Address Contract Verified
Address
0xEEA950a509d822CF65edcEED53d161fBaa967B3a
Balance
0 ETH
Nonce
1
Code Size
9253 bytes
Creator
0xe9b2B067...b32B at tx 0x4ac25ae1...344ad4
Indexed Transactions
0
Contract Bytecode
9253 bytes
0x608060405234801561001057600080fd5b50600436106101e45760003560e01c80638da5cb5b1161010f578063deaaa7cc116100a2578063f2bc79a311610071578063f2bc79a31461045a578063f2fde38b14610463578063f91ccf5d14610476578063fc0c546a1461048857600080fd5b8063deaaa7cc14610412578063dffbbef514610439578063e30c397814610441578063e4fc6b6d1461045257600080fd5b8063b0539187116100de578063b0539187146103a1578063b1610d7e146103d9578063bb542a4f14610400578063dd421cd51461040857600080fd5b80638da5cb5b14610362578063918f8674146103735780639da882ac1461037b578063a1c04f0e1461038e57600080fd5b806362827733116101875780637ecebe00116101565780637ecebe0014610302578063836761e01461032b57806384b0196e1461033e5780638acaee681461035957600080fd5b806362827733146102d65780636d588489146102df578063715018a6146102f257806379ba5097146102fa57600080fd5b806339b3e826116101c357806339b3e82614610254578063431657051461027b5780635c975abb1461028e5780636136cadf146102ab57600080fd5b80623fb4e5146101e957806301678d8c14610200578063160d66ae14610215575b600080fd5b6006545b6040519081526020015b60405180910390f35b61021361020e366004611e40565b6104af565b005b61023c7f00000000000000000000000045af4f12b46682b3958b297bacebde2ce2e795c381565b6040516001600160a01b0390911681526020016101f7565b6101ed7f000000000000000000000000000000000000000000000000000000000131a82c81565b6101ed610289366004611eba565b610601565b600154600160a01b900460ff1660405190151581526020016101f7565b6101ed6102b9366004611f9f565b600860209081526000928352604080842090915290825290205481565b6101ed60075481565b6101ed6102ed366004611fcf565b6107d9565b610213610839565b61021361084d565b6101ed61031036600461203b565b6001600160a01b031660009081526004602052604090205490565b610213610339366004611e40565b610896565b610346610983565b6040516101f797969594939291906120a8565b6101ed600a5481565b6000546001600160a01b031661023c565b6101ed606481565b61021361038936600461203b565b6109c9565b61021361039c36600461203b565b610b9d565b6103b46103af366004611e40565b610c30565b604080516001600160a01b0390941684526020840192909252908201526060016101f7565b6101ed7f000000000000000000000000000000000000000000000000000000000000c4e081565b6101ed602381565b6101ed6227fd8081565b6101ed7fe1ac1e62a911163c271015770a4921bcbf08333deb55b879cfd44b38c361d77f81565b6101ed610c6d565b6001546001600160a01b031661023c565b6101ed610d7b565b6101ed60095481565b61021361047136600461203b565b610fda565b6101ed6a0943b1377290cbd800000081565b61023c7f0000000000000000000000006b5204b0be36771253cc38e88012e02b752f0f3681565b6104b761104b565b6104bf611078565b6006548082106104e25760405163b7bfc98f60e01b815260040160405180910390fd5b815b6104ef600183612157565b81101561058157600661050382600161216a565b815481106105135761051361217d565b9060005260206000209060030201600682815481106105345761053461217d565b60009182526020909120825460039092020180546001600160a01b0319166001600160a01b03909216919091178155600180830154818301556002928301549290910191909155016104e4565b50600680548061059357610593612193565b60008281526020812060036000199093019283020180546001600160a01b0319168155600181018290556002015590556040517fa199bcf28bd5bdd89cdf1617fd17d9e638c9b9e0629c81c12ebfce08316b12cd906105f59084815260200190565b60405180910390a15050565b60007f000000000000000000000000000000000000000000000000000000000131a82c4311610643576040516305db095d60e21b815260040160405180910390fd5b61064b611078565b4284101561066c5760405163df4cc36d60e01b815260040160405180910390fd5b600061079e866107627fe1ac1e62a911163c271015770a4921bcbf08333deb55b879cfd44b38c361d77f8d8d6040516020016106a99291906121a9565b604051602081830303815290604052805190602001208c8c6040516020016106d29291906121a9565b604051602081830303815290604052805190602001208b6107108d6001600160a01b0316600090815260046020526040902080546001810190915590565b60408051602081019690965285019390935260608401919091526001600160a01b0316608083015260a082015260c0810189905260e001604051602081830303815290604052805190602001206110a3565b86868080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506110d692505050565b9050806107be57604051638baa579f60e01b815260040160405180910390fd5b6107cb868b8b8b8b61113a565b9a9950505050505050505050565b60007f000000000000000000000000000000000000000000000000000000000131a82c431161081b576040516305db095d60e21b815260040160405180910390fd5b610823611078565b610830338686868661113a565b95945050505050565b61084161104b565b61084b6000611407565b565b60015433906001600160a01b0316811461088a5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b61089381611407565b50565b61089e61104b565b6108a6611078565b7f00000000000000000000000045af4f12b46682b3958b297bacebde2ce2e795c36001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610904573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061092891906121e2565b81111561094857604051636d1a093b60e01b815260040160405180910390fd5b60078190556040518181527fd671b39dee5ac0a04a81006b9aa388792cf8a4daeadcead04b1a9467dc0f56189060200160405180910390a150565b600060608060008060006060610997611420565b61099f611452565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b6109d161104b565b6109d9611078565b6001600160a01b038116610a005760405163d92e233d60e01b815260040160405180910390fd5b806001600160a01b03163b600003610a36576040516311e0d64760e01b81526001600160a01b0382166004820152602401610881565b60065460005b81811015610aac57826001600160a01b031660068281548110610a6157610a6161217d565b60009182526020909120600390910201546001600160a01b031603610aa457604051631b3ae72b60e21b81526001600160a01b0384166004820152602401610881565b600101610a3c565b50604080516060810182526001600160a01b038481168083526000602080850182815285870183815260068054600181018255945295517ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f600390940293840180546001600160a01b031916919096161790945592517ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d4082015592517ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d419093019290925591519081527f9808313031a8f4caa534c417adad16800af7317516eff29a2d37cec0ffb244db91016105f5565b610ba561104b565b6040516370a0823160e01b81523060048201526000906001600160a01b038316906370a0823190602401602060405180830381865afa158015610bec573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c1091906121e2565b90508015610c2c57610c2c6001600160a01b038316338361147f565b5050565b60068181548110610c4057600080fd5b60009182526020909120600390910201805460018201546002909201546001600160a01b03909116925083565b6000610c7761104b565b610c7f611078565b6040516370a0823160e01b81523060048201527f0000000000000000000000006b5204b0be36771253cc38e88012e02b752f0f366001600160a01b0316906370a0823190602401602060405180830381865afa158015610ce3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d0791906121e2565b9050610d3d6001600160a01b037f0000000000000000000000006b5204b0be36771253cc38e88012e02b752f0f3616338361147f565b610d456114d6565b6040518181527fb5122bca1b6cb7c1775293b74a83a5c943f7d1006d857a4835256f98eac679449060200160405180910390a190565b60007f000000000000000000000000000000000000000000000000000000000131a82c4311610dbd576040516305db095d60e21b815260040160405180910390fd5b610dc5611078565b610dcd611536565b610dd8600954611560565b610df55760405163cd9544cd60e01b815260040160405180910390fd5b43600955600a54610e0590611560565b15610e1257610e12611613565b6006546000805b82811015610e5b5760068181548110610e3457610e3461217d565b90600052602060002090600302016001015482610e51919061216a565b9150600101610e19565b506000805b83811015610f9657600060068281548110610e7d57610e7d61217d565b600091825260209182902060408051606081018252600390930290910180546001600160a01b031683526001810154938301849052600201549082015291508490610ec6611745565b610ed091906121fb565b610eda9190612228565b925082600003610eea5750610f8e565b8051610f21906001600160a01b037f0000000000000000000000006b5204b0be36771253cc38e88012e02b752f0f3616908561147f565b80516040516391c05b0b60e01b8152600481018590526001600160a01b03909116906391c05b0b90602401600060405180830381600087803b158015610f6657600080fd5b505af1158015610f7a573d6000803e3d6000fd5b505050508286610f8a919061216a565b9550505b600101610e60565b506040518481527fddc9c30275a04c48091f24199f9c405765de34d979d6847f5b9798a57232d2e59060200160405180910390a1505050610fd76001600555565b90565b610fe261104b565b600180546001600160a01b0383166001600160a01b031990911681179091556110136000546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6000546001600160a01b0316331461084b5760405163118cdaa760e01b8152336004820152602401610881565b600154600160a01b900460ff161561084b5760405163d93c066560e01b815260040160405180910390fd5b60006110d06110b0611788565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b60008060006110e585856118b3565b50909250905060008160038111156110ff576110ff61223c565b14801561111d5750856001600160a01b0316826001600160a01b0316145b8061112e575061112e868686611900565b925050505b9392505050565b60008382811461115d576040516349552d5960e11b815260040160405180910390fd5b611168600a54611560565b1561117557611175611613565b60005b818110156112325760008787838181106111945761119461217d565b90506020020135905060008686848181106111b1576111b161217d565b90506020020135905060068054905082106111df5760405163b7bfc98f60e01b815260040160405180910390fd5b80600683815481106111f3576111f361217d565b90600052602060002090600302016002016000828254611213919061216a565b909155506112239050818661216a565b94505050806001019050611178565b5060007f000000000000000000000000000000000000000000000000000000000000c4e07f000000000000000000000000000000000000000000000000000000000131a82c600a546112849190612157565b61128e9190612252565b600a5461129b9190612157565b604051630748d63560e31b81526001600160a01b038a81166004830152602482018390529192506000917f00000000000000000000000045af4f12b46682b3958b297bacebde2ce2e795c31690633a46b1a890604401602060405180830381865afa15801561130e573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061133291906121e2565b60008381526008602090815260408083206001600160a01b038e16845290915290205490915084906113649083612157565b10156113825760405162cdcafb60e71b815260040160405180910390fd5b60008281526008602090815260408083206001600160a01b038d168452909152812080548692906113b490849061216a565b9091555050604080516001600160a01b038b168152602081018690527fa36cc2bebb74db33e9f88110a07ef56e1b31b24b4c4f51b54b1664266e29f45b910160405180910390a150505095945050505050565b600180546001600160a01b0319169055610893816119db565b606061144d7f5a756e616d694469737472696275746f720000000000000000000000000000116002611a2b565b905090565b606061144d7f31000000000000000000000000000000000000000000000000000000000000016003611a2b565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526114d1908490611ad7565b505050565b6114de611078565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586115193390565b6040516001600160a01b03909116815260200160405180910390a1565b60026005540361155957604051633ee5aeb560e01b815260040160405180910390fd5b6002600555565b60007f000000000000000000000000000000000000000000000000000000000000c4e06115ad7f000000000000000000000000000000000000000000000000000000000131a82c84612157565b6115b79190612228565b7f000000000000000000000000000000000000000000000000000000000000c4e06116027f000000000000000000000000000000000000000000000000000000000131a82c43612157565b61160c9190612228565b1192915050565b6006546000805b8281101561165c57600681815481106116355761163561217d565b90600052602060002090600302016002015482611652919061216a565b915060010161161a565b506000808211801561167057506007548210155b905080156116c95760005b838110156116c3576000600682815481106116985761169861217d565b600091825260208220600260039092020190810180546001928301559190915591909101905061167b565b50611707565b60005b83811015611705576000600682815481106116e9576116e961217d565b60009182526020909120600260039092020101556001016116cc565b505b43600a5560405181151581527f4ff855a05eac7fbe15b217be257ec22e95d31849bf909841eab9aee87e0da2029060200160405180910390a1505050565b60006227fd807f000000000000000000000000000000000000000000000000000000000000c4e0611774611b3a565b61177e91906121fb565b61144d9190612228565b6000306001600160a01b037f000000000000000000000000eea950a509d822cf65edceed53d161fbaa967b3a161480156117e157507f000000000000000000000000000000000000000000000000000000000000000146145b1561180b57507fa1f702ed4292af4f2d801493dbe85df80d858d0748b5092d4c45c2c5e2719c8990565b61144d604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f8509bcab399e18f5b253291ccc18a67138abfb4ab2389b8efc9a7d127432cd80918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b600080600083516041036118ed5760208401516040850151606086015160001a6118df88828585611be9565b9550955095505050506118f9565b50508151600091506002905b9250925092565b6000806000856001600160a01b03168585604051602401611922929190612266565b60408051601f198184030181529181526020820180516001600160e01b0316630b135d3f60e11b179052516119579190612287565b600060405180830381855afa9150503d8060008114611992576040519150601f19603f3d011682016040523d82523d6000602084013e611997565b606091505b50915091508180156119ab57506020815110155b801561112e57508051630b135d3f60e11b906119d090830160209081019084016121e2565b149695505050505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b606060ff8314611a4557611a3e83611cb8565b90506110d0565b818054611a51906122a3565b80601f0160208091040260200160405190810160405280929190818152602001828054611a7d906122a3565b8015611aca5780601f10611a9f57610100808354040283529160200191611aca565b820191906000526020600020905b815481529060010190602001808311611aad57829003601f168201915b5050505050905092915050565b6000611aec6001600160a01b03841683611cf7565b90508051600014158015611b11575080806020019051810190611b0f91906122dd565b155b156114d157604051635274afe760e01b81526001600160a01b0384166004820152602401610881565b6000806227fd807f000000000000000000000000000000000000000000000000000000000131a82c611b8c7f000000000000000000000000000000000000000000000000000000000000c4e043612157565b611b969190612157565b611ba09190612228565b9050611bad8160646123e3565b81611bba60236064612157565b611bc491906123e3565b611bd9906a0943b1377290cbd80000006121fb565b611be39190612228565b91505090565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115611c245750600091506003905082611cae565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015611c78573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116611ca457506000925060019150829050611cae565b9250600091508190505b9450945094915050565b60606000611cc583611d05565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b606061113383836000611d2d565b600060ff8216601f8111156110d057604051632cd44ac360e21b815260040160405180910390fd5b606081471015611d525760405163cd78605960e01b8152306004820152602401610881565b600080856001600160a01b03168486604051611d6e9190612287565b60006040518083038185875af1925050503d8060008114611dab576040519150601f19603f3d011682016040523d82523d6000602084013e611db0565b606091505b509150915061112e868383606082611dd057611dcb82611e17565b611133565b8151158015611de757506001600160a01b0384163b155b15611e1057604051639996b31560e01b81526001600160a01b0385166004820152602401610881565b5080611133565b805115611e275780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b600060208284031215611e5257600080fd5b5035919050565b60008083601f840112611e6b57600080fd5b50813567ffffffffffffffff811115611e8357600080fd5b6020830191508360208260051b8501011115611e9e57600080fd5b9250929050565b6001600160a01b038116811461089357600080fd5b60008060008060008060008060a0898b031215611ed657600080fd5b883567ffffffffffffffff80821115611eee57600080fd5b611efa8c838d01611e59565b909a50985060208b0135915080821115611f1357600080fd5b611f1f8c838d01611e59565b909850965060408b01359150611f3482611ea5565b90945060608a0135935060808a01359080821115611f5157600080fd5b818b0191508b601f830112611f6557600080fd5b813581811115611f7457600080fd5b8c6020828501011115611f8657600080fd5b6020830194508093505050509295985092959890939650565b60008060408385031215611fb257600080fd5b823591506020830135611fc481611ea5565b809150509250929050565b60008060008060408587031215611fe557600080fd5b843567ffffffffffffffff80821115611ffd57600080fd5b61200988838901611e59565b9096509450602087013591508082111561202257600080fd5b5061202f87828801611e59565b95989497509550505050565b60006020828403121561204d57600080fd5b813561113381611ea5565b60005b8381101561207357818101518382015260200161205b565b50506000910152565b60008151808452612094816020860160208601612058565b601f01601f19169290920160200192915050565b60ff60f81b881681526000602060e060208401526120c960e084018a61207c565b83810360408501526120db818a61207c565b606085018990526001600160a01b038816608086015260a0850187905284810360c08601528551808252602080880193509091019060005b8181101561212f57835183529284019291840191600101612113565b50909c9b505050505050505050505050565b634e487b7160e01b600052601160045260246000fd5b818103818111156110d0576110d0612141565b808201808211156110d0576110d0612141565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fd5b6020808252810182905260006001600160fb1b038311156121c957600080fd5b8260051b80856040850137919091016040019392505050565b6000602082840312156121f457600080fd5b5051919050565b80820281158282048414176110d0576110d0612141565b634e487b7160e01b600052601260045260246000fd5b60008261223757612237612212565b500490565b634e487b7160e01b600052602160045260246000fd5b60008261226157612261612212565b500690565b82815260406020820152600061227f604083018461207c565b949350505050565b60008251612299818460208701612058565b9190910192915050565b600181811c908216806122b757607f821691505b6020821081036122d757634e487b7160e01b600052602260045260246000fd5b50919050565b6000602082840312156122ef57600080fd5b8151801515811461113357600080fd5b600181815b8085111561233a57816000190482111561232057612320612141565b8085161561232d57918102915b93841c9390800290612304565b509250929050565b600082612351575060016110d0565b8161235e575060006110d0565b8160018114612374576002811461237e5761239a565b60019150506110d0565b60ff84111561238f5761238f612141565b50506001821b6110d0565b5060208310610133831016604e8410600b84101617156123bd575081810a6110d0565b6123c783836122ff565b80600019048211156123db576123db612141565b029392505050565b6000611133838361234256fea2646970667358221220741ed7cb162a6b839228b10f4111873c236690a68da5082f73fdfcd2801c839d64736f6c63430008170033
Verified Source Code Full Match
Compiler: v0.8.23+commit.f704f362
EVM: paris
Optimization: Yes (200 runs)
IGauge.sol 6 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface IGauge {
function distribute(uint256 amount) external;
}
Nonces.sol 46 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Pausable.sol 119 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
StorageSlot.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
ShortStrings.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
Ownable2Step.sol 59 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
IERC1271.sol 17 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
ReentrancyGuard.sol 84 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
IVotes.sol 59 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*/
interface IVotes {
/**
* @dev The signature used has expired.
*/
error VotesExpiredSignature(uint256 expiry);
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}
ZunDistributor.sol 335 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
import '@openzeppelin/contracts/access/Ownable2Step.sol';
import '@openzeppelin/contracts/utils/Pausable.sol';
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/governance/utils/IVotes.sol';
import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
import '@openzeppelin/contracts/utils/Nonces.sol';
import { EIP712 } from '@openzeppelin/contracts/utils/cryptography/EIP712.sol';
import { SignatureChecker } from '@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol';
import '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
import '../../interfaces/IGauge.sol';
contract ZunDistributor is Ownable2Step, Pausable, EIP712, Nonces, ReentrancyGuard {
using SafeERC20 for IERC20;
bytes32 public constant BALLOT_TYPEHASH =
keccak256(
'Ballot(bytes32 gaugeIdsHash,bytes32 amountsHash,address voter,uint256 nonce,uint256 deadline)'
);
uint256 public constant ANNUAL_DECREASE_PERCENT = 35; // 35%
uint256 public constant FIRST_YEAR_DISTRIBUTION_VALUE = 11_200_000 * 1e18; // in tokens
uint256 public constant DENOMINATOR = 100;
uint256 public constant BLOCKS_IN_YEAR = (364 * 24 * 60 * 60) / 12;
uint256 public immutable START_BLOCK; // block number
uint256 public immutable VOTING_PERIOD; // in blocks
struct Gauge {
address addr;
uint256 finalizedVotes;
uint256 currentVotes;
}
Gauge[] public gauges;
IVotes public immutable voteToken;
IERC20 public immutable token;
uint256 public votingThreshold; // in tokens
mapping(uint256 => mapping(address => uint256)) public usedVotes;
uint256 public lastDistributionBlock;
uint256 public lastFinalizeBlock;
event VoteCast(address voter, uint256 totalVotes);
event Distributed(uint256 totalDistributed);
event GaugeAdded(address gauge);
event GaugeDeleted(uint256 gaugeId);
event VotingFinalized(bool isQuorumReached);
event VotingThresholdChanged(uint256 newThreshold);
event DistributionStopped(uint256 remainingValue);
error ZeroAddress();
error WrongGaugeId();
error WrongLength();
error InsufficientVotePower();
error DistributionAlreadyHappened();
error StartBlockInFuture();
error InvalidSignature();
error ExpiredSignature();
error WrongVotingThreshold();
error InvalidGaugeImplementation(address gauge);
error GaugeAlreadyExists(address gauge);
modifier afterStart() {
if (block.number <= START_BLOCK) {
revert StartBlockInFuture();
}
_;
}
constructor(
address _token,
address _voteToken,
address _owner,
uint256 _startBlock,
uint256 _votingPeriod,
address[] memory _gaugeAddrs,
uint256[] memory _gaugeVotes
) Ownable(_owner) EIP712('ZunamiDistributor', '1') {
if (_token == address(0)) {
revert ZeroAddress();
}
token = IERC20(_token);
if (_voteToken == address(0)) {
revert ZeroAddress();
}
voteToken = IVotes(_voteToken);
if (_startBlock < block.number) {
_startBlock = block.number;
}
START_BLOCK = _startBlock;
if (_votingPeriod == 0) {
_votingPeriod = (7 * 24 * 60 * 60) / 12; // 1 week in blocks
}
VOTING_PERIOD = _votingPeriod;
lastDistributionBlock = _startBlock;
lastFinalizeBlock = _startBlock;
uint256 gaugesLength_ = _gaugeAddrs.length;
// init gauges
if (gaugesLength_ != _gaugeVotes.length) {
revert WrongLength();
}
for (uint256 i; i < gaugesLength_; ++i) {
address gaugeAddr = _gaugeAddrs[i];
if (gaugeAddr == address(0)) revert ZeroAddress();
gauges.push(Gauge(gaugeAddr, _gaugeVotes[i], 0));
}
}
function gaugesLength() external view returns (uint256) {
return gauges.length;
}
function castVote(
uint256[] calldata gaugeIds,
uint256[] calldata amounts
) external afterStart whenNotPaused returns (uint256) {
return _castVote(msg.sender, gaugeIds, amounts);
}
function castVoteBySig(
uint256[] calldata gaugeIds,
uint256[] calldata amounts,
address voter,
uint256 deadline,
bytes calldata signature
) external afterStart whenNotPaused returns (uint256) {
if (deadline < block.timestamp) {
revert ExpiredSignature();
}
bool valid = SignatureChecker.isValidSignatureNow(
voter,
_hashTypedDataV4(
keccak256(
abi.encode(
BALLOT_TYPEHASH,
keccak256(abi.encode(gaugeIds)),
keccak256(abi.encode(amounts)),
voter,
_useNonce(voter),
deadline
)
)
),
signature
);
if (!valid) {
revert InvalidSignature();
}
return _castVote(voter, gaugeIds, amounts);
}
function _castVote(
address voter,
uint256[] calldata gaugeIds,
uint256[] calldata amounts
) internal returns (uint256 totalVotes) {
uint256 gaugeIdsLength_ = gaugeIds.length;
if (gaugeIdsLength_ != amounts.length) {
revert WrongLength();
}
if (_isPeriodPassed(lastFinalizeBlock)) {
_finalizeVotingPeriod();
}
// update votes' counters
for (uint256 i; i < gaugeIdsLength_; ++i) {
uint256 gaugeId = gaugeIds[i];
uint256 amount = amounts[i];
if (gaugeId >= gauges.length) {
revert WrongGaugeId();
}
gauges[gaugeId].currentVotes += amount;
totalVotes += amount;
}
// check vote power
uint256 borderBlock = lastFinalizeBlock -
((lastFinalizeBlock - START_BLOCK) % VOTING_PERIOD); // last block in previous period
uint256 userVotes = voteToken.getPastVotes(voter, borderBlock);
if (userVotes - usedVotes[borderBlock][voter] < totalVotes) {
revert InsufficientVotePower();
}
usedVotes[borderBlock][voter] += totalVotes;
emit VoteCast(voter, totalVotes);
}
function distribute()
external
afterStart
whenNotPaused
nonReentrant
returns (uint256 totalDistributed)
{
if (!_isPeriodPassed(lastDistributionBlock)) {
revert DistributionAlreadyHappened();
}
lastDistributionBlock = block.number;
if (_isPeriodPassed(lastFinalizeBlock)) {
_finalizeVotingPeriod();
}
uint256 gaugesLength_ = gauges.length;
uint256 totalVotes;
for (uint256 i; i < gaugesLength_; ++i) {
totalVotes += gauges[i].finalizedVotes;
}
uint256 amount;
for (uint256 i; i < gaugesLength_; ++i) {
Gauge memory gauge = gauges[i];
amount = (_periodDistributionValue() * gauge.finalizedVotes) / totalVotes;
if (amount == 0) {
continue;
}
token.safeTransfer(gauge.addr, amount);
IGauge(gauge.addr).distribute(amount);
totalDistributed += amount;
}
emit Distributed(totalDistributed);
}
function stopDistribution() external onlyOwner whenNotPaused returns (uint256 value) {
value = token.balanceOf(address(this));
token.safeTransfer(msg.sender, value);
_pause();
emit DistributionStopped(value);
}
function addGauge(address newGauge) external onlyOwner whenNotPaused {
if (newGauge == address(0)) {
revert ZeroAddress();
}
if (newGauge.code.length == 0) {
revert InvalidGaugeImplementation(newGauge);
}
uint256 gaugesLength_ = gauges.length;
for (uint256 i = 0; i < gaugesLength_; ++i) {
if (gauges[i].addr == newGauge) {
revert GaugeAlreadyExists(newGauge);
}
}
gauges.push(Gauge(newGauge, 0, 0));
emit GaugeAdded(newGauge);
}
// don't forget update gauges' indexes on frontend
function deleteGauge(uint256 gaugeId) external onlyOwner whenNotPaused {
uint256 gaugesLength_ = gauges.length;
if (gaugeId >= gaugesLength_) {
revert WrongGaugeId();
}
for (uint256 i = gaugeId; i < gaugesLength_ - 1; ++i) {
gauges[i] = gauges[i + 1];
}
gauges.pop();
emit GaugeDeleted(gaugeId);
}
function setVotingThreshold(uint256 _threshold) external onlyOwner whenNotPaused {
if (_threshold > IERC20(address(voteToken)).totalSupply()) {
revert WrongVotingThreshold();
}
votingThreshold = _threshold;
emit VotingThresholdChanged(_threshold);
}
/**
* @dev Allows the owner to emergency withdraw tokens from the contract.
* @param _token The ERC20 token to withdraw from.
* @notice Only the owner can withdraw tokens.
*/
function withdrawEmergency(IERC20 _token) external onlyOwner {
uint256 tokenBalance = _token.balanceOf(address(this));
if (tokenBalance > 0) {
_token.safeTransfer(msg.sender, tokenBalance);
}
}
function _yearDistributionValue() internal view returns (uint256 value) {
uint256 yearCount = (block.number - VOTING_PERIOD - START_BLOCK) / BLOCKS_IN_YEAR;
value =
(FIRST_YEAR_DISTRIBUTION_VALUE *
(DENOMINATOR - ANNUAL_DECREASE_PERCENT) ** (yearCount)) /
DENOMINATOR ** (yearCount); // overflow after 29 years - it's ok
}
function _periodDistributionValue() internal view returns (uint256 value) {
value = (_yearDistributionValue() * VOTING_PERIOD) / BLOCKS_IN_YEAR;
}
function _finalizeVotingPeriod() internal {
uint256 gaugesLength_ = gauges.length;
// update last votes if quorum reached
uint256 totalVotes;
for (uint256 i; i < gaugesLength_; ++i) {
totalVotes += gauges[i].currentVotes;
}
bool isQuorumReached = totalVotes > 0 && totalVotes >= votingThreshold;
if (isQuorumReached) {
for (uint256 i; i < gaugesLength_; ++i) {
Gauge storage gauge = gauges[i];
gauge.finalizedVotes = gauge.currentVotes;
// reset current votes counters
gauge.currentVotes = 0;
}
} else {
for (uint256 i; i < gaugesLength_; ++i) {
gauges[i].currentVotes = 0;
}
}
lastFinalizeBlock = block.number;
emit VotingFinalized(isQuorumReached);
}
function _isPeriodPassed(uint256 lastBlock) internal view returns (bool) {
return
(block.number - START_BLOCK) / VOTING_PERIOD >
(lastBlock - START_BLOCK) / VOTING_PERIOD;
}
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
SignatureChecker.sol 48 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
Read Contract
ANNUAL_DECREASE_PERCENT 0xbb542a4f → uint256
BALLOT_TYPEHASH 0xdeaaa7cc → bytes32
BLOCKS_IN_YEAR 0xdd421cd5 → uint256
DENOMINATOR 0x918f8674 → uint256
FIRST_YEAR_DISTRIBUTION_VALUE 0xf91ccf5d → uint256
START_BLOCK 0x39b3e826 → uint256
VOTING_PERIOD 0xb1610d7e → uint256
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
gauges 0xb0539187 → address, uint256, uint256
gaugesLength 0x003fb4e5 → uint256
lastDistributionBlock 0xf2bc79a3 → uint256
lastFinalizeBlock 0x8acaee68 → uint256
nonces 0x7ecebe00 → uint256
owner 0x8da5cb5b → address
paused 0x5c975abb → bool
pendingOwner 0xe30c3978 → address
token 0xfc0c546a → address
usedVotes 0x6136cadf → uint256
voteToken 0x160d66ae → address
votingThreshold 0x62827733 → uint256
Write Contract 11 functions
These functions modify contract state and require a wallet transaction to execute.
acceptOwnership 0x79ba5097
No parameters
addGauge 0x9da882ac
address newGauge
castVote 0x6d588489
uint256[] gaugeIds
uint256[] amounts
returns: uint256
castVoteBySig 0x43165705
uint256[] gaugeIds
uint256[] amounts
address voter
uint256 deadline
bytes signature
returns: uint256
deleteGauge 0x01678d8c
uint256 gaugeId
distribute 0xe4fc6b6d
No parameters
returns: uint256
renounceOwnership 0x715018a6
No parameters
setVotingThreshold 0x836761e0
uint256 _threshold
stopDistribution 0xdffbbef5
No parameters
returns: uint256
transferOwnership 0xf2fde38b
address newOwner
withdrawEmergency 0xa1c04f0e
address _token
Recent Transactions
No transactions found for this address