Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xE80bC6275aEF1FC9664E5CFCFA2e2d92f342ec93
Balance 0 ETH
Nonce 1
Code Size 12120 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

12120 bytes
0x608060405234801561001057600080fd5b50600436106102695760003560e01c8063820710af11610151578063b0c2bf06116100c3578063d8bff5a511610087578063d8bff5a5146105a5578063d9169487146105b8578063dd62ed3e146105df578063e3ee160e14610618578063e94a01021461062b578063ef55bec61461066457600080fd5b8063b0c2bf0614610538578063c9f72b6714610545578063d395d24b14610558578063d505accf1461057f578063d87aa6431461059257600080fd5b80639823004f116101155780639823004f146104bd578063a035b1fe146104d0578063a0cc6a68146104d8578063a1c1fb4f146104ff578063a9059cbb14610512578063ad08ce5b1461052557600080fd5b8063820710af1461046157806384a7aa0c1461047457806384b0196e1461048757806391ac6f99146104a257806395d89b41146104b557600080fd5b8063250f25f4116101ea578063587cde1e116101ae578063587cde1e146103975780635895b773146103d85780635a049a70146103eb57806370a08231146103fe5780637ecebe00146104275780637f2eecc31461043a57600080fd5b8063250f25f41461033d578063313ce5671461035a578063352e3a83146103695780633644e5151461037c5780633ec161941461038457600080fd5b8063151535b911610231578063151535b9146102e757806318160ddd146102fa5780631e9a6950146103025780632295abea1461031557806323b872dd1461032a57600080fd5b806301ffc9a71461026e57806306fdde0314610296578063095ea7b3146102ab5780630d15fd77146102be5780630e89c370146102d4575b600080fd5b61028161027c36600461285e565b610677565b60405190151581526020015b60405180910390f35b61029e6106e4565b60405161028d91906128ce565b6102816102b93660046128fd565b610776565b6102c661078e565b60405190815260200161028d565b6102c66102e2366004612927565b6107e9565b6102816102f536600461295a565b61080e565b6002546102c6565b6102c66103103660046128fd565b610856565b6103286103233660046129c0565b61086a565b005b610281610338366004612a0b565b610939565b610345600581565b60405163ffffffff909116815260200161028d565b6040516012815260200161028d565b610328610377366004612a48565b61095d565b6102c66109b0565b6102c6610392366004612a9a565b6109ba565b6103c06103a536600461295a565b600a602052600090815260409020546001600160a01b031681565b6040516001600160a01b03909116815260200161028d565b6102c66103e6366004612a48565b610a47565b6103286103f9366004612ac4565b610af6565b6102c661040c36600461295a565b6001600160a01b031660009081526020819052604090205490565b6102c661043536600461295a565b610cbb565b6102c67fd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de881565b61032861046f366004612b12565b610cd9565b6102c661048236600461295a565b610df2565b61048f610e21565b60405161028d9796959493929190612b81565b6102c66104b0366004612c19565b610e67565b61029e610e99565b6103286104cb36600461295a565b610ea8565b6102c6610eff565b6102c67f7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a226781565b6102c661050d366004612927565b611058565b6102816105203660046128fd565b61111a565b6102c6610533366004612a9a565b611128565b6102c665076a7000000081565b6102c661055336600461295a565b611246565b6103c07f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e681565b61032861058d366004612c5b565b611292565b6102c66105a0366004612cc6565b6113cc565b6102c66105b336600461295a565b6113d9565b6102c67f158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a159742981565b6102c66105ed366004612ce8565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610328610626366004612d1b565b61143a565b6102816106393660046128fd565b6001600160a01b03919091166000908152600860209081526040808320938352929052205460ff1690565b610328610672366004612d1b565b611477565b60006001600160e01b031982166336372b0760e01b14806106a857506001600160e01b03198216634ec7fbed60e11b145b806106c357506001600160e01b03198216635c8090cb60e11b145b806106de57506301ffc9a760e01b6001600160e01b03198316145b92915050565b6060600380546106f390612d9c565b80601f016020809104026020016040519081016040528092919081815260200182805461071f90612d9c565b801561076c5780601f106107415761010080835404028352916020019161076c565b820191906000526020600020905b81548152906001019060200180831161074f57829003601f168201915b5050505050905090565b60003361078481858561150b565b5060019392505050565b600954600090600160c01b90046001600160401b03164260141b6107b29190612dec565b6001600160401b03166107c460025490565b6107ce9190612e0b565b6009546107e491906001600160c01b0316612e22565b905090565b6000806107f733868661151d565b90508281101561080657600080fd5b949350505050565b6001600160a01b0381166000908152600b602052604081205465076a7000000090610845906001600160401b03164260141b612dec565b6001600160401b0316101592915050565b600061086333848461151d565b9392505050565b60006108763383611659565b90506000805b848110801561088a57508282105b156108e6576108c88686838181106108a4576108a4612e35565b90506020020160208101906108b9919061295a565b6108c38486612e4b565b611659565b6108d29083612e22565b9150806108de81612e5e565b91505061087c565b50600081116108f457600080fd5b81816108fe61078e565b6109089190612e4b565b6109129190612e4b565b6001600160c01b0316600160c01b4260141b6001600160401b031602176009555050505050565b600033610947858285611742565b6109528585856117ba565b506001949350505050565b600061096a848484610a47565b905061097461078e565b61097f9060c8612e0b565b61098b82612710612e0b565b10156109aa5760405163bcfcdc1160e01b815260040160405180910390fd5b50505050565b60006107e4611819565b60006106de7f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a1d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a419190612e77565b83611944565b600080610a53856113d9565b9050610a5f84846119e3565b610a6857600080fd5b60005b83811015610aed576000858583818110610a8757610a87612e35565b9050602002016020810190610a9c919061295a565b9050866001600160a01b0316816001600160a01b031603610abc57600080fd5b610ac68782611ab2565b610acf57600080fd5b610ad8816113d9565b610ae29084612e22565b925050600101610a6b565b50949350505050565b6001600160a01b0385166000908152600860209081526040808320878452825291829020548251808401909352601e83527f454950333030393a20617574686f72697a6174696f6e206973207573656400009183019190915260ff1615610b795760405162461bcd60e51b8152600401610b7091906128ce565b60405180910390fd5b50604080517f158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a159742960208201526001600160a01b038716918101919091526060810185905260009060800160405160208183030381529060405290506000610be58280519060200120611b18565b9050866001600160a01b0316610bfd82878787611b45565b6001600160a01b0316146040518060400160405280601a81526020017f454950333030393a20696e76616c6964207369676e617475726500000000000081525090610c5b5760405162461bcd60e51b8152600401610b7091906128ce565b506001600160a01b03871660008181526008602090815260408083208a8452909152808220805460ff19166001179055518892917f1cdd46ff242716cdaa72d159d339a485b3438398348d68f09d7c8c0a59353d8191a350505050505050565b6001600160a01b0381166000908152600760205260408120546106de565b610ced670de0b6b3a76400006103e8612e0b565b7f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d4b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d6f9190612e77565b10610d7957600080fd5b610d8433858561095d565b60005b81811015610deb576000838383818110610da357610da3612e35565b9050602002016020810190610db8919061295a565b9050610de281610ddd836001600160a01b031660009081526020819052604090205490565b611b73565b50600101610d87565b5050505050565b6000610dfc61078e565b610e05836113d9565b610e1790670de0b6b3a7640000612e0b565b6106de9190612ea6565b600060608060008060006060610e35611bad565b610e3d611bda565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b6000610e74853385611742565b6000610e8186868661151d565b905082811015610e9057600080fd5b95945050505050565b6060600480546106f390612d9c565b336000818152600a602052604080822080546001600160a01b0319166001600160a01b03861690811790915590519092917fd000f39f92c3ed77f890f16b6ced1555e0ab2cdf470522d2210de67d8c83d45b91a350565b6000807f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f60573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f849190612e77565b9050801580610f935750600254155b15610fa557655af3107a400091505090565b600254670de0b6b3a76400007f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561100f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110339190612e77565b61103e906005612e0b565b6110489190612e0b565b6110529190612ea6565b91505090565b60006001600160a01b037f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e61663aa271e1a336040516001600160e01b031960e084901b1681526001600160a01b039091166004820152602401602060405180830381865afa1580156110ce573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110f29190612eba565b61110f57604051633e34a41b60e21b815260040160405180910390fd5b610806848484611c07565b6000336107848185856117ba565b60008061113460025490565b905080611149670de0b6b3a764000085612e22565b1061116757604051631384a11560e01b815260040160405180910390fd5b60007f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111c7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111eb9190612e77565b905060006103e86111fe866103d4612e0b565b6112089190612ea6565b905060006112308361122b6112266112208689612e4b565b88611e2c565b611e4b565b611e6e565b905061123c8184612e4b565b9695505050505050565b6001600160a01b0381166000908152600b6020526040812054601490611277906001600160401b031642831b612dec565b6001600160401b0316901c6001600160401b03169050919050565b834211156112b65760405163313c898160e11b815260048101859052602401610b70565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886113038c6001600160a01b0316600090815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e001604051602081830303815290604052805190602001209050600061135e82611b18565b9050600061136e82878787611b45565b9050896001600160a01b0316816001600160a01b0316146113b5576040516325c0072360e11b81526001600160a01b0380831660048301528b166024820152604401610b70565b6113c08a8a8a61150b565b50505050505050505050565b6000610863338484611c07565b6001600160a01b0381166000908152600b6020526040812054611408906001600160401b03164260141b612dec565b6001600160401b0316611430836001600160a01b031660009081526020819052604090205490565b6106de9190612e0b565b61146c7f7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a22678a8a8a8a8a8a8a8a8a611e83565b505050505050505050565b6001600160a01b03881633146114d95760405162461bcd60e51b815260206004820152602160248201527f454950333030393a2063616c6c6572206d7573742062652074686520706179656044820152606560f81b6064820152608401610b70565b61146c7fd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de88a8a8a8a8a8a8a8a8a611e83565b6115188383836001612107565b505050565b60006115288461080e565b61154557604051630f8e3b9360e41b815260040160405180910390fd5b600061155083611128565b905061155c8584611b73565b60405163a9059cbb60e01b81526001600160a01b038581166004830152602482018390527f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e6169063a9059cbb906044016020604051808303816000875af11580156115cb573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115ef9190612eba565b507fd98fb7c2b7c7b545387da80b92c08bc5d2a4b922fb74851c3d27ee07ca897bdf8561161b85612edc565b83611624610eff565b604080516001600160a01b039095168552602085019390935291830152606082015260800160405180910390a1949350505050565b600080611665846113d9565b90508083106116ad576001600160a01b0384166000908152600b60205260409020805467ffffffffffffffff19164260141b6001600160401b031617905591508190506106de565b6001600160a01b0384166000908152602081905260409020546116d08483612e4b565b6116da9190612ea6565b6116f0906001600160401b034260141b16612e4b565b6001600160a01b0385166000908152600b60205260409020805467ffffffffffffffff19166001600160401b0392909216919091179055611730846113d9565b61173a9082612e4b565b9150506106de565b6001600160a01b0383811660009081526001602090815260408083209386168352929052205460001981146109aa57818110156117ab57604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401610b70565b6109aa84848484036000612107565b6001600160a01b0383166117e457604051634b637e8f60e11b815260006004820152602401610b70565b6001600160a01b03821661180e5760405163ec442f0560e01b815260006004820152602401610b70565b6115188383836121dc565b6000306001600160a01b037f000000000000000000000000e80bc6275aef1fc9664e5cfcfa2e2d92f342ec931614801561187257507f000000000000000000000000000000000000000000000000000000000000000146145b1561189c57507fcc160dc8fa8c3c52a8ce0465b7f4c90ae4c2dd9532fcd665c61e5fd616c6a6e690565b6107e4604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527ffd066f755f349b1df6dbfbaaaac6453744bfd5a96aae6d583ad5b728b2a5dae3918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b60008061195060025490565b905060006103e8611963856103d4612e0b565b61196d9190612ea6565b90506000611985670de0b6b3a76400006103e8612e0b565b861080611990575082155b6119b8576119b38361122b6119ae6119a8868b612e22565b8a611e2c565b612208565b6119d7565b6119cd670de0b6b3a764000062989680612e0b565b6119d79084612e22565b905061123c8382612e4b565b6000600182116119f5575060016106de565b600083836000818110611a0a57611a0a612e35565b9050602002016020810190611a1f919061295a565b905060015b83811015611aa757816001600160a01b0316858583818110611a4857611a48612e35565b9050602002016020810190611a5d919061295a565b6001600160a01b031611611a76576000925050506106de565b848482818110611a8857611a88612e35565b9050602002016020810190611a9d919061295a565b9150600101611a24565b5060019150506106de565b6000826001600160a01b0316826001600160a01b031603611ad5575060016106de565b6001600160a01b038216611aeb575060006106de565b6001600160a01b038083166000908152600a6020526040902054611b1191859116611ab2565b90506106de565b60006106de611b25611819565b8360405161190160f01b8152600281019290925260228201526042902090565b600080600080611b5788888888612305565b925092509250611b6782826123d4565b50909695505050505050565b6001600160a01b038216611b9d57604051634b637e8f60e11b815260006004820152602401610b70565b611ba9826000836121dc565b5050565b60606107e47f00000000000000000000000000000000000000000000000000000000000000ff600561248d565b60606107e47f3100000000000000000000000000000000000000000000000000000000000001600661248d565b6040516323b872dd60e01b81526001600160a01b038481166004830152306024830152604482018490526000917f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e6909116906323b872dd906064016020604051808303816000875af1158015611c81573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611ca59190612eba565b5060007f000000000000000000000000e56e05a3e1375a147c122e5883667e57159485e66001600160a01b03166391a0ac6a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611d06573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d2a9190612e77565b9050611d40670de0b6b3a76400006103e8612e0b565b811015611d6057604051630e44c74360e31b815260040160405180910390fd5b6000611d8585831115611d7c57611d778684612e4b565b611d7f565b60005b86611944565b905083811015611d9457600080fd5b611d9e8682612531565b7fd98fb7c2b7c7b545387da80b92c08bc5d2a4b922fb74851c3d27ee07ca897bdf868287611dca610eff565b604080516001600160a01b039095168552602085019390935291830152606082015260800160405180910390a16bffffffffffffffffffffffff611e0d60025490565b1115610e9057604051637eaca13d60e11b815260040160405180910390fd5b600081611e41670de0b6b3a764000085612e0b565b6108639190612ea6565b60006106de611e6c611e66611e608586611e6e565b85611e6e565b84611e6e565b835b6000670de0b6b3a7640000611e418385612e0b565b854211611ee25760405162461bcd60e51b815260206004820152602760248201527f454950333030393a20617574686f72697a6174696f6e206973206e6f742079656044820152661d081d985b1a5960ca1b6064820152608401610b70565b844210611f3b5760405162461bcd60e51b815260206004820152602160248201527f454950333030393a20617574686f72697a6174696f6e206973206578706972656044820152601960fa1b6064820152608401610b70565b6001600160a01b0389166000908152600860209081526040808320878452825291829020548251808401909352601e83527f454950333030393a20617574686f72697a6174696f6e206973207573656400009183019190915260ff1615611fb55760405162461bcd60e51b8152600401610b7091906128ce565b5060408051602081018c90526001600160a01b03808c169282019290925290891660608201526080810188905260a0810187905260c0810186905260e0810185905260009061010001604051602081830303815290604052905060006120218280519060200120611b18565b90508a6001600160a01b031661203982878787611b45565b6001600160a01b0316146040518060400160405280601a81526020017f454950333030393a20696e76616c6964207369676e6174757265000000000000815250906120975760405162461bcd60e51b8152600401610b7091906128ce565b506001600160a01b038b1660008181526008602090815260408083208a8452909152808220805460ff19166001179055518892917f98de503528ee59b575ef0c0a2576a82497bfc029a5685b209e9ec333479b10a591a36120f98b8b8b6117ba565b505050505050505050505050565b6001600160a01b0384166121315760405163e602df0560e01b815260006004820152602401610b70565b6001600160a01b03831661215b57604051634a1406b160e11b815260006004820152602401610b70565b6001600160a01b03808516600090815260016020908152604080832093871683529290522082905580156109aa57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516121ce91815260200190565b60405180910390a350505050565b80156121fd5760006121ee8383612567565b90506121fb848383612625565b505b6115188383836126cd565b600080670de0b6b3a7640000831180156122295750678ac7230489e8000083105b61223b57670de0b6b3a7640000612264565b670de0b6b3a764000060056122508286612e4b565b61225a9190612ea6565b6122649190612e22565b905060005b600061227483611e4b565b90506000612283866002612e0b565b61228e836003612e0b565b6122989190612e22565b6122a3876003612e0b565b6122ae846002612e0b565b6122b89190612e22565b6122c29086612e0b565b6122cc9190612ea6565b90508381116122e4576122df8185612e4b565b6122ee565b6122ee8482612e4b565b909350915050620f42408111612269575092915050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561234057506000915060039050826123ca565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612394573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166123c0575060009250600191508290506123ca565b9250600091508190505b9450945094915050565b60008260038111156123e8576123e8612ef8565b036123f1575050565b600182600381111561240557612405612ef8565b036124235760405163f645eedf60e01b815260040160405180910390fd5b600282600381111561243757612437612ef8565b036124585760405163fce698f760e01b815260048101829052602401610b70565b600382600381111561246c5761246c612ef8565b03611ba9576040516335e2f38360e21b815260048101829052602401610b70565b606060ff83146124a057611b11836127f7565b8180546124ac90612d9c565b80601f01602080910402602001604051908101604052809291908181526020018280546124d890612d9c565b80156125255780601f106124fa57610100808354040283529160200191612525565b820191906000526020600020905b81548152906001019060200180831161250857829003601f168201915b505050505090506106de565b6001600160a01b03821661255b5760405163ec442f0560e01b815260006004820152602401610b70565b611ba9600083836121dc565b60006001600160a01b0383161561261d576000612583846113d9565b90506000836125a7866001600160a01b031660009081526020819052604090205490565b6125b19190612e22565b90506125bd8183612ea6565b6125d3906001600160401b034260141b16612e4b565b6001600160a01b0386166000908152600b60205260409020805467ffffffffffffffff19166001600160401b03929092169190911790556126148183612f0e565b925050506106de565b5060006106de565b4260141b60006001600160a01b03851615612680576001600160a01b0385166000908152600b60205260409020548490612668906001600160401b031684612dec565b6001600160401b031661267b9190612e0b565b612683565b60005b9050808361268f61078e565b6126999190612e4b565b6126a39190612e4b565b6001600160401b03909216600160c01b026001600160c01b03929092169190911760095550505050565b6001600160a01b0383166126f85780600260008282546126ed9190612e22565b9091555061276a9050565b6001600160a01b0383166000908152602081905260409020548181101561274b5760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610b70565b6001600160a01b03841660009081526020819052604090209082900390555b6001600160a01b038216612786576002805482900390556127a5565b6001600160a01b03821660009081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516127ea91815260200190565b60405180910390a3505050565b6060600061280483612836565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b600060ff8216601f8111156106de57604051632cd44ac360e21b815260040160405180910390fd5b60006020828403121561287057600080fd5b81356001600160e01b03198116811461086357600080fd5b6000815180845260005b818110156128ae57602081850181015186830182015201612892565b506000602082860101526020601f19601f83011685010191505092915050565b6020815260006108636020830184612888565b80356001600160a01b03811681146128f857600080fd5b919050565b6000806040838503121561291057600080fd5b612919836128e1565b946020939093013593505050565b60008060006060848603121561293c57600080fd5b612945846128e1565b95602085013595506040909401359392505050565b60006020828403121561296c57600080fd5b610863826128e1565b60008083601f84011261298757600080fd5b5081356001600160401b0381111561299e57600080fd5b6020830191508360208260051b85010111156129b957600080fd5b9250929050565b6000806000604084860312156129d557600080fd5b83356001600160401b038111156129eb57600080fd5b6129f786828701612975565b909790965060209590950135949350505050565b600080600060608486031215612a2057600080fd5b612a29846128e1565b9250612a37602085016128e1565b929592945050506040919091013590565b600080600060408486031215612a5d57600080fd5b612a66846128e1565b925060208401356001600160401b03811115612a8157600080fd5b612a8d86828701612975565b9497909650939450505050565b600060208284031215612aac57600080fd5b5035919050565b803560ff811681146128f857600080fd5b600080600080600060a08688031215612adc57600080fd5b612ae5866128e1565b945060208601359350612afa60408701612ab3565b94979396509394606081013594506080013592915050565b60008060008060408587031215612b2857600080fd5b84356001600160401b03811115612b3e57600080fd5b612b4a87828801612975565b90955093505060208501356001600160401b03811115612b6957600080fd5b612b7587828801612975565b95989497509550505050565b60ff60f81b8816815260e060208201526000612ba060e0830189612888565b8281036040840152612bb28189612888565b606084018890526001600160a01b038716608085015260a0840186905283810360c08501528451808252602080870193509091019060005b81811015612c08578351835260209384019390920191600101612bea565b50909b9a5050505050505050505050565b60008060008060808587031215612c2f57600080fd5b612c38856128e1565b9350612c46602086016128e1565b93969395505050506040820135916060013590565b600080600080600080600060e0888a031215612c7657600080fd5b612c7f886128e1565b9650612c8d602089016128e1565b95506040880135945060608801359350612ca960808901612ab3565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215612cd957600080fd5b50508035926020909101359150565b60008060408385031215612cfb57600080fd5b612d04836128e1565b9150612d12602084016128e1565b90509250929050565b60008060008060008060008060006101208a8c031215612d3a57600080fd5b612d438a6128e1565b9850612d5160208b016128e1565b975060408a0135965060608a0135955060808a0135945060a08a01359350612d7b60c08b01612ab3565b989b979a50959894979396929550929360e081013593506101000135919050565b600181811c90821680612db057607f821691505b602082108103612dd057634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b6001600160401b0382811682821603908111156106de576106de612dd6565b80820281158282048414176106de576106de612dd6565b808201808211156106de576106de612dd6565b634e487b7160e01b600052603260045260246000fd5b818103818111156106de576106de612dd6565b600060018201612e7057612e70612dd6565b5060010190565b600060208284031215612e8957600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b600082612eb557612eb5612e90565b500490565b600060208284031215612ecc57600080fd5b8151801515811461086357600080fd5b6000600160ff1b8201612ef157612ef1612dd6565b5060000390565b634e487b7160e01b600052602160045260246000fd5b600082612f1d57612f1d612e90565b50069056fea264697066735822122070a463cca1b002e1a2dc3dcaddd082ca1357c14a950b5c67bebad28d6cee11ef64736f6c634300081a0033

Verified Source Code Full Match

Compiler: v0.8.26+commit.8a97fa7a EVM: paris Optimization: Yes (200 runs)
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
ERC20.sol 312 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
ERC20Permit.sol 83 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Nonces.sol 46 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}
Panic.sol 57 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
ShortStrings.sol 122 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}
StorageSlot.sol 143 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}
Strings.sol 116 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
ECDSA.sol 180 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}
MessageHashUtils.sol 84 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
ERC165.sol 27 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
IERC165.sol 25 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Math.sol 685 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
SafeCast.sol 1162 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
SignedMath.sol 68 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}
DecentralizedEURO.sol 385 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {Equity} from "./Equity.sol";
import {IDecentralizedEURO} from "./interface/IDecentralizedEURO.sol";
import {IReserve} from "./interface/IReserve.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC165} from "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import {ERC3009} from "./impl/ERC3009.sol";

/**
 * @title DecentralizedEURO
 * @notice The DecentralizedEURO (dEURO) is an ERC-20 token that is designed to track the value of the Euro.
 * It is not upgradable, but open to arbitrary minting plugins. These are automatically accepted if none of the
 * qualified pool shareholders casts a veto, leading to a flexible but conservative governance.
 */
contract DecentralizedEURO is ERC20Permit, ERC3009, IDecentralizedEURO, ERC165 {
    /**
     * @notice Minimal fee and application period when suggesting a new minter.
     */
    uint256 public constant MIN_FEE = 1000 * (10 ** 18);
    uint256 public immutable MIN_APPLICATION_PERIOD; // For example: 10 days

    /**
     * @notice The contract that holds the reserve.
     */
    IReserve public immutable override reserve;

    /**
     * @notice How much of the reserve belongs to the minters. Everything else belongs to the pool shareholders.
     * Stored with 6 additional digits of accuracy so no rounding is necessary when dealing with parts per
     * million (ppm) in reserve calculations.
     */
    uint256 private minterReserveE6;

    /**
     * @notice Map of minters to approval time stamps. If the time stamp is in the past, the minter contract is allowed
     * to mint DecentralizedEUROs.
     */
    mapping(address minter => uint256 validityStart) public minters;

    /**
     * @notice List of positions that are allowed to mint and the minter that registered them.
     */
    mapping(address position => address registeringMinter) public positions;

    event MinterApplied(address indexed minter, uint256 applicationPeriod, uint256 applicationFee, string message);
    event MinterDenied(address indexed minter, string message);
    event Loss(address indexed reportingMinter, uint256 amount);
    event Profit(address indexed reportingMinter, uint256 amount);
    event ProfitDistributed(address indexed recipient, uint256 amount);

    error PeriodTooShort();
    error FeeTooLow();
    error AlreadyRegistered();
    error NotMinter();
    error TooLate();

    modifier minterOnly() {
        if (!isMinter(msg.sender) && !isMinter(positions[msg.sender])) revert NotMinter();
        _;
    }

    /**
     * @notice Initiates the DecentralizedEURO with the provided minimum application period for new plugins
     * in seconds, for example 10 days, i.e. 3600*24*10 = 864000
     */
    constructor(uint256 _minApplicationPeriod) ERC20Permit("DecentralizedEURO") ERC20("DecentralizedEURO", "dEURO") {
        MIN_APPLICATION_PERIOD = _minApplicationPeriod;
        reserve = new Equity(this);
    }

    function initialize(address _minter, string calldata _message) external {
        require(totalSupply() == 0 && reserve.totalSupply() == 0);
        minters[_minter] = block.timestamp;
        emit MinterApplied(_minter, 0, 0, _message);
    }

    /**
     * @notice Publicly accessible method to suggest a new way of minting DecentralizedEURO.
     * @dev The caller has to pay an application fee that is irrevocably lost even if the new minter is vetoed.
     * The caller must assume that someone will veto the new minter unless there is broad consensus that the new minter
     * adds value to the DecentralizedEURO system. Complex proposals should have application periods and applications fees
     * above the minimum. It is assumed that over time, informal ways to coordinate on new minters will emerge. The message
     * parameter might be useful for initiating further communication. Maybe it contains a link to a website describing
     * the proposed minter.
     *
     * @param _minter              An address that is given the permission to mint DecentralizedEUROs
     * @param _applicationPeriod   The time others have to veto the suggestion, at least MIN_APPLICATION_PERIOD
     * @param _applicationFee      The fee paid by the caller, at least MIN_FEE
     * @param _message             An optional human readable message to everyone watching this contract
     */
    function suggestMinter(
        address _minter,
        uint256 _applicationPeriod,
        uint256 _applicationFee,
        string calldata _message
    ) external override {
        if (_applicationPeriod < MIN_APPLICATION_PERIOD) revert PeriodTooShort();
        if (_applicationFee < MIN_FEE) revert FeeTooLow();
        if (minters[_minter] != 0) revert AlreadyRegistered();
        _collectProfits(address(this), msg.sender, _applicationFee);
        minters[_minter] = block.timestamp + _applicationPeriod;
        emit MinterApplied(_minter, _applicationPeriod, _applicationFee, _message);
    }

    /**
     * @notice Make the system more user friendly by skipping the allowance in many cases.
     * @dev We trust minters and the positions they have created to mint and burn as they please, so
     * giving them arbitrary allowances does not pose an additional risk.
     */
    function allowance(address owner, address spender) public view override(IERC20, ERC20) returns (uint256) {
        uint256 explicit = super.allowance(owner, spender);
        if (explicit > 0) {
            return explicit; // don't waste gas checking minter
        }

        if (spender == address(reserve)) {
            return type(uint256).max;
        }

        if (
            (isMinter(spender) || isMinter(getPositionParent(spender))) &&
            (isMinter(owner) || positions[owner] != address(0) || owner == address(reserve))
        ) {
            return type(uint256).max;
        }

        return 0;
    }

    /**
     * @notice The reserve provided by the owners of collateralized positions.
     * @dev The minter reserve can be used to cover losses after the equity holders have been wiped out.
     */
    function minterReserve() public view returns (uint256) {
        return minterReserveE6 / 1000000;
    }

    /**
     * @notice Allows minters to register collateralized debt positions, thereby giving them the ability to mint DecentralizedEUROs.
     * @dev It is assumed that the responsible minter that registers the position ensures that the position can be trusted.
     */
    function registerPosition(address _position) external override {
        if (!isMinter(msg.sender)) revert NotMinter();
        positions[_position] = msg.sender;
    }

    /**
     * @notice The amount of equity of the DecentralizedEURO system in dEURO, owned by the holders of Native Decentralized Euro Protocol Shares.
     * @dev Note that the equity contract technically holds both the minter reserve as well as the equity, so the minter
     * reserve must be subtracted. All fees and other kinds of income are added to the Equity contract and essentially
     * constitute profits attributable to the pool shareholders.
     */
    function equity() public view returns (uint256) {
        uint256 balance = balanceOf(address(reserve));
        uint256 minReserve = minterReserve();
        if (balance <= minReserve) {
            return 0;
        } else {
            return balance - minReserve;
        }
    }

    /**
     * @notice Qualified pool shareholders can deny minters during the application period.
     * @dev Calling this function is relatively cheap thanks to the deletion of a storage slot.
     */
    function denyMinter(address _minter, address[] calldata _helpers, string calldata _message) external override {
        if (block.timestamp > minters[_minter]) revert TooLate();
        reserve.checkQualified(msg.sender, _helpers);
        delete minters[_minter];
        emit MinterDenied(_minter, _message);
    }

    /**
     * @notice Mints the provided amount of dEURO to the target address, automatically forwarding
     * the minting fee and the reserve to the right place.
     */
    function mintWithReserve(
        address _target,
        uint256 _amount,
        uint32 _reservePPM
    ) external override minterOnly {
        uint256 usableMint = (_amount * (1000_000 - _reservePPM)) / 1000_000; // rounding down is fine
        _mint(_target, usableMint);
        _mint(address(reserve), _amount - usableMint); // rest goes to equity as reserves or as fees
        minterReserveE6 += _amount * _reservePPM;
    }

    function mint(address _target, uint256 _amount) external override minterOnly {
        _mint(_target, _amount);
    }

    /**
     * Anyone is allowed to burn their dEURO.
     */
    function burn(uint256 _amount) external {
        _burn(msg.sender, _amount);
    }

    /**
     * @notice Burn someone else's dEURO.
     */
    function burnFrom(address _owner, uint256 _amount) external override minterOnly {
        _spendAllowance(_owner, msg.sender, _amount);
        _burn(_owner, _amount);
    }

    /**
     * @notice Burn the amount without reclaiming the reserve, but freeing it up and thereby essentially donating it to the
     * pool shareholders. This can make sense in combination with 'coverLoss', i.e. when it is the pool shareholders
     * that bear the risk and depending on the outcome they make a profit or a loss.
     *
     * Design rule: Minters calling this method are only allowed to do so for token amounts they previously minted with
     * the same _reservePPM amount.
     *
     * For example, if someone minted 50 dEURO earlier with a 20% reserve requirement (200000 ppm), they got 40 dEURO
     * and paid 10 dEURO into the reserve. Now they want to repay the debt by burning 50 dEURO. When doing so using this
     * method, 50 dEURO get burned and on top of that, 10 dEURO previously assigned to the minter's reserve are
     * reassigned to the pool shareholders.
     */
    function burnWithoutReserve(uint256 amount, uint32 reservePPM) public override minterOnly {
        _burn(msg.sender, amount);

        uint256 equityBefore = equity();
        uint256 reserveReduction = amount * reservePPM;
        minterReserveE6 = minterReserveE6 > reserveReduction ? minterReserveE6 - reserveReduction : 0;
        uint256 equityAfter = equity();

        if (equityAfter > equityBefore) {
            emit Profit(msg.sender, equityAfter - equityBefore);
        }
    }

    /**
     * @notice Burns the target amount taking the tokens to be burned from the payer and the payer's reserve.
     * Only use this method for tokens also minted by the caller with the same reservePPM.
     *
     * Example: the calling contract has previously minted 100 dEURO with a reserve ratio of 20% (i.e. 200000 ppm).
     * To burn half of that again, the minter calls burnFromWithReserve with a target amount of 50 dEURO. Assuming that reserves
     * are only 90% covered, this call will deduct 41 dEURO from the payer's balance and 9 from the reserve, while
     * reducing the minter reserve by 10.
     */
    function burnFromWithReserve(
        address payer,
        uint256 targetTotalBurnAmount,
        uint32 reservePPM
    ) public override minterOnly returns (uint256) {
        uint256 assigned = calculateAssignedReserve(targetTotalBurnAmount, reservePPM);
        _spendAllowance(payer, msg.sender, targetTotalBurnAmount - assigned); // spend amount excluding the reserve
        _burn(address(reserve), assigned); // burn reserve amount from the reserve
        _burn(payer, targetTotalBurnAmount - assigned); // burn remaining amount from the payer
        minterReserveE6 -= targetTotalBurnAmount * reservePPM; // reduce reserve requirements by original ratio
        return assigned;
    }

    /**
     * @notice Burns `amountExcludingReserve * (1e6 / (1e6 - reservePPM)) from payer with an adjustment for 
     * incurred reserve losses (handled by `calculateFreedAmount`). That is, `amountExcludingReserve` is the
     * amount to be burnt excluding the reserve portion, i.e. the net amount.
     */
    function burnFromWithReserveNet(
        address payer,
        uint256 amountExcludingReserve,
        uint32 reservePPM
    ) external override minterOnly returns (uint256) {
        uint256 freedAmount = calculateFreedAmount(amountExcludingReserve, reservePPM); // Add reserve portion
        uint256 theoreticalAmount = (1000000 * amountExcludingReserve) / (1000000 - reservePPM);
        minterReserveE6 -= theoreticalAmount * reservePPM; // reduce reserve requirements by original ratio
        _transfer(address(reserve), payer, freedAmount - amountExcludingReserve); // collect assigned reserve
        _burn(payer, freedAmount); // burn the freed amount
        return freedAmount;
    }

    /**
     * @notice Calculates the assigned reserve for a given amount and reserve requirement, adjusted for reserve losses.
     * @return `amountExcludingReserve` plus its share of the reserve.
     */
    function calculateFreedAmount(
        uint256 amountExcludingReserve /* 41 */,
        uint32 _reservePPM /* 20% */
    ) public view returns (uint256) {
        uint256 currentReserve = balanceOf(address(reserve));
        uint256 minterReserve_ = minterReserve();
        uint256 adjustedReservePPM = currentReserve < minterReserve_
            ? (_reservePPM * currentReserve) / minterReserve_
            : _reservePPM;
        return (1000000 * amountExcludingReserve) / (1000000 - adjustedReservePPM);
    }

    /**
     * @notice Calculates the reserve attributable to someone who minted the given amount with the given reserve requirement.
     * Under normal circumstances, this is just the reserve requirement multiplied by the amount. However, after a
     * severe loss of capital that burned into the minter's reserve, this can also be less than that.
     */
    function calculateAssignedReserve(uint256 mintedAmount, uint32 _reservePPM) public view returns (uint256) {
        uint256 theoreticalReserve = (_reservePPM * mintedAmount) / 1000000;
        uint256 currentReserve = balanceOf(address(reserve));
        uint256 minterReserve_ = minterReserve();
        if (currentReserve < minterReserve_) {
            // not enough reserves, owner has to take a loss
            return (theoreticalReserve * currentReserve) / minterReserve_;
        } else {
            return theoreticalReserve;
        }
    }

    /**
     * @notice Notify the DecentralizedEURO that a minter lost economic access to some coins. This does not mean that the coins are
     * literally lost. It just means that some dEURO will likely never be repaid and that in order to bring the system
     * back into balance, the lost amount of dEURO must be removed from the reserve instead.
     *
     * For example, if a minter printed 1 million dEURO for a mortgage and the mortgage turned out to be unsound with
     * the house only yielding 800,000 in the subsequent auction, there is a loss of 200,000 that needs to be covered
     * by the reserve.
     */
    function coverLoss(address source, uint256 _amount) external override minterOnly {
        _withdrawFromReserve(source, _amount);
        emit Loss(source, _amount);
    }

    /**
     * @notice Distribute profits (e.g., savings interest) from the reserve to recipients.
     *
     * @param recipient The address receiving the payout.
     * @param amount The amount of dEURO to distribute.
    */
    function distributeProfits(address recipient, uint256 amount) external override minterOnly {
        _withdrawFromReserve(recipient, amount);
        emit ProfitDistributed(recipient, amount);
    }

    function collectProfits(address source, uint256 _amount) external override minterOnly {
        _collectProfits(msg.sender, source, _amount);
    }

    function _collectProfits(address minter, address source, uint256 _amount) internal {
        _transfer(source, address(reserve), _amount);
        emit Profit(minter, _amount);
    }

    /**
     * @notice Transfers the specified amount from the reserve if possible; mints the remainder if necessary.
     * @param recipient The address receiving the funds.
     * @param amount The total amount to be paid.
    */
    function _withdrawFromReserve(address recipient, uint256 amount) internal {
        uint256 reserveLeft = balanceOf(address(reserve));
        if (reserveLeft >= amount) {
            _transfer(address(reserve), recipient, amount);
        } else {
            _transfer(address(reserve), recipient, reserveLeft);
            _mint(recipient, amount - reserveLeft);
        }
    }

    /**
     * @notice Returns true if the address is an approved minter.
     */
    function isMinter(address _minter) public view override returns (bool) {
        return minters[_minter] != 0 && block.timestamp >= minters[_minter];
    }

    /**
     * @notice Returns the address of the minter that created this position or null if the provided address is unknown.
     */
    function getPositionParent(address _position) public view override returns (address) {
        return positions[_position];
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return
            interfaceId == type(IERC20).interfaceId ||
            interfaceId == type(ERC20Permit).interfaceId ||
            interfaceId == type(ERC3009).interfaceId ||
            interfaceId == type(IDecentralizedEURO).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}
Equity.sol 451 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import {DecentralizedEURO} from "./DecentralizedEURO.sol";
import {ERC165} from "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC3009} from "./impl/ERC3009.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IReserve} from "./interface/IReserve.sol";
import {MathUtil} from "./utils/MathUtil.sol";

/**
 * @title Equity
 * @notice If the DecentralizedEURO system was a bank, this contract would represent the equity on its balance sheet.
 * Like a corporation, the owners of the equity capital are the shareholders, or in this case the holders
 * of Native Decentralized Euro Protocol Share (nDEPS) tokens. Anyone can mint additional nDEPS tokens by adding DecentralizedEUROs to the
 * reserve pool. Also, nDEPS tokens can be redeemed for DecentralizedEUROs again after a minimum holding period.
 * Furthermore, the nDEPS shares come with some voting power. Anyone that held at least 2% of the holding-period-
 * weighted reserve pool shares gains veto power and can veto new proposals.
 */
contract Equity is ERC20Permit, ERC3009, MathUtil, IReserve, ERC165 {
    /**
     * The VALUATION_FACTOR determines the market cap of the reserve pool shares relative to the equity reserves.
     * The following always holds: Market Cap = Valuation Factor * Equity Reserve = Price * Supply
     *
     * In the absence of fees, profits and losses, the variables grow as follows when nDEPS tokens are minted:
     *
     * |        Reserve     |      Market Cap    |     Price    |       Supply    |
     * |              1_000 |              5_000 |       0.0005 |      10_000_000 |
     * |        100_000_000 |        500_000_000 |       5      |     100_000_000 |
     * | 10_000_000_000_000 | 50_000_000_000_000 |  50_000      |   1_000_000_000 |
     *
     * i.e., the supply is proportional to the fifth root of the reserve and the price is proportional to the
     * squared cubic root. When profits accumulate or losses materialize, the reserve, the market cap,
     * and the price are adjusted proportionally. In the absence of extreme inflation of the Euro, it is unlikely
     * that there will ever be more than ten million nDEPS.
     */
    uint32 public constant VALUATION_FACTOR = 5; // Changed from 3 to 5 as requested

    uint256 private constant MINIMUM_EQUITY = 1_000 * ONE_DEC18;

    /**
     * @notice The quorum in basis points. 100 is 1%.
     */
    uint32 private constant QUORUM = 200;

    /**
     * @notice The number of digits to store the average holding time of share tokens.
     */
    uint8 private constant TIME_RESOLUTION_BITS = 20;

    /**
     * @notice The minimum holding duration. You are not allowed to redeem your pool shares if you held them
     * for less than the minimum holding duration at average. For example, if you have two pool shares at your
     * address, one acquired 5 days ago and one acquired 105 days ago, you cannot redeem them as the average
     * holding duration of your shares is only 55 days < 90 days.
     */
    uint256 public constant MIN_HOLDING_DURATION = 90 days << TIME_RESOLUTION_BITS; // Set to 5 for local testing

    DecentralizedEURO public immutable dEURO;

    /**
     * @dev To track the total number of votes we need to know the number of votes at the anchor time and when the
     * anchor time was. This is (hopefully) stored in one 256 bit slot, with the anchor time taking 64 Bits and
     * the total vote count 192 Bits. Given the sub-second resolution of 20 Bits, the implicit assumption is
     * that the timestamp can always be stored in 44 Bits (i.e., it does not exceed half a million years). Further,
     * given 18 decimals (about 60 Bits), this implies that the total supply cannot exceed
     *   192 - 60 - 44 - 20 = 68 Bits
     * Here, we are also safe, as 68 Bits would imply more than a trillion outstanding shares. In fact,
     * a limit of about 2**36 shares (that's about 2**96 Bits when taking into account the decimals) is imposed
     * when minting. This means that the maximum supply is billions of shares, which could only be reached in
     * a scenario with hyperinflation, in which case the stablecoin is worthless anyway.
     */
    uint192 private totalVotesAtAnchor; // Total number of votes at the anchor time
    uint64 private totalVotesAnchorTime; // 44 Bits for the time stamp, 20 Bit sub-second resolution

    /**
     * @notice Keeping track of who delegated votes to whom.
     * Note that delegation does not mean you cannot vote / veto anymore; it just means that the delegate can
     * benefit from your votes when invoking a veto. Circular delegations are valid but do not help when voting.
     */
    mapping(address owner => address delegate) public delegates;

    /**
     * @notice A time stamp in the past such that: votes = balance * (time passed since anchor was set).
     */
    mapping(address owner => uint64 timestamp) private voteAnchor; // 44 bits for time stamp, 20 sub-second resolution

    event Delegation(address indexed from, address indexed to); // indicates a delegation
    event Trade(address who, int256 amount, uint256 totPrice, uint256 newprice); // amount pos or neg for mint or redemption

    error BelowMinimumHoldingPeriod();
    error NotQualified();
    error NotMinter();
    error InsufficientEquity();
    error TooManyShares();
    error TotalSupplyExceeded();

    constructor(
        DecentralizedEURO dEURO_
    )
        ERC20Permit("Native Decentralized Euro Protocol Share")
        ERC20("Native Decentralized Euro Protocol Share", "nDEPS")
    {
        dEURO = dEURO_;
    }

    /**
     * @notice Returns the price of one nDEPS in dEURO with 18 decimals precision.
     */
    function price() public view returns (uint256) {
        uint256 equity = dEURO.equity();
        if (equity == 0 || totalSupply() == 0) {
            return 10 ** 14; 
        } else {
            return (VALUATION_FACTOR * dEURO.equity() * ONE_DEC18) / totalSupply();
        }
    }

    function _update(address from, address to, uint256 value) internal override {
        if (value > 0) {
            // No need to adjust the sender's votes. When they send out 10% of their shares, they also lose 10% of
            // their votes, so everything falls nicely into place. Recipient votes should stay the same, but grow
            // faster in the future, requiring an adjustment of the anchor.
            uint256 roundingLoss = _adjustRecipientVoteAnchor(to, value);
            // The total also must be adjusted and kept accurate by taking into account the rounding error.
            _adjustTotalVotes(from, value, roundingLoss);
        }
        super._update(from, to, value);
    }

    /**
     * @notice Returns whether the given address is allowed to redeem nDEPS, which is the
     * case after their average holding duration is larger than the required minimum.
     */
    function canRedeem(address owner) public view returns (bool) {
        return _anchorTime() - voteAnchor[owner] >= MIN_HOLDING_DURATION;
    }

    /**
     * @notice Decrease the total votes anchor when tokens lose their voting power due to being moved.
     * @param from      sender
     * @param amount    amount to be sent
     */
    function _adjustTotalVotes(address from, uint256 amount, uint256 roundingLoss) internal {
        uint64 time = _anchorTime();
        uint256 lostVotes = from == address(0x0) ? 0 : (time - voteAnchor[from]) * amount;
        totalVotesAtAnchor = uint192(totalVotes() - roundingLoss - lostVotes);
        totalVotesAnchorTime = time;
    }

    /**
     * @notice The vote anchor of the recipient is moved forward such that the number of calculated
     * votes does not change despite the higher balance.
     * @param to        receiver address
     * @param amount    amount to be received
     * @return the number of votes lost due to rounding errors
     */
    function _adjustRecipientVoteAnchor(address to, uint256 amount) internal returns (uint256) {
        if (to != address(0x0)) {
            uint256 recipientVotes = votes(to); // for example 21 if 7 shares were held for 3 seconds
            uint256 newbalance = balanceOf(to) + amount; // for example 11 if 4 shares are added
            // new example: anchor is only 21 / 11 = ~1 second in the past
            voteAnchor[to] = uint64(_anchorTime() - recipientVotes / newbalance);
            return recipientVotes % newbalance; // we have lost 21 % 11 = 10 votes
        } else {
            // optimization for burn, vote anchor of null address does not matter
            return 0;
        }
    }

    /**
     * @notice Time stamp with some additional bits for higher resolution.
     */
    function _anchorTime() internal view returns (uint64) {
        return uint64(block.timestamp << TIME_RESOLUTION_BITS);
    }

    /**
     * @notice The relative voting power of the address.
     * @return A percentage with 1e18 being 100%
     */
    function relativeVotes(address holder) external view returns (uint256) {
        return (ONE_DEC18 * votes(holder)) / totalVotes();
    }

    /**
     * @notice The votes of the holder, excluding votes from delegates.
     */
    function votes(address holder) public view returns (uint256) {
        return balanceOf(holder) * (_anchorTime() - voteAnchor[holder]);
    }

    /**
     * @notice How long the holder already held onto their average nDEPS in seconds.
     */
    function holdingDuration(address holder) public view returns (uint256) {
        return (_anchorTime() - voteAnchor[holder]) >> TIME_RESOLUTION_BITS;
    }

    /**
     * @notice Total number of votes in the system.
     */
    function totalVotes() public view returns (uint256) {
        return totalVotesAtAnchor + totalSupply() * (_anchorTime() - totalVotesAnchorTime);
    }

    /**
     * @notice The number of votes the sender commands when taking the support of the helpers into account.
     * @param sender    The address whose total voting power is of interest
     * @param helpers   An incrementally sorted list of helpers without duplicates and without the sender.
     *                  The call fails if the list contains an address that does not delegate to sender.
     *                  For indirect delegates, i.e. a -> b -> c, both a and b must be included for both to count.
     * @return          The total number of votes of sender at the current point in time.
     */
    function votesDelegated(address sender, address[] calldata helpers) public view returns (uint256) {
        uint256 _votes = votes(sender);
        require(_checkDuplicatesAndSorted(helpers));
        for (uint i = 0; i < helpers.length; i++) {
            address current = helpers[i];
            require(current != sender);
            require(_canVoteFor(sender, current));
            _votes += votes(current);
        }
        return _votes;
    }

    function _checkDuplicatesAndSorted(address[] calldata helpers) internal pure returns (bool ok) {
        if (helpers.length <= 1) {
            return true;
        } else {
            address prevAddress = helpers[0];
            for (uint i = 1; i < helpers.length; i++) {
                if (helpers[i] <= prevAddress) {
                    return false;
                }
                prevAddress = helpers[i];
            }
            return true;
        }
    }

    /**
     * @notice Checks whether the sender address is qualified given a list of helpers that delegated their votes
     * directly or indirectly to the sender. It is the responsibility of the caller to figure out whether
     * helpers are necessary and to identify them by scanning the blockchain for Delegation events.
     */
    function checkQualified(address sender, address[] calldata helpers) public view override {
        uint256 _votes = votesDelegated(sender, helpers);
        if (_votes * 10_000 < QUORUM * totalVotes()) revert NotQualified();
    }

    /**
     * @notice Increases the voting power of the delegate by your number of votes without taking away any voting power
     * from the sender.
     */
    function delegateVoteTo(address delegate) external {
        delegates[msg.sender] = delegate;
        emit Delegation(msg.sender, delegate);
    }

    function _canVoteFor(address delegate, address owner) internal view returns (bool) {
        if (owner == delegate) {
            return true;
        } else if (owner == address(0x0)) {
            return false;
        } else {
            return _canVoteFor(delegate, delegates[owner]);
        }
    }

    /**
     * @notice Since quorum is rather low, it is important to have a way to prevent malicious minority holders
     * from blocking the whole system. This method provides a way for the good guys to team up and destroy
     * the bad guy's votes (at the cost of also reducing their own votes). This mechanism potentially
     * gives full control over the system to whoever has 51% of the votes.
     *
     * Since this is a rather aggressive measure, delegation is not supported. Every holder must call this
     * method on their own.
     * @param targets          The target addresses to remove votes from
     * @param votesToDestroy   The maximum number of votes the caller is willing to sacrifice
     */
    function kamikaze(address[] calldata targets, uint256 votesToDestroy) external {
        uint256 budget = _reduceVotes(msg.sender, votesToDestroy);
        uint256 destroyedVotes = 0;
        for (uint256 i = 0; i < targets.length && destroyedVotes < budget; i++) {
            destroyedVotes += _reduceVotes(targets[i], budget - destroyedVotes);
        }
        require(destroyedVotes > 0); // sanity check
        totalVotesAtAnchor = uint192(totalVotes() - destroyedVotes - budget);
        totalVotesAnchorTime = _anchorTime();
    }

    function _reduceVotes(address target, uint256 amount) internal returns (uint256) {
        uint256 votesBefore = votes(target);
        if (amount >= votesBefore) {
            amount = votesBefore;
            voteAnchor[target] = _anchorTime();
            return votesBefore;
        } else {
            voteAnchor[target] = uint64(_anchorTime() - (votesBefore - amount) / balanceOf(target));
            return votesBefore - votes(target);
        }
    }

    /**
     * @notice Call this method to obtain newly minted pool shares in exchange for DecentralizedEUROs.
     * No allowance required (i.e., it is hard-coded in the DecentralizedEURO token contract).
     * Make sure to invest at least 10e-12 * market cap to avoid rounding losses.
     *
     * @dev If equity is close to zero or negative, you need to send enough dEURO to bring equity back to 1_000 dEURO.
     *
     * @param amount            DecentralizedEUROs to invest
     * @param expectedShares    Minimum amount of expected shares for front running protection
     */
    function invest(uint256 amount, uint256 expectedShares) external returns (uint256) {
        return _invest(_msgSender(), amount, expectedShares);
    }

    function investFor(address investor, uint256 amount, uint256 expectedShares) external returns (uint256) {
        if (!dEURO.isMinter(_msgSender())) revert NotMinter();
        return _invest(investor, amount, expectedShares);
    }

    function _invest(address investor, uint256 amount, uint256 expectedShares) internal returns (uint256) {
        dEURO.transferFrom(investor, address(this), amount);
        uint256 equity = dEURO.equity();
        if (equity < MINIMUM_EQUITY) revert InsufficientEquity(); // ensures that the initial deposit is at least 1_000 dEURO

        uint256 shares = _calculateShares(equity <= amount ? 0 : equity - amount, amount);
        require(shares >= expectedShares);
        _mint(investor, shares);
        emit Trade(investor, int(shares), amount, price());

        // limit the total supply to a reasonable amount to guard against overflows with price and vote calculations
        if(totalSupply() > type(uint96).max) revert TotalSupplyExceeded();
        return shares;
    }

    /**
     * @notice Calculate shares received when investing DecentralizedEUROs
     * @param investment    dEURO to be invested
     * @return shares to be received in return
     */
    function calculateShares(uint256 investment) external view returns (uint256) {
        return _calculateShares(dEURO.equity(), investment);
    }

    function _calculateShares(uint256 capitalBefore, uint256 investment) internal view returns (uint256) {
        uint256 totalShares = totalSupply();
        uint256 investmentExFees = (investment * 980) / 1_000; // remove 2% fee
        // Assign 10_000_000 nDEPS for the initial deposit, calculate the amount otherwise
        uint256 newTotalShares = (capitalBefore < MINIMUM_EQUITY || totalShares == 0)
            ? totalShares + 10_000_000 * ONE_DEC18
            : _mulD18(totalShares, _fifthRoot(_divD18(capitalBefore + investmentExFees, capitalBefore)));
        return newTotalShares - totalShares;
    }

    /**
     * @notice Redeem the given amount of shares owned by the sender and transfer the proceeds to the target.
     * @return The amount of dEURO transferred to the target
     */
    function redeem(address target, uint256 shares) external returns (uint256) {
        return _redeemFrom(msg.sender, target, shares);
    }

    /**
     * @notice Like redeem(...), but with an extra parameter to protect against front running.
     * @param expectedProceeds  The minimum acceptable redemption proceeds.
     */
    function redeemExpected(address target, uint256 shares, uint256 expectedProceeds) external returns (uint256) {
        uint256 proceeds = _redeemFrom(msg.sender, target, shares);
        require(proceeds >= expectedProceeds);
        return proceeds;
    }

    /**
     * @notice Redeem nDEPS based on an allowance from the owner to the caller.
     * See also redeemExpected(...).
     */
    function redeemFrom(
        address owner,
        address target,
        uint256 shares,
        uint256 expectedProceeds
    ) external returns (uint256) {
        _spendAllowance(owner, msg.sender, shares);
        uint256 proceeds = _redeemFrom(owner, target, shares);
        require(proceeds >= expectedProceeds);
        return proceeds;
    }

    function _redeemFrom(address owner, address target, uint256 shares) internal returns (uint256) {
        if(!canRedeem(owner)) revert BelowMinimumHoldingPeriod();
        uint256 proceeds = calculateProceeds(shares);
        _burn(owner, shares);
        dEURO.transfer(target, proceeds);
        emit Trade(owner, -int(shares), proceeds, price());
        return proceeds;
    }

    /**
     * @notice Calculate dEURO received when depositing shares
     * @param shares number of shares we want to exchange for dEURO,
     *               in dec18 format
     * @return amount of dEURO received for the shares
     */
    function calculateProceeds(uint256 shares) public view returns (uint256) {
        uint256 totalShares = totalSupply();
        if (shares + ONE_DEC18 >= totalShares) revert TooManyShares(); // make sure there is always at least one share
        uint256 capital = dEURO.equity();
        uint256 reductionAfterFees = (shares * 980) / 1_000; // remove 2% fee
        uint256 newCapital = _mulD18(capital, _power5(_divD18(totalShares - reductionAfterFees, totalShares)));
        return capital - newCapital;
    }

    /**
     * @notice If there is less than 1_000 dEURO in equity left (maybe even negative), the system is at risk
     * and we should allow qualified nDEPS holders to restructure the system.
     *
     * Example: there was a devastating loss and equity stands at -1'000'000. Most shareholders have lost hope in the
     * DecentralizedEURO system except for a group of small nDEPS holders who still believe in it and are willing to provide
     * 2'000'000 dEURO to save it. These brave souls are essentially donating 1'000'000 to the minter reserve and it
     * would be wrong to force them to share the other million with the passive nDEPS holders. Instead, they will get
     * the possibility to bootstrap the system again owning 100% of all nDEPS shares.
     *
     * @param helpers          A list of addresses that delegate to the caller in incremental order
     * @param addressesToWipe  A list of addresses whose nDEPS will be burned to zero
     */
    function restructureCapTable(address[] calldata helpers, address[] calldata addressesToWipe) external {
        require(dEURO.equity() < MINIMUM_EQUITY);
        checkQualified(msg.sender, helpers);
        for (uint256 i = 0; i < addressesToWipe.length; i++) {
            address current = addressesToWipe[i];
            _burn(current, balanceOf(current));
        }
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return
            interfaceId == type(IERC20).interfaceId ||
            interfaceId == type(ERC20Permit).interfaceId ||
            interfaceId == type(ERC3009).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}
ERC3009.sol 171 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.10;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";

abstract contract ERC3009 is ERC20, EIP712 {
    bytes32 public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH =
        keccak256(
            "TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)"
        );

    bytes32 public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH =
        keccak256(
            "ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)"
        );

    bytes32 public constant CANCEL_AUTHORIZATION_TYPEHASH =
        keccak256("CancelAuthorization(address authorizer,bytes32 nonce)");

    /**
     * @dev authorizer address => nonce => state (true = used / false = unused)
     */
    mapping(address => mapping(bytes32 => bool)) internal _authorizationStates;

    event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
    event AuthorizationCanceled(address indexed authorizer, bytes32 indexed nonce);

    string internal constant _INVALID_SIGNATURE_ERROR = "EIP3009: invalid signature";
    string internal constant _AUTHORIZATION_USED_ERROR = "EIP3009: authorization is used";

    /**
     * @notice Returns the state of an authorization
     * @dev Nonces are randomly generated 32-byte data unique to the authorizer's
     * address
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @return True if the nonce is used
     */
    function authorizationState(address authorizer, bytes32 nonce) external view returns (bool) {
        return _authorizationStates[authorizer][nonce];
    }

    /**
     * @notice Execute a transfer with a signed authorization
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function transferWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external {
        _transferWithAuthorization(
            TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            v,
            r,
            s
        );
    }

    /**
     * @notice Receive a transfer with a signed authorization from the payer
     * @dev This has an additional check to ensure that the payee's address matches
     * the caller of this function to prevent front-running attacks. (See security
     * considerations)
     * @param from          Payer's address (Authorizer)
     * @param to            Payee's address
     * @param value         Amount to be transferred
     * @param validAfter    The time after which this is valid (unix time)
     * @param validBefore   The time before which this is valid (unix time)
     * @param nonce         Unique nonce
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function receiveWithAuthorization(
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external {
        require(to == msg.sender, "EIP3009: caller must be the payee");

        _transferWithAuthorization(
            RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
            from,
            to,
            value,
            validAfter,
            validBefore,
            nonce,
            v,
            r,
            s
        );
    }

    /**
     * @notice Attempt to cancel an authorization
     * @param authorizer    Authorizer's address
     * @param nonce         Nonce of the authorization
     * @param v             v of the signature
     * @param r             r of the signature
     * @param s             s of the signature
     */
    function cancelAuthorization(address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s) external {
        require(!_authorizationStates[authorizer][nonce], _AUTHORIZATION_USED_ERROR);

        bytes memory data = abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce);

        bytes32 hash = _hashTypedDataV4(keccak256(data));
        require(ECDSA.recover(hash, v, r, s) == authorizer, _INVALID_SIGNATURE_ERROR);

        _authorizationStates[authorizer][nonce] = true;
        emit AuthorizationCanceled(authorizer, nonce);
    }

    function _transferWithAuthorization(
        bytes32 typeHash,
        address from,
        address to,
        uint256 value,
        uint256 validAfter,
        uint256 validBefore,
        bytes32 nonce,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        require(block.timestamp > validAfter, "EIP3009: authorization is not yet valid");
        require(block.timestamp < validBefore, "EIP3009: authorization is expired");
        require(!_authorizationStates[from][nonce], _AUTHORIZATION_USED_ERROR);

        bytes memory data = abi.encode(typeHash, from, to, value, validAfter, validBefore, nonce);

        bytes32 hash = _hashTypedDataV4(keccak256(data));

        require(ECDSA.recover(hash, v, r, s) == from, _INVALID_SIGNATURE_ERROR);

        _authorizationStates[from][nonce] = true;
        emit AuthorizationUsed(from, nonce);

        _transfer(from, to, value);
    }
}
IDecentralizedEURO.sol 58 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IReserve} from "./IReserve.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IDecentralizedEURO is IERC20 {
    function suggestMinter(
        address _minter,
        uint256 _applicationPeriod,
        uint256 _applicationFee,
        string calldata _message
    ) external;

    function registerPosition(address position) external;

    function denyMinter(address minter, address[] calldata helpers, string calldata message) external;

    function reserve() external view returns (IReserve);

    function minterReserve() external view returns (uint256);

    function calculateAssignedReserve(uint256 mintedAmount, uint32 _reservePPM) external view returns (uint256);

    function equity() external view returns (uint256);

    function isMinter(address minter) external view returns (bool);

    function getPositionParent(address position) external view returns (address);

    function mint(address target, uint256 amount) external;

    function mintWithReserve(address target, uint256 amount, uint32 reservePPM) external;

    function burn(uint256 amount) external;

    function burnFrom(address target, uint256 amount) external;

    function burnWithoutReserve(uint256 amount, uint32 reservePPM) external;

    function burnFromWithReserveNet(
        address payer,
        uint256 amountExcludingReserve,
        uint32 reservePPM
    ) external returns (uint256);

    function burnFromWithReserve(
        address payer,
        uint256 targetTotalBurnAmount,
        uint32 reservePPM
    ) external returns (uint256);

    function coverLoss(address source, uint256 amount) external;

    function distributeProfits(address recipient, uint256 amount) external;

    function collectProfits(address source, uint256 _amount) external;
}
IReserve.sol 9 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IReserve is IERC20 {
    function invest(uint256 amount, uint256 expected) external returns (uint256);
    function checkQualified(address sender, address[] calldata helpers) external view;
}
MathUtil.sol 48 lines
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title Functions for share valuation
 */
contract MathUtil {
    uint256 internal constant ONE_DEC18 = 10 ** 18;

    // Let's go for 12 digits of precision (18-6)
    uint256 internal constant THRESH_DEC18 = 10 ** 6;

    /**
     * @notice Fifth root with Halley approximation
     *         Number 1e18 decimal
     * @param _v     number for which we calculate x**(1/5)
     * @return returns _v**(1/5)
     */
    function _fifthRoot(uint256 _v) internal pure returns (uint256) {
        // Good first guess for _v slightly above 1.0, which is often the case in the dEURO system
        uint256 x = _v > ONE_DEC18 && _v < 10 ** 19 ? (_v - ONE_DEC18) / 5 + ONE_DEC18 : ONE_DEC18;
        uint256 diff;
        do {
            uint256 powX5 = _power5(x);
            uint256 xnew = (x * (2 * powX5 + 3 * _v)) / (3 * powX5 + 2 * _v);
            diff = xnew > x ? xnew - x : x - xnew;
            x = xnew;
        } while (diff > THRESH_DEC18);
        return x;
    }

    function _mulD18(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return (_a * _b) / ONE_DEC18;
    }

    function _divD18(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return (_a * ONE_DEC18) / _b;
    }

    function _power5(uint256 _x) internal pure returns (uint256) {
        return _mulD18(_mulD18(_mulD18(_mulD18(_x, _x), _x), _x), _x);
    }

    function _min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
}

Read Contract

CANCEL_AUTHORIZATION_TYPEHASH 0xd9169487 → bytes32
DOMAIN_SEPARATOR 0x3644e515 → bytes32
MIN_HOLDING_DURATION 0xb0c2bf06 → uint256
RECEIVE_WITH_AUTHORIZATION_TYPEHASH 0x7f2eecc3 → bytes32
TRANSFER_WITH_AUTHORIZATION_TYPEHASH 0xa0cc6a68 → bytes32
VALUATION_FACTOR 0x250f25f4 → uint32
allowance 0xdd62ed3e → uint256
authorizationState 0xe94a0102 → bool
balanceOf 0x70a08231 → uint256
calculateProceeds 0xad08ce5b → uint256
calculateShares 0x3ec16194 → uint256
canRedeem 0x151535b9 → bool
checkQualified 0x352e3a83
dEURO 0xd395d24b → address
decimals 0x313ce567 → uint8
delegates 0x587cde1e → address
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
holdingDuration 0xc9f72b67 → uint256
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
price 0xa035b1fe → uint256
relativeVotes 0x84a7aa0c → uint256
supportsInterface 0x01ffc9a7 → bool
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256
totalVotes 0x0d15fd77 → uint256
votes 0xd8bff5a5 → uint256
votesDelegated 0x5895b773 → uint256

Write Contract 15 functions

These functions modify contract state and require a wallet transaction to execute.

approve 0x095ea7b3
address spender
uint256 value
returns: bool
cancelAuthorization 0x5a049a70
address authorizer
bytes32 nonce
uint8 v
bytes32 r
bytes32 s
delegateVoteTo 0x9823004f
address delegate
invest 0xd87aa643
uint256 amount
uint256 expectedShares
returns: uint256
investFor 0xa1c1fb4f
address investor
uint256 amount
uint256 expectedShares
returns: uint256
kamikaze 0x2295abea
address[] targets
uint256 votesToDestroy
permit 0xd505accf
address owner
address spender
uint256 value
uint256 deadline
uint8 v
bytes32 r
bytes32 s
receiveWithAuthorization 0xef55bec6
address from
address to
uint256 value
uint256 validAfter
uint256 validBefore
bytes32 nonce
uint8 v
bytes32 r
bytes32 s
redeem 0x1e9a6950
address target
uint256 shares
returns: uint256
redeemExpected 0x0e89c370
address target
uint256 shares
uint256 expectedProceeds
returns: uint256
redeemFrom 0x91ac6f99
address owner
address target
uint256 shares
uint256 expectedProceeds
returns: uint256
restructureCapTable 0x820710af
address[] helpers
address[] addressesToWipe
transfer 0xa9059cbb
address to
uint256 value
returns: bool
transferFrom 0x23b872dd
address from
address to
uint256 value
returns: bool
transferWithAuthorization 0xe3ee160e
address from
address to
uint256 value
uint256 validAfter
uint256 validBefore
bytes32 nonce
uint8 v
bytes32 r
bytes32 s

Recent Transactions

No transactions found for this address