Address Contract Verified
Address
0xF047ab4c75cebf0eB9ed34Ae2c186f3611aEAfa6
Balance
0 ETH
Nonce
1
Code Size
8720 bytes
Creator
0xE42A95c8...7a0d at tx 0xa70ad5a8...95ea49
Indexed Transactions
1 (24,448,103 → 24,448,103)
Gas Used (indexed)
46,666
Contract Bytecode
8720 bytes
0x6080604052600436106101355760003560e01c8063a5a21fdf116100ab578063e3c342161161006f578063e3c3421614610398578063e63b81a6146103b8578063f03639e3146103d8578063f2fde38b146103f8578063f3fef3a314610418578063f6203e351461043857600080fd5b8063a5a21fdf146102e2578063b203bb9914610302578063b3db428b1461033a578063da3a3a881461035a578063e30c39781461037a57600080fd5b806379ba5097116100fd57806379ba5097146101fe5780637ecebe00146102135780638135369a146102575780638456cb591461028757806384b0196e1461029c5780638da5cb5b146102c457600080fd5b80633f4ba83a1461013a57806344e7cb13146101515780635c975abb1461018e578063715018a6146101b957806379a26cd0146101ce575b600080fd5b34801561014657600080fd5b5061014f61044b565b005b34801561015d57600080fd5b50600954610171906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b34801561019a57600080fd5b50600154600160a01b900460ff165b6040519015158152602001610185565b3480156101c557600080fd5b5061014f610465565b3480156101da57600080fd5b506101a96101e9366004611b61565b60076020526000908152604090205460ff1681565b34801561020a57600080fd5b5061014f61047e565b34801561021f57600080fd5b5061024961022e366004611b61565b6001600160a01b031660009081526004602052604090205490565b604051908152602001610185565b34801561026357600080fd5b506101a9610272366004611b61565b60056020526000908152604090205460ff1681565b34801561029357600080fd5b5061014f6104c7565b3480156102a857600080fd5b506102b16104df565b6040516101859796959493929190611c08565b3480156102d057600080fd5b506000546001600160a01b0316610171565b3480156102ee57600080fd5b5061014f6102fd366004611cda565b610525565b34801561030e57600080fd5b5061024961031d366004611df4565b600660209081526000928352604080842090915290825290205481565b34801561034657600080fd5b5061014f610355366004611e27565b61065e565b34801561036657600080fd5b5061014f610375366004611b61565b610799565b34801561038657600080fd5b506001546001600160a01b0316610171565b3480156103a457600080fd5b5061014f6103b3366004611e63565b61084b565b3480156103c457600080fd5b5061014f6103d3366004611f3c565b610977565b3480156103e457600080fd5b5061014f6103f3366004611f3c565b610a4b565b34801561040457600080fd5b5061014f610413366004611b61565b610b17565b34801561042457600080fd5b5061014f610433366004611f73565b610b88565b61014f610446366004611b61565b610c4e565b610453610e46565b61045b610e73565b610463610e9d565b565b6040516377aeb0ad60e01b815260040160405180910390fd5b60015433906001600160a01b031681146104bb5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b6104c481610ef2565b50565b6104cf610e46565b6104d7610f0b565b610463610f36565b6000606080600080600060606104f3610f79565b6104fb610fab565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61052d610e46565b60007fe08f530a0e71c7f642d765489160fd44eac817278745c067606534c347d9a2ec8886868a8a604051602001610566929190611f9d565b60405160208183030381529060405280519060200120876105a48e6001600160a01b0316600090815260046020526040902080546001810190915590565b6040805160208101989098526001600160a01b0396871690880152938516606087015293909116608085015260a084015260c083019190915260e082015261010001604051602081830303815290604052805190602001209050600061060982610fd8565b905061061689828561100b565b610633576040516337e8456b60e01b815260040160405180910390fd5b50506000610644888888868961106f565b90506106548885878a8a86611218565b5050505050505050565b610666610f0b565b80600003610687576040516318bb758960e11b815260040160405180910390fd5b6001600160a01b0382166106ad5760405162bbe08560e31b815260040160405180910390fd5b6001600160a01b03831660009081526005602052604090205460ff166106e65760405163072b889f60e11b815260040160405180910390fd5b6001600160a01b0380841660009081526006602090815260408083209386168352929052908120805483929061071d908490611ff3565b92505081905550826001600160a01b0316826001600160a01b031660086000815461074790612006565b91829055506040518481527f2c0f148b435140de488c1b34647f1511c646f7077e87007bacf22ef9977a16d89060200160405180910390a46107946001600160a01b03841633308461149e565b505050565b6107a1610e46565b6001600160a01b0381166107c8576040516367db084560e11b815260040160405180910390fd5b6009546001600160a01b03908116908216036107f75760405163c0af9fdf60e01b815260040160405180910390fd5b600980546001600160a01b0319166001600160a01b0383169081179091556040519081527f5719a5656c5cfdaafa148ecf366fd3b0a7fae06449ce2a46225977fb7417e29d9060200160405180910390a150565b600061085a338989878a61106f565b6040516bffffffffffffffffffffffff19606089811b821660208401526034830188905230901b16605482015246606882015290915060009060880160408051601f198184030181529082905280516020918201207f19457468657265756d205369676e6564204d6573736167653a0a33320000000091830191909152603c820152605c0160408051601f198184030181528282528051602091820120600954601f88018390048302850183019093528684529350610941926001600160a01b03909216918491889088908190840183828082843760009201919091525061100b92505050565b61095e576040516337e8456b60e01b815260040160405180910390fd5b61096c3387898c8c87611218565b505050505050505050565b61097f610e46565b6001600160a01b0382166109a657604051635f5d339960e01b815260040160405180910390fd5b6001600160a01b03821660009081526005602052604090205481151560ff9091161515036109e757604051637565bf8f60e11b815260040160405180910390fd5b6001600160a01b038216600081815260056020908152604091829020805460ff19168515159081179091558251938452908301527f303d37f32762627f23f474bb09535b3c1c7cb4f0f75c8960c42512b046ee24a891015b60405180910390a15050565b610a53610e46565b6001600160a01b038216610a7a57604051631a86f04560e01b815260040160405180910390fd5b6001600160a01b03821660009081526007602052604090205481151560ff909116151503610abb57604051631e5a976960e31b815260040160405180910390fd5b6001600160a01b038216600081815260076020908152604091829020805460ff19168515159081179091558251938452908301527f939ba97d9885a19f5539df8bc7d0698b79b1361793009861943fdd98060480339101610a3f565b610b1f610e46565b600180546001600160a01b0383166001600160a01b03199091168117909155610b506000546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b80600003610ba95760405163b8fc0f3b60e01b815260040160405180910390fd5b6001600160a01b038216600090815260066020908152604080832033845290915281208054839290610bdc90849061201f565b9091555050600880546001600160a01b038416913391600090610bfe90612006565b91829055506040518481527ffeb2000dca3e617cd6f3a8bbb63014bb54a124aac6ccbf73ee7229b4cd01f1209060200160405180910390a4610c4a6001600160a01b038316338361150b565b5050565b610c56610f0b565b34600003610c77576040516318bb758960e11b815260040160405180910390fd5b6001600160a01b038116610c9d5760405162bbe08560e31b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc21660009081526005602052604090205460ff16610cf65760405163072b889f60e11b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc28116600090815260066020908152604080832093851683529290529081208054349290610d4d908490611ff3565b925050819055507f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316816001600160a01b0316600860008154610d9790612006565b91829055506040513481527f2c0f148b435140de488c1b34647f1511c646f7077e87007bacf22ef9977a16d89060200160405180910390a47f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b158015610e2a57600080fd5b505af1158015610e3e573d6000803e3d6000fd5b505050505050565b6000546001600160a01b031633146104635760405163118cdaa760e01b81523360048201526024016104b2565b600154600160a01b900460ff1661046357604051638dfc202b60e01b815260040160405180910390fd5b610ea5610e73565b6001805460ff60a01b191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b600180546001600160a01b03191690556104c48161153c565b600154600160a01b900460ff16156104635760405163d93c066560e01b815260040160405180910390fd5b610f3e610f0b565b6001805460ff60a01b1916600160a01b1790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610ed53390565b6060610fa67f5a74616b696e67506f6f6c00000000000000000000000000000000000000000b600261158c565b905090565b6060610fa67f3100000000000000000000000000000000000000000000000000000000000001600361158c565b6000611005610fe5611638565b8360405161190160f01b8152600281019290925260228201526042902090565b92915050565b600080600061101a8585611763565b509092509050600081600381111561103457611034612032565b1480156110525750856001600160a01b0316826001600160a01b0316145b8061106357506110638686866117b0565b925050505b9392505050565b60608360008190036110945760405163e78703a360e01b815260040160405180910390fd5b8067ffffffffffffffff8111156110ad576110ad611cc4565b6040519080825280602002602001820160405280156110d6578160200160208202803683370190505b50915060005b818110156111b357600660008888848181106110fa576110fa612048565b905060200201602081019061110f9190611b61565b6001600160a01b03166001600160a01b031681526020019081526020016000206000896001600160a01b03166001600160a01b031681526020019081526020016000205483828151811061116557611165612048565b60200260200101818152505082818151811061118357611183612048565b60200260200101516000036111ab5760405163a809389f60e01b815260040160405180910390fd5b6001016110dc565b508342106111d457604051630819bdcd60e01b815260040160405180910390fd5b6001600160a01b03831660009081526007602052604090205460ff161561120e57604051639997d66560e01b815260040160405180910390fd5b5095945050505050565b8160005b818110156112f7576006600086868481811061123a5761123a612048565b905060200201602081019061124f9190611b61565b6001600160a01b03908116825260208083019390935260409182016000908120918c16815292528120549003611298576040516323271fb560e11b815260040160405180910390fd5b6000600660008787858181106112b0576112b0612048565b90506020020160208101906112c59190611b61565b6001600160a01b03908116825260208083019390935260409182016000908120918d168152925290205560010161121c565b50866001600160a01b031660086000815461131190612006565b9190508190557f8ec7c0970f810f90b2e926cd4ee4f32efff0ef16fb5e08617c11b9fad14dfc0086868a8a8860405161134e95949392919061209a565b60405180910390a360005b8181101561142e5784848281811061137357611373612048565b90506020020160208101906113889190611b61565b6001600160a01b031663095ea7b3878584815181106113a9576113a9612048565b60200260200101516040518363ffffffff1660e01b81526004016113e29291906001600160a01b03929092168252602082015260400190565b6020604051808303816000875af1158015611401573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061142591906120e3565b50600101611359565b506040516355e663bf60e11b81526001600160a01b0386169063abccc77e90611463908a90889088908c908990600401612100565b600060405180830381600087803b15801561147d57600080fd5b505af1158015611491573d6000803e3d6000fd5b5050505050505050505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526115059186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b03838183161783525050505061188b565b50505050565b6040516001600160a01b0383811660248301526044820183905261079491859182169063a9059cbb906064016114d3565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b606060ff83146115a65761159f836118ee565b9050611005565b8180546115b29061214a565b80601f01602080910402602001604051908101604052809291908181526020018280546115de9061214a565b801561162b5780601f106116005761010080835404028352916020019161162b565b820191906000526020600020905b81548152906001019060200180831161160e57829003601f168201915b5050505050905092915050565b6000306001600160a01b037f000000000000000000000000f047ab4c75cebf0eb9ed34ae2c186f3611aeafa61614801561169157507f000000000000000000000000000000000000000000000000000000000000000146145b156116bb57507f60f132f61eb52350d38debb9545285dbe460422d845fc94e3c03e39d35fe23fd90565b610fa6604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fcf7936818770c7c65596ab2682c0a2826f5f1e1aaa24c0b6acd2ee27ef08e64c918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b6000806000835160410361179d5760208401516040850151606086015160001a61178f8882858561192d565b9550955095505050506117a9565b50508151600091506002905b9250925092565b6000806000856001600160a01b031685856040516024016117d2929190612184565b60408051601f198184030181529181526020820180516001600160e01b0316630b135d3f60e11b1790525161180791906121a5565b600060405180830381855afa9150503d8060008114611842576040519150601f19603f3d011682016040523d82523d6000602084013e611847565b606091505b509150915081801561185b57506020815110155b801561106357508051630b135d3f60e11b9061188090830160209081019084016121c1565b149695505050505050565b60006118a06001600160a01b038416836119fc565b905080516000141580156118c55750808060200190518101906118c391906120e3565b155b1561079457604051635274afe760e01b81526001600160a01b03841660048201526024016104b2565b606060006118fb83611a0a565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561196857506000915060039050826119f2565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156119bc573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166119e8575060009250600191508290506119f2565b9250600091508190505b9450945094915050565b606061106883836000611a32565b600060ff8216601f81111561100557604051632cd44ac360e21b815260040160405180910390fd5b606081471015611a575760405163cd78605960e01b81523060048201526024016104b2565b600080856001600160a01b03168486604051611a7391906121a5565b60006040518083038185875af1925050503d8060008114611ab0576040519150601f19603f3d011682016040523d82523d6000602084013e611ab5565b606091505b5091509150611063868383606082611ad557611ad082611b1c565b611068565b8151158015611aec57506001600160a01b0384163b155b15611b1557604051639996b31560e01b81526001600160a01b03851660048201526024016104b2565b5080611068565b805115611b2c5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114611b5c57600080fd5b919050565b600060208284031215611b7357600080fd5b61106882611b45565b60005b83811015611b97578181015183820152602001611b7f565b50506000910152565b60008151808452611bb8816020860160208601611b7c565b601f01601f19169290920160200192915050565b60008151808452602080850194506020840160005b83811015611bfd57815187529582019590820190600101611be1565b509495945050505050565b60ff60f81b8816815260e060208201526000611c2760e0830189611ba0565b8281036040840152611c398189611ba0565b606084018890526001600160a01b038716608085015260a0840186905283810360c08501529050611c6a8185611bcc565b9a9950505050505050505050565b60008083601f840112611c8a57600080fd5b50813567ffffffffffffffff811115611ca257600080fd5b6020830191508360208260051b8501011115611cbd57600080fd5b9250929050565b634e487b7160e01b600052604160045260246000fd5b600080600080600080600060c0888a031215611cf557600080fd5b611cfe88611b45565b9650602088013567ffffffffffffffff80821115611d1b57600080fd5b611d278b838c01611c78565b9098509650869150611d3b60408b01611b45565b9550611d4960608b01611b45565b945060808a0135935060a08a0135915080821115611d6657600080fd5b818a0191508a601f830112611d7a57600080fd5b813581811115611d8c57611d8c611cc4565b604051601f8201601f19908116603f01168101908382118183101715611db457611db4611cc4565b816040528281528d6020848701011115611dcd57600080fd5b82602086016020830137600060208483010152809550505050505092959891949750929550565b60008060408385031215611e0757600080fd5b611e1083611b45565b9150611e1e60208401611b45565b90509250929050565b600080600060608486031215611e3c57600080fd5b611e4584611b45565b9250611e5360208501611b45565b9150604084013590509250925092565b600080600080600080600060a0888a031215611e7e57600080fd5b873567ffffffffffffffff80821115611e9657600080fd5b611ea28b838c01611c78565b9099509750879150611eb660208b01611b45565b9650611ec460408b01611b45565b955060608a0135945060808a0135915080821115611ee157600080fd5b818a0191508a601f830112611ef557600080fd5b813581811115611f0457600080fd5b8b6020828501011115611f1657600080fd5b60208301945080935050505092959891949750929550565b80151581146104c457600080fd5b60008060408385031215611f4f57600080fd5b611f5883611b45565b91506020830135611f6881611f2e565b809150509250929050565b60008060408385031215611f8657600080fd5b611f8f83611b45565b946020939093013593505050565b60008184825b85811015611fd2576001600160a01b03611fbc83611b45565b1683526020928301929190910190600101611fa3565b509095945050505050565b634e487b7160e01b600052601160045260246000fd5b8082018082111561100557611005611fdd565b60006001820161201857612018611fdd565b5060010190565b8181038181111561100557611005611fdd565b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b8183526000602080850194508260005b85811015611bfd576001600160a01b0361208783611b45565b168752958201959082019060010161206e565b6080815260006120ae60808301878961205e565b6001600160a01b0386811660208501528516604084015282810360608401526120d78185611bcc565b98975050505050505050565b6000602082840312156120f557600080fd5b815161106881611f2e565b600060018060a01b0380881683526080602084015261212360808401878961205e565b8186166040850152838103606085015261213d8186611bcc565b9998505050505050505050565b600181811c9082168061215e57607f821691505b60208210810361217e57634e487b7160e01b600052602260045260246000fd5b50919050565b82815260406020820152600061219d6040830184611ba0565b949350505050565b600082516121b7818460208701611b7c565b9190910192915050565b6000602082840312156121d357600080fd5b505191905056fea2646970667358221220f7bfc87400d175520d3a2e90e3041f83766bb8dbee0c14db0db8f342806dde8964736f6c63430008180033
Verified Source Code Full Match
Compiler: v0.8.24+commit.e11b9ed9
EVM: paris
Optimization: Yes (200 runs)
ZtakingPool.sol 277 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {Nonces} from "@openzeppelin/contracts/utils/Nonces.sol";
import "./interface/IWETH.sol";
import "./interface/IMigrator.sol";
import "./interface/IZtakingPool.sol";
/// @title Ztaking Pool
/// @notice A staking pool for liquid restaking token holders which rewards stakers with points from multiple platforms
contract ZtakingPool is IZtakingPool, Ownable2Step, Pausable, EIP712, Nonces {
using SafeERC20 for IERC20;
bytes32 private constant MIGRATE_TYPEHASH =
keccak256("Migrate(address user,address migratorContract,address destination,address[] tokens,uint256 signatureExpiry,uint256 nonce)");
// (tokenAddress => isAllowedForStaking)
mapping(address => bool) public tokenAllowlist;
// (tokenAddress => stakerAddress => stakedAmount)
mapping(address => mapping(address => uint256)) public balance;
// (migratorContract => isBlocklisted)
mapping(address => bool) public migratorBlocklist;
// Next eventId to emit
uint256 private eventId;
// Required signer for the migration message
address public zircuitSigner;
// ETH's special address
address immutable WETH_ADDRESS;
constructor(address _signer, address[] memory _tokensAllowed, address _weth) Ownable(msg.sender) EIP712("ZtakingPool", "1"){
if (_signer == address(0)) revert SignerCannotBeZeroAddress();
if (_weth == address(0)) revert WETHCannotBeZeroAddress();
WETH_ADDRESS = _weth;
zircuitSigner = _signer;
uint256 length = _tokensAllowed.length;
for(uint256 i; i < length; ++i){
if (_tokensAllowed[i] == address(0)) revert TokenCannotBeZeroAddress();
tokenAllowlist[_tokensAllowed[i]] = true;
}
}
/*//////////////////////////////////////////////////////////////
Staker Functions
//////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IZtakingPool
*/
function depositFor(address _token, address _for, uint256 _amount) whenNotPaused external {
if (_amount == 0) revert DepositAmountCannotBeZero();
if (_for== address(0)) revert CannotDepositForZeroAddress();
if (!tokenAllowlist[_token]) revert TokenNotAllowedForStaking();
balance[_token][_for] += _amount;
emit Deposit(++eventId, _for, _token, _amount);
IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
}
function depositETHFor(address _for) whenNotPaused payable external {
if (msg.value == 0) revert DepositAmountCannotBeZero();
if (_for== address(0)) revert CannotDepositForZeroAddress();
if (!tokenAllowlist[WETH_ADDRESS]) revert TokenNotAllowedForStaking();
balance[WETH_ADDRESS][_for] += msg.value;
emit Deposit(++eventId, _for, WETH_ADDRESS, msg.value);
IWETH(WETH_ADDRESS).deposit{value:msg.value}();
}
/**
* @inheritdoc IZtakingPool
*/
function withdraw(address _token, uint256 _amount) external {
if (_amount == 0) revert WithdrawAmountCannotBeZero();
balance[_token][msg.sender] -= _amount; //Will underfow if the staker has insufficient balance
emit Withdraw(++eventId, msg.sender, _token, _amount);
IERC20(_token).safeTransfer(msg.sender, _amount);
}
/**
* @inheritdoc IZtakingPool
*/
function migrateWithSig(
address _user,
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes memory _stakerSignature
) onlyOwner external{
{
bytes32 structHash = keccak256(abi.encode(
MIGRATE_TYPEHASH,
_user,
_migratorContract,
_destination,
//The array values are encoded as the keccak256 hash of the concatenated encodeData of their contents
//Ref: https://eips.ethereum.org/EIPS/eip-712#definition-of-encodedata
keccak256(abi.encodePacked(_tokens)),
_signatureExpiry,
_useNonce(_user)
));
bytes32 constructedHash = _hashTypedDataV4(structHash);
if (!SignatureChecker.isValidSignatureNow(_user, constructedHash, _stakerSignature)){
revert SignatureInvalid();
}
}
uint256[] memory _amounts = _migrateChecks(_user, _tokens, _signatureExpiry, _migratorContract);
_migrate(_user, _destination, _migratorContract, _tokens, _amounts);
}
/**
* @inheritdoc IZtakingPool
*/
function migrate(
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes calldata _authorizationSignatureFromZircuit
) external {
uint256[] memory _amounts = _migrateChecks(msg.sender, _tokens, _signatureExpiry, _migratorContract);
bytes32 constructedHash = keccak256(
abi.encodePacked(
'\x19Ethereum Signed Message:\n32',
keccak256(
abi.encodePacked(
_migratorContract,
_signatureExpiry,
address(this),
block.chainid
)
)
)
);
// verify that the migrator’s address is signed in the authorization signature by the correct signer (zircuitSigner)
if (!SignatureChecker.isValidSignatureNow(zircuitSigner, constructedHash, _authorizationSignatureFromZircuit)){
revert SignatureInvalid();
}
_migrate(msg.sender, _destination, _migratorContract, _tokens, _amounts);
}
function _migrateChecks(address _user, address[] calldata _tokens, uint256 _signatureExpiry, address _migratorContract)
internal view returns (uint256[] memory _amounts){
uint256 length = _tokens.length;
if (length == 0) revert TokenArrayCannotBeEmpty();
_amounts = new uint256[](length);
for(uint256 i; i < length; ++i){
_amounts[i] = balance[_tokens[i]][_user];
if (_amounts[i] == 0) revert UserDoesNotHaveStake();
}
if (block.timestamp >= _signatureExpiry) revert SignatureExpired();// allows us to invalidate signature by having it expired
if (migratorBlocklist[_migratorContract]) revert MigratorBlocked();
}
function _migrate(
address _user,
address _destination,
address _migratorContract,
address[] calldata _tokens,
uint256[] memory _amounts)
internal {
uint256 length = _tokens.length;
//effects for-loop (state changes)
for(uint256 i; i < length; ++i){
//if the balance has been already set to zero, then _tokens[i] is a duplicate of a previous token in the array
if (balance[_tokens[i]][_user] == 0) revert DuplicateToken();
balance[_tokens[i]][_user] = 0;
}
emit Migrate (++eventId, _user, _tokens, _destination, _migratorContract, _amounts);
//interactions for-loop (external calls)
for(uint256 i; i < length; ++i){
IERC20(_tokens[i]).approve(_migratorContract, _amounts[i]);
}
IMigrator(_migratorContract).migrate(_user, _tokens, _destination, _amounts);
}
/*//////////////////////////////////////////////////////////////
Admin Functions
//////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IZtakingPool
*/
function setZircuitSigner(address _signer) external onlyOwner {
if (_signer == address(0)) revert SignerCannotBeZeroAddress();
if (_signer == zircuitSigner) revert SignerAlreadySetToAddress();
zircuitSigner = _signer;
emit SignerChanged(_signer);
}
/**
* @inheritdoc IZtakingPool
*/
function setStakable(address _token, bool _canStake) external onlyOwner {
if (_token == address(0)) revert TokenCannotBeZeroAddress();
if (tokenAllowlist[_token] == _canStake) revert TokenAlreadyConfiguredWithState();
tokenAllowlist[_token] = _canStake;
emit TokenStakabilityChanged(_token, _canStake);
}
/**
* @inheritdoc IZtakingPool
*/
function blockMigrator(address _migrator, bool _blocklisted) external onlyOwner {
if (_migrator == address(0)) revert MigratorCannotBeZeroAddress();
if (migratorBlocklist[_migrator] == _blocklisted) revert MigratorAlreadyAllowedOrBlocked();
migratorBlocklist[_migrator] = _blocklisted;
emit BlocklistChanged(_migrator, _blocklisted);
}
/**
* @inheritdoc IZtakingPool
*/
function pause() external onlyOwner whenNotPaused {
_pause();
}
/**
* @inheritdoc IZtakingPool
*/
function unpause() external onlyOwner whenPaused{
_unpause();
}
function renounceOwnership() public override{
revert CannotRenounceOwnership();
}
}
IWETH.sol 9 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
}
IMigrator.sol 20 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;
/// @title Migrator Interface
/// @notice Interface for the Migrator contract called by the Ztaking Pool's migrate() function
interface IMigrator {
///@notice Function called by the Ztaking Pool to facilitate migration of staked tokens from the Ztaking Pool to Zircuit
///@param _user The address of the user whose staked funds are being migrated to Zircuit
///@param _tokens The tokens being migrated to Zircuit from the Ztaking Pool
///@param _destination The address which will be credited the tokens on Zircuit
///@param _amounts The amounts of each token to be migrated to Zircuit for the _user
function migrate(
address _user,
address[] calldata _tokens,
address _destination,
uint256[] calldata _amounts
) external;
}
IZtakingPool.sol 172 lines
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;
/// @title Ztaking Pool Interface
/// @notice An interface containing externally accessible functions of the ZtakingPool contract
/// @dev The automatically generated public view functions for the state variables and mappings are not included in the interface
interface IZtakingPool {
/*//////////////////////////////////////////////////////////////
Errors
//////////////////////////////////////////////////////////////*/
error SignerCannotBeZeroAddress(); //Thrown when proposed signer is the zero address
error SignerAlreadySetToAddress(); //Thrown when proposed signer is already set
error SignatureInvalid(); // Thrown when the migration signature is invalid
error SignatureExpired(); // Thrown when the migration signature has expired
error TokenCannotBeZeroAddress(); // Thrown when the specified token is the zero address
error WETHCannotBeZeroAddress(); // Thrown when the specified token is the zero address
error TokenAlreadyConfiguredWithState(); //Thrown if the token as already been enabled or disabled
error DepositAmountCannotBeZero(); // Thrown if staker attempts to call deposit() with zero amount
error WithdrawAmountCannotBeZero(); //Thrown if staker attempts to call withdraw() with zero amount
error TokenNotAllowedForStaking(); // Thrown if staker attempts to stake unsupported token (or token disabled for staking)
error UserDoesNotHaveStake(); //Thrown if the staker is attempting to migrate with no stake
error MigratorCannotBeZeroAddress(); //Thrown if the provided migrator is the zero address
error MigratorAlreadyAllowedOrBlocked(); //Thrown if attempting to block a migrator which has already been blocked or attempting to allow a migrator which is already allowed
error MigratorBlocked(); //Thrown if the provided migrator contract has been blacklisted.
error CannotDepositForZeroAddress(); //Thrown if caller tries to deposit on behalf of the zero address
error CannotRenounceOwnership(); //Thrown if the renounceOwnership() function is called
error DuplicateToken(); //Thrown when there is a duplicate in the provided token address array
error TokenArrayCannotBeEmpty(); //Thrown when the provided token address array is empty
/*//////////////////////////////////////////////////////////////
Staker Events
//////////////////////////////////////////////////////////////*/
///@notice Emitted when a staker deposits/stakes a supported token into the Ztaking Pool
///@param eventId The unique event Id associated with the Deposit event
///@param depositor The address of the depositer/staker transfering funds to the Ztaking Pool
///@param token The address of the token deposited/staked into the pool
///@param amount The amount of token deposited/staked into the pool
event Deposit(
uint256 indexed eventId,
address indexed depositor,
address indexed token,
uint256 amount
);
///@notice Emitted when a staker withdraws a previously staked tokens from the Ztaking Pool
///@param eventId The unique event Id associated with the Withdraw event
///@param withdrawer The address of the staker withdrawing funds from the Ztaking Pool
///@param token The address of the token being withdrawn from the pool
///@param amount The amount of tokens withdrawn the pool
event Withdraw(uint256 indexed eventId, address indexed withdrawer, address indexed token, uint256 amount);
///@notice Emitted when a staker migrates their tokens from the ZtakingPool to Zircuit.
///@param eventId The unique event Id associated with the Migrate event
///@param user The address of the staker migrating funds to Zircuit
///@param tokens The addresses of the tokens being being migrated from the ZtakingPool to Zircuit
///@param destination The address which the tokens will be transferred to on Zircuit
///@param migrator The address of the migrator contract which initially receives the migrated tokens
///@param amounts The amounts of each token migrated to Zircuit
event Migrate(
uint256 indexed eventId,
address indexed user,
address[] tokens,
address destination,
address migrator,
uint256[] amounts
);
/*//////////////////////////////////////////////////////////////
Admin Events
//////////////////////////////////////////////////////////////*/
///@notice Emitted when the required signer for the migration signature is changed
///@param newSigner The address of the new signer which must sign the migration signature
event SignerChanged(address newSigner);
///@notice Emitted when a token has been enabled or disabled for staking
///@param token The address of the token which has been enabled/disabled for staking
///@param enabled Is true if the token is being enabled and false if the token is being disabled
event TokenStakabilityChanged(address token, bool enabled);
///@notice Emitted when a migrator has been added or removed from the blocklist
///@param migrator The address of the migrator which has been added or removed from the blocklist
///@param blocked Is true if the migrator was added to the blocklist, and false if it was removed from the blocklist
event BlocklistChanged(address migrator, bool blocked);
/*//////////////////////////////////////////////////////////////
Staker Functions
//////////////////////////////////////////////////////////////*/
///@notice Stake a specified amount of a particular supported token into the Ztaking Pool
///@param _token The token to deposit/stake in the Ztaking Pool
///@param _for The user to deposit/stake on behalf of
///@param _amount The amount of token to deposit/stake into the Ztaking Pool
function depositFor(address _token, address _for, uint256 _amount) external;
///@notice Stake a specified amount of ether into the Ztaking Pool
///@param _for The user to deposit/stake on behalf of
///@dev the amount deposited is specified by msg.value
function depositETHFor(address _for) payable external;
///@notice Withdraw a specified amount of a particular supported token previously staked into the Ztaking Pool
///@param _token The token to withdraw from the Ztaking Pool
///@param _amount The amount of token to withdraw from the Ztaking Pool
function withdraw(address _token, uint256 _amount) external;
///@notice Migrate the staked tokens for the caller from the Ztaking Pool to Zircuit
///@dev called by the staker
///@param _tokens The tokens to migrate to Zircuit from the Ztaking Pool
///@param _migratorContract The migrator contract which will initially receive the migrated tokens before moving them to Zircuit
///@param _destination The address which will receive the migrated tokens on Zircuit
///@param _signatureExpiry The timestamp at which the signature in _authorizationSignatureFromZircuit expires
///@param _authorizationSignatureFromZircuit The authorization signature which is signed by the zircuit signer and indicates the correct migrator contract
function migrate(
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes memory _authorizationSignatureFromZircuit
) external;
///@notice Migrate the staked tokens for the caller from the Ztaking Pool to Zircuit
///@param _user The staker to migrate tokens for
///@param _tokens The tokens to migrate to Zircuit from the Ztaking Pool
///@param _migratorContract The migrator contract which will initially receive the migrated tokens before moving them to Zircuit
///@param _destination The address which will receive the migrated tokens on Zircuit
///@param _signatureExpiry The timestamp at which the signature in _authorizationSignatureFromZircuit expires
///@param _stakerSignature The signature from the staker authorizing the migration of their tokens
function migrateWithSig(
address _user,
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes memory _stakerSignature
) external;
/*//////////////////////////////////////////////////////////////
Admin Functions
//////////////////////////////////////////////////////////////*/
///@notice Set/Change the required signer for the migration signature (_authorizationSignatureFromZircuit in the migrate() function)
///@param _signer The address of the new signer for the migration signature
///@dev Only callable by the owner
function setZircuitSigner(address _signer) external;
///@notice Enable or disable the specified token for staking
///@param _token The token to enable or disable for staking
///@param _canStake If true, then staking is to be enabled. If false, then staking will be disabled.
///@dev Only callable by the owner
function setStakable(address _token, bool _canStake) external;
///@notice Add or remove the migrator to/from the blocklist, such that it can no longer be used from migrating tokens from the staking pool
///@param _migrator The migrator contract to add or remove from the blocklist
///@param _blocklisted If true, then add the migrator to the blocklist. If false, then remove the migrator from the blocklist.
///@dev Only callable by the owner
function blockMigrator(address _migrator, bool _blocklisted) external;
///@notice Pause further staking through the deposit function.
///@dev Only callable by the owner. Withdrawals and migrations will still be possible when paused
function pause() external;
///@notice Unpause staking allowing the deposit function to be used again
///@dev Only callable by the owner
function unpause() external;
}
Nonces.sol 46 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Pausable.sol 119 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
StorageSlot.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
ShortStrings.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
Ownable2Step.sol 59 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
IERC1271.sol 17 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
SignatureChecker.sol 48 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
Read Contract
balance 0xb203bb99 → uint256
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
migratorBlocklist 0x79a26cd0 → bool
nonces 0x7ecebe00 → uint256
owner 0x8da5cb5b → address
paused 0x5c975abb → bool
pendingOwner 0xe30c3978 → address
tokenAllowlist 0x8135369a → bool
zircuitSigner 0x44e7cb13 → address
Write Contract 13 functions
These functions modify contract state and require a wallet transaction to execute.
acceptOwnership 0x79ba5097
No parameters
blockMigrator 0xf03639e3
address _migrator
bool _blocklisted
depositETHFor 0xf6203e35
address _for
depositFor 0xb3db428b
address _token
address _for
uint256 _amount
migrate 0xe3c34216
address[] _tokens
address _migratorContract
address _destination
uint256 _signatureExpiry
bytes _authorizationSignatureFromZircuit
migrateWithSig 0xa5a21fdf
address _user
address[] _tokens
address _migratorContract
address _destination
uint256 _signatureExpiry
bytes _stakerSignature
pause 0x8456cb59
No parameters
renounceOwnership 0x715018a6
No parameters
setStakable 0xe63b81a6
address _token
bool _canStake
setZircuitSigner 0xda3a3a88
address _signer
transferOwnership 0xf2fde38b
address newOwner
unpause 0x3f4ba83a
No parameters
withdraw 0xf3fef3a3
address _token
uint256 _amount
Top Interactions
| Address | Txns | Sent | Received |
|---|---|---|---|
| 0x06067EF0...1a47 | 1 | 1 |
Token Balances (5)
View Transfers →Recent Transactions
|
| Hash | Block | Age | From/To | Value | |
|---|---|---|---|---|---|
| 0x8697e20d...1fcb05 | 24,448,103 | IN | 0x06067EF0...1a47 | 0 ETH |