c0657610100808354040283529160200191611c2f565b820191905f5260205f20905b815481529060010190602001808311611c1257829003601f168201915b505050505090506104af565b73ffffffffffffffffffffffffffffffffffffffff81165f9081526007602052604090208054600181018255905b50919050565b5f6104af611c7b6117a6565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f805f611cc587878787611e9b565b91509150611cd281611f83565b5095945050505050565b73ffffffffffffffffffffffffffffffffffffffff831615611ae157600b548015801590611d0a5750428111155b611d70576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f4553453a20544745206e6f742073746172746564000000000000000000000000604482015260640161051b565b5f611d7a85611ae6565b90508015611dbf57611d8c8582611306565b601080548201905573ffffffffffffffffffffffffffffffffffffffff85165f908152600c602052604090208054820190555b5050505050565b5f815f03611dd557505f6104af565b6001830154600b546fffffffffffffffffffffffffffffffff9091160142811115611e03575f9150506104af565b600184015470010000000000000000000000000000000090046fffffffffffffffffffffffffffffffff168181014210611e415783925050506104af565b80824203850281611e5457611e54612551565b0495945050505050565b60605f611e6a83612135565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115611ed057505f90506003611f7a565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015611f21573d5f803e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116611f74575f60019250925050611f7a565b91505f90505b94509492505050565b5f816004811115611f9657611f966125dc565b03611f9e5750565b6001816004811115611fb257611fb26125dc565b03612019576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161051b565b600281600481111561202d5761202d6125dc565b03612094576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161051b565b60038160048111156120a8576120a86125dc565b03610bba576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f7565000000000000000000000000000000000000000000000000000000000000606482015260840161051b565b5f60ff8216601f8111156104af576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215612185575f80fd5b5035919050565b5f81518084525f5b818110156121b057602081850181015186830182015201612194565b505f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b602081525f610b09602083018461218c565b803573ffffffffffffffffffffffffffffffffffffffff81168114612222575f80fd5b919050565b5f8060408385031215612238575f80fd5b612241836121ff565b946020939093013593505050565b5f805f60408486031215612261575f80fd5b83359250602084013567ffffffffffffffff8082111561227f575f80fd5b818601915086601f830112612292575f80fd5b8135818111156122a0575f80fd5b8760208260061b85010111156122b4575f80fd5b6020830194508093505050509250925092565b5f805f606084860312156122d9575f80fd5b6122e2846121ff565b92506122f0602085016121ff565b9150604084013590509250925092565b5f8060408385031215612311575f80fd5b82359150612321602084016121ff565b90509250929050565b5f6020828403121561233a575f80fd5b610b09826121ff565b7fff00000000000000000000000000000000000000000000000000000000000000881681525f602060e08184015261237e60e084018a61218c565b8381036040850152612390818a61218c565b6060850189905273ffffffffffffffffffffffffffffffffffffffff8816608086015260a0850187905284810360c086015285518082528387019250908301905f5b818110156123ee578351835292840192918401916001016123d2565b50909c9b505050505050505050505050565b5f805f805f805f60e0888a031215612416575f80fd5b61241f886121ff565b965061242d602089016121ff565b95506040880135945060608801359350608088013560ff81168114612450575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f806040838503121561247e575f80fd5b612487836121ff565b9150612321602084016121ff565b600181811c908216806124a957607f821691505b602082108103611c69577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b80820281158282048414176104af576104af61250d565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f826125b1577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b818103818111156104af576104af61250d565b808201808211156104af576104af61250d565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122011ee9930a9245ca15921b4b6c9149842d78520df678b420266f588637002a11464736f6c63430008150033
Verified Source Code Full Match
Compiler: v0.8.21+commit.d9974bed
EVM: shanghai
Optimization: Yes (100000000 runs)
ESE.sol 253 lines
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
/**
* @dev Implementation of the {IERC20} interface with automatic vesting mechanism and EIP-2612 permit.
*/
contract ESE is ERC20Permit, ERC20Burnable {
struct Beneficiary{
uint256 amount;
address addr;
}
struct VestingParams{
uint256 amount;
uint128 cliff;
uint128 duration;// Duration without cliff
mapping(address => uint256) amounts;
}
struct ConstructorVestingParams{
uint32 cliff;
uint32 duration;
uint16 TGEMintShare;
}
///@dev Vesting parameters. Mappings are more gas efficient than arrays.
mapping(uint256 => VestingParams) public vestingStages;
///@dev Is address a beneficiary of any vesting stage.
mapping(address => bool) private _isVestingBeneficiary;
///@dev Info on how many vesting stages there are in total.
uint256 public immutable vestingStagesLength;
///@dev Token generation event.
uint256 public TGE;
///@dev Tokens already released by vesting.
mapping(address => uint256) private _released;
///@dev Maps stage to its TGE mint share.
mapping(uint256 => uint256) private _TGEMintShares;
///@dev Is beneficiary added to the specified stage.
mapping(uint256 => mapping(address => bool)) private _isBeneficiaryAdded;
///@dev Total tokens that will be generated by vesting.
uint256 private _totalVesting;
///@dev Total tokens were released by vesting.
uint256 private _totalReleased;
///@dev Address who can add vesting beneficiaries and initialize this contract.
address private immutable _initializer;
///@dev Max ESE possible as specified in our tokenomics.
uint256 private constant MAX_ESE = 1_000_000_000 * (10**18);
uint256 private constant DENOMINATOR = 10000;
event Initialize(uint256 TGE);
event AddVestingBeneficiary(uint256 indexed stage, address indexed beneficiary, uint256 vestingAmount, uint256 TGEAmount);
modifier onlyBeforeInitialization() {
require(TGE == 0, "ESE: Already initialized");
require(msg.sender == _initializer, "ESE: Caller not _initializer");
_;
}
constructor(ConstructorVestingParams[] memory _vestingStages) ERC20("eesee","ESE") ERC20Permit("eesee") {
require(_vestingStages.length <= 10, "ESE: Invalid vesting stages");
for (uint256 i; i < _vestingStages.length;) {
VestingParams storage crowdsale = vestingStages[i];
crowdsale.cliff = _vestingStages[i].cliff;
crowdsale.duration = _vestingStages[i].duration;
uint256 TGEMintShare = _vestingStages[i].TGEMintShare;
require(TGEMintShare <= DENOMINATOR, "ESE: Invalid TGEMintShare");
_TGEMintShares[i] = TGEMintShare;
unchecked{ ++i; }
}
_initializer = msg.sender;
vestingStagesLength = _vestingStages.length;
}
// =========== External Write Functions ===========
/**
* @dev Adds new vesting beneficiaries to {vestingStages}. Mints new tokens according to {_TGEMintShares} variable. Emits {AddVestingBeneficiary} event for each beneficiary.
* @param stage - vestingStages index to add beneficiaries for.
* @param beneficiaries - Beneficiary structs containing beneficiaries's addresses and vesting amounts.
* Note: Can only be called in an unitialized state by {_initializer}.
*/
function addVestingBeneficiaries(uint256 stage, Beneficiary[] calldata beneficiaries) external onlyBeforeInitialization {
require(stage < vestingStagesLength, "ESE: Invalid stage");
VestingParams storage crowdsale = vestingStages[stage];
uint256 TGEMintShare = _TGEMintShares[stage];
uint256 addedVestingAmount;
for(uint256 i; i < beneficiaries.length;){
address beneficiary = beneficiaries[i].addr;
require(beneficiary != address(0), "ESE: Invalid Beneficiary");
require(!_isBeneficiaryAdded[stage][beneficiary], "ESE: Beneficiary already added");
_isVestingBeneficiary[beneficiary] = true;
_isBeneficiaryAdded[stage][beneficiary] = true;
uint256 amount = beneficiaries[i].amount;
uint256 TGEMint = amount * TGEMintShare / DENOMINATOR;
if(TGEMint != 0) _mint(beneficiary, TGEMint);
uint256 vestingAmount = amount - TGEMint;
crowdsale.amounts[beneficiary] = vestingAmount;
addedVestingAmount += vestingAmount;
unchecked{ ++i; }
emit AddVestingBeneficiary(stage, beneficiary, vestingAmount, TGEMint);
}
crowdsale.amount += addedVestingAmount;
_totalVesting += addedVestingAmount;
if(super.totalSupply() + _totalVesting > MAX_ESE) revert ("ESE: Overflow");
}
/**
* @dev Initializes this contract. Token transfers are not available until TGE timestamp. Emits {Initialize} event.
* @param _TGE - Token generation timestamp in the future. Set to 0 to initialize immediately.
* Note: Can only be called in an unitialized state by {_initializer}.
*/
function initialize(uint256 _TGE) external onlyBeforeInitialization {
if(_TGE == 0) {
_TGE = block.timestamp;
} else if(_TGE < block.timestamp || _TGE > block.timestamp + 90 days) revert ("ESE: Invalid TGE timestamp");
TGE = _TGE;
emit Initialize(_TGE);
}
// =========== External View Functions ===========
/**
* @dev Info on how many tokens have already been vested during the specified stage in total.
*/
function totalVestedAmount(uint256 stage) external view returns(uint256){
require(stage < vestingStagesLength, "ESE: Invalid stage");
return _totalVestedAmount(vestingStages[stage]);
}
/**
* @dev Info on how many tokens have already been vested during the specified stage for account.
*/
function vestedAmount(uint256 stage, address account) external view returns(uint256){
require(stage < vestingStagesLength, "ESE: Invalid stage");
return _vestedAmount(vestingStages[stage], account);
}
// =========== Public View Functions ===========
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
unchecked{
return super.totalSupply() + _totalReleasableAmount();
}
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
unchecked{
return super.balanceOf(account) + _releasableAmount(account);
}
}
// =========== Internal Write Functions ===========
/**
* @dev Mint vested tokens for from address. Update _totalReleased, _released[from] variables.
*/
function _beforeTokenTransfer(address from, address /*to*/, uint256 /*amount*/) internal override {
if(from != address(0)){
uint256 _TGE = TGE;
require(_TGE != 0 && _TGE <= block.timestamp, "ESE: TGE not started");
uint256 releasableAmount = _releasableAmount(from);
if(releasableAmount > 0){
_mint(from, releasableAmount);
unchecked {
_totalReleased += releasableAmount;
_released[from] += releasableAmount;
}
}
}
}
// =========== Internal View Functions ===========
/**
* @dev Calculates the amount that has already vested but hasn't been released yet for an account.
* @param account - Address to check.
*/
function _releasableAmount(address account) internal view returns(uint256 amount){
if(!_isVestingBeneficiary[account]) return 0;
unchecked{
for(uint256 i; i < vestingStagesLength; ++i){
amount += _vestedAmount(vestingStages[i], account);
}
amount -= _released[account];
}
}
/**
* @dev Calculates the amount that has already vested but hasn't been released yet.
*/
function _totalReleasableAmount() internal view returns(uint256 amount){
unchecked{
for(uint256 i; i < vestingStagesLength; ++i){
amount += _totalVestedAmount(vestingStages[i]);
}
amount -= _totalReleased;
}
}
/**
* @dev Calculates the amount that has already vested for a given vesting period in total.
* @param vesting - Vesting period to check.
*/
function _totalVestedAmount(VestingParams storage vesting) internal view returns (uint256) {
return _vestedAmount(vesting, vesting.amount);
}
/**
* @dev Calculates the amount that has already vested for a given vesting period for an account.
* @param vesting - Vesting period to check.
* @param account - Address to check.
*/
function _vestedAmount(VestingParams storage vesting, address account) internal view returns (uint256) {
return _vestedAmount(vesting, vesting.amounts[account]);
}
function _vestedAmount(VestingParams storage vesting, uint256 amount) internal view returns (uint256) {
if(amount == 0) return 0;
unchecked {
// Overflow not possible: vesting.cliff & vesting.duration are limited by 32 bits.
uint256 start = TGE + vesting.cliff;
if (block.timestamp < start) return 0;
uint256 duration = vesting.duration;
if (block.timestamp >= start + duration) return amount;
// Overflow not possible: Max ESE amount is limited by MAX_ESE.
return amount * (block.timestamp - start) / duration;
}
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Strings.sol 85 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Counters.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
Math.sol 339 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
ERC20.sol 365 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
StorageSlot.sol 138 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
IERC20.sol 78 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
ShortStrings.sol 122 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
ECDSA.sol 217 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
EIP712.sol 142 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
ERC20Permit.sol 95 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.0;
import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
* However, to ensure consistency with the upgradeable transpiler, we will continue
* to reserve a slot.
* @custom:oz-renamed-from _PERMIT_TYPEHASH
*/
// solhint-disable-next-line var-name-mixedcase
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
ERC20Burnable.sol 39 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC20.sol";
import "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
_spendAllowance(account, _msgSender(), amount);
_burn(account, amount);
}
}
IERC20Metadata.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
Read Contract
DOMAIN_SEPARATOR 0x3644e515 → bytes32
TGE 0x8867596f → uint256
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
decimals 0x313ce567 → uint8
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256
totalVestedAmount 0x3f6406f5 → uint256
vestedAmount 0x3e6c5311 → uint256
vestingStages 0x036c151b → uint256, uint128, uint128
vestingStagesLength 0xe5106662 → uint256
Write Contract 10 functions
These functions modify contract state and require a wallet transaction to execute.
addVestingBeneficiaries 0x4ce8994e
uint256 stage
tuple[] beneficiaries
approve 0x095ea7b3
address spender
uint256 amount
returns: bool
burn 0x42966c68
uint256 amount
burnFrom 0x79cc6790
address account
uint256 amount
decreaseAllowance 0xa457c2d7
address spender
uint256 subtractedValue
returns: bool
increaseAllowance 0x39509351
address spender
uint256 addedValue
returns: bool
initialize 0xfe4b84df
uint256 _TGE
permit 0xd505accf
address owner
address spender
uint256 value
uint256 deadline
uint8 v
bytes32 r
bytes32 s
transfer 0xa9059cbb
address to
uint256 amount
returns: bool
transferFrom 0x23b872dd
address from
address to
uint256 amount
returns: bool
Recent Transactions
No transactions found for this address