Cryo Explorer Ethereum Mainnet

Address Contract Verified

Address 0xba1600735a039E2b3bF1d1d2f1A7f80F45973DA7
Balance 0 ETH
Nonce 1
Code Size 10724 bytes
Indexed Transactions 0
External Etherscan · Sourcify

Contract Bytecode

10724 bytes
0x608060405234801561001057600080fd5b50600436106101d95760003560e01c80636e553f6511610104578063a9059cbb116100a2578063dd62ed3e11610071578063dd62ed3e14610417578063ef8b30f7146103f1578063f5eb42dc1461047c578063ffbc27561461048f57600080fd5b8063a9059cbb146103cb578063b6b55f25146103de578063c6e6f592146103f1578063d505accf1461040457600080fd5b806384b0196e116100de57806384b0196e1461038d578063853828b6146103a85780638fcb4e5b146103b057806395d89b41146103c357600080fd5b80636e553f651461035457806370a08231146103675780637ecebe001461037a57600080fd5b80632495a5991161017c5780633a98ef391161014b5780633a98ef39146102f45780634a970be71461031b57806350921b231461032e5780636d7804591461034157600080fd5b80632495a599146102835780632e1a7d4d146102ca578063313ce567146102dd5780633644e515146102ec57600080fd5b8063095ea7b3116101b8578063095ea7b3146102245780630a28a4771461024757806318160ddd1461026857806323b872dd1461027057600080fd5b8062f714ce146101de57806306fdde03146101f3578063077f224a14610211575b600080fd5b6101f16101ec3660046121fc565b6104a2565b005b6101fb610576565b6040516102089190612296565b60405180910390f35b6101f161021f366004612383565b610631565b6102376102323660046123f7565b6107be565b6040519015158152602001610208565b61025a610255366004612421565b6107d8565b604051908152602001610208565b61025a6107e5565b61023761027e36600461243a565b6107f4565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055460405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610208565b6101f16102d8366004612421565b61083e565b60405160128152602001610208565b61025a61084b565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025461025a565b6101f1610329366004612485565b610855565b6101f161033c3660046124ce565b61086a565b61023761034f36600461243a565b61095d565b6101f16103623660046121fc565b61098f565b61025a610375366004612528565b610a9c565b61025a610388366004612528565b610aaa565b610395610ab5565b6040516102089796959493929190612543565b6101f1610bb1565b6102376103be3660046123f7565b610bc5565b6101fb610beb565b6102376103d93660046123f7565b610c3c565b6101f16103ec366004612421565b610c5f565b61025a6103ff366004612421565b610c69565b6101f1610412366004612605565b610c76565b61025a610425366004612672565b73ffffffffffffffffffffffffffffffffffffffff91821660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace016020908152604080832093909416825291909152205490565b61025a61048a366004612528565b610e42565b61025a61049d366004612421565b610e94565b60006104ad836107d8565b90506104b93382610ea1565b60006104f97f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b905061051c73ffffffffffffffffffffffffffffffffffffffff82168486610f10565b604080518581526020810184905273ffffffffffffffffffffffffffffffffffffffff85169133917ff341246adaac6f497bc2a656f546ab9e182111d630394f0c57c710a59a2cb56791015b60405180910390a350505050565b606060007f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace005b90508060030180546105ad9061269c565b80601f01602080910402602001604051908101604052809291908181526020018280546105d99061269c565b80156106265780601f106105fb57610100808354040283529160200191610626565b820191906000526020600020905b81548152906001019060200180831161060957829003601f168201915b505050505091505090565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000810460ff16159067ffffffffffffffff1660008115801561067c5750825b905060008267ffffffffffffffff1660011480156106995750303b155b9050811580156106a7575080155b156106de576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84547fffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000166001178555831561073f5784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff16680100000000000000001785555b61074a888888610f91565b61075388610fa4565b83156107b45784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b6000336107cc818585610feb565b60019150505b92915050565b60006107d2826001610ff8565b60006107ef61104d565b905090565b6000338161080184610c69565b9050600061080e82610e94565b905061081b87848361110c565b61082f878761082985610e94565b856111fa565b600193505050505b9392505050565b61084881336104a2565b50565b60006107ef6112a6565b61086385338686868661086a565b5050505050565b60006108aa7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fd505accf000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018990526064810187905260ff8616608482015260a4810185905260c48101849052909150819073ffffffffffffffffffffffffffffffffffffffff82169063d505accf9060e401600060405180830381600087803b15801561094157600080fd5b505af1925050508015610952575060015b506107b4888861098f565b6000338161096a84610e94565b905061097786838361110c565b610983868683876111fa565b50600195945050505050565b600061099a83610c69565b9050806000036109de576040517f412ed242000000000000000000000000000000000000000000000000000000008152600481018490526024015b60405180910390fd5b6000610a1e7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b9050610a2a83836112b0565b610a4c73ffffffffffffffffffffffffffffffffffffffff821633308761131a565b604080518581526020810184905273ffffffffffffffffffffffffffffffffffffffff85169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d79101610568565b60006107d261049d83610e42565b60006107d282611360565b600060608082808083817fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1008054909150158015610af457506001810154155b610b5a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4549503731323a20556e696e697469616c697a6564000000000000000000000060448201526064016109d5565b610b62611389565b610b6a6113da565b604080516000808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009c939b5091995046985030975095509350915050565b610bc3610bbd33610a9c565b336104a2565b565b60003381610bd284610e94565b9050610be0828683876111fa565b506001949350505050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0480546060917f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00916105ad9061269c565b60003381610c4984610c69565b9050610be08286610c5984610e94565b846111fa565b610848813361098f565b60006107d2826000610ff8565b83421115610cb3576040517f62791302000000000000000000000000000000000000000000000000000000008152600481018590526024016109d5565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610d2c8c73ffffffffffffffffffffffffffffffffffffffff1660009081527f5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb006020526040902080546001810190915590565b60408051602081019690965273ffffffffffffffffffffffffffffffffffffffff94851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090506000610d9482611404565b90506000610da48287878761144c565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610e2b576040517f4b800e4600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff80831660048301528b1660248201526044016109d5565b610e368a8a8a610feb565b50505050505050505050565b6000807f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace005b73ffffffffffffffffffffffffffffffffffffffff90931660009081526020939093525050604090205490565b60006107d282600061147a565b73ffffffffffffffffffffffffffffffffffffffff8216610ef1576040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b6000610efc82610e94565b9050610f0b83600083856114c0565b505050565b60405173ffffffffffffffffffffffffffffffffffffffff838116602483015260448201839052610f0b91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506116f9565b610f9961178f565b610f0b8383836117f6565b610fac61178f565b610848816040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506119a0565b610f0b8383836001611a13565b60006108376110257f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025490565b611031906103e86126ef565b61103961104d565b6110449060016126ef565b85919085611b70565b6000807f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0060058101546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015291925073ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156110e2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111069190612729565b91505090565b73ffffffffffffffffffffffffffffffffffffffff83811660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0160209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146111f457818110156111e5576040517ffb8f41b200000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015260248101829052604481018390526064016109d5565b6111f484848484036000611a13565b50505050565b73ffffffffffffffffffffffffffffffffffffffff841661124a576040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff831661129a576040517fec442f05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b6111f4848484846114c0565b60006107ef611bc1565b73ffffffffffffffffffffffffffffffffffffffff8216611300576040517fec442f05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b600061130b82610e94565b9050610f0b60008483856114c0565b60405173ffffffffffffffffffffffffffffffffffffffff84811660248301528381166044830152606482018390526111f49186918216906323b872dd90608401610f4a565b6000807f5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00610e67565b7fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10280546060917fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100916105ad9061269c565b606060007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10061059c565b60006107d26114116112a6565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b60008060008061145e88888888611c35565b92509250925061146e8282611d2f565b50909695505050505050565b600061083761148761104d565b6114929060016126ef565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0254611044906103e86126ef565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0073ffffffffffffffffffffffffffffffffffffffff851661151b578181600201600082825461151091906126ef565b909155506115cd9050565b73ffffffffffffffffffffffffffffffffffffffff8516600090815260208290526040902054828110156115a1576040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8716600482015260248101829052604481018490526064016109d5565b73ffffffffffffffffffffffffffffffffffffffff861660009081526020839052604090209083900390555b73ffffffffffffffffffffffffffffffffffffffff84166115f8576002810180548390039055611624565b73ffffffffffffffffffffffffffffffffffffffff841660009081526020829052604090208054830190555b8373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161168391815260200190565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167f9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb846040516116ea91815260200190565b60405180910390a35050505050565b600061171b73ffffffffffffffffffffffffffffffffffffffff841683611e37565b9050805160001415801561174057508080602001905181019061173e9190612742565b155b15610f0b576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201526024016109d5565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005468010000000000000000900460ff16610bc3576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6117fe61178f565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace007f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0361184a85826127b4565b506004810161185984826127b4565b5073ffffffffffffffffffffffffffffffffffffffff82166118a7576040517f887036dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6005810180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8416908117909155604080517f313ce567000000000000000000000000000000000000000000000000000000008152905163313ce567916004808201926020929091908290030181865afa158015611940573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061196491906128ce565b60ff166012146111f4576040517fd6c7138800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6119a861178f565b7fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1026119f484826127b4565b5060038101611a0383826127b4565b5060008082556001909101555050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0073ffffffffffffffffffffffffffffffffffffffff8516611a84576040517fe602df05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff8416611ad4576040517f94280d62000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff808616600090815260018301602090815260408083209388168352929052208390558115610863578373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925856040516116ea91815260200190565b600080611b7e868686611e45565b9050611b8983611f40565b8015611ba5575060008480611ba057611ba06128eb565b868809115b15611bb857611bb56001826126ef565b90505b95945050505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f611bec611f6d565b611bf4611fe9565b60408051602081019490945283019190915260608201524660808201523060a082015260c00160405160208183030381529060405280519060200120905090565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115611c705750600091506003905082611d25565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015611cc4573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116611d1b57506000925060019150829050611d25565b9250600091508190505b9450945094915050565b6000826003811115611d4357611d4361291a565b03611d4c575050565b6001826003811115611d6057611d6061291a565b03611d97576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115611dab57611dab61291a565b03611de5576040517ffce698f7000000000000000000000000000000000000000000000000000000008152600481018290526024016109d5565b6003826003811115611df957611df961291a565b03611e33576040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600481018290526024016109d5565b5050565b60606108378383600061203f565b6000838302817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098281108382030391505080600003611e9a57838281611e9057611e906128eb565b0492505050610837565b808411611ed3576040517f227bc15300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b60006002826003811115611f5657611f5661291a565b611f609190612949565b60ff166001149050919050565b60007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10081611f99611389565b805190915015611fb157805160209091012092915050565b81548015611fc0579392505050565b7fc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470935050505090565b60007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100816120156113da565b80519091501561202d57805160209091012092915050565b60018201548015611fc0579392505050565b60608147101561207d576040517fcd7860590000000000000000000000000000000000000000000000000000000081523060048201526024016109d5565b6000808573ffffffffffffffffffffffffffffffffffffffff1684866040516120a69190612992565b60006040518083038185875af1925050503d80600081146120e3576040519150601f19603f3d011682016040523d82523d6000602084013e6120e8565b606091505b50915091506120f8868383612102565b9695505050505050565b6060826121175761211282612191565b610837565b815115801561213b575073ffffffffffffffffffffffffffffffffffffffff84163b155b1561218a576040517f9996b31500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016109d5565b5080610837565b8051156121a15780518082602001fd5b6040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b803573ffffffffffffffffffffffffffffffffffffffff811681146121f757600080fd5b919050565b6000806040838503121561220f57600080fd5b8235915061221f602084016121d3565b90509250929050565b60005b8381101561224357818101518382015260200161222b565b50506000910152565b60008151808452612264816020860160208601612228565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000610837602083018461224c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b600082601f8301126122e957600080fd5b813567ffffffffffffffff80821115612304576123046122a9565b604051601f83017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190828211818310171561234a5761234a6122a9565b8160405283815286602085880101111561236357600080fd5b836020870160208301376000602085830101528094505050505092915050565b60008060006060848603121561239857600080fd5b833567ffffffffffffffff808211156123b057600080fd5b6123bc878388016122d8565b945060208601359150808211156123d257600080fd5b506123df868287016122d8565b9250506123ee604085016121d3565b90509250925092565b6000806040838503121561240a57600080fd5b612413836121d3565b946020939093013593505050565b60006020828403121561243357600080fd5b5035919050565b60008060006060848603121561244f57600080fd5b612458846121d3565b9250612466602085016121d3565b9150604084013590509250925092565b60ff8116811461084857600080fd5b600080600080600060a0868803121561249d57600080fd5b853594506020860135935060408601356124b681612476565b94979396509394606081013594506080013592915050565b60008060008060008060c087890312156124e757600080fd5b863595506124f7602088016121d3565b945060408701359350606087013561250e81612476565b9598949750929560808101359460a0909101359350915050565b60006020828403121561253a57600080fd5b610837826121d3565b7fff00000000000000000000000000000000000000000000000000000000000000881681526000602060e0602084015261258060e084018a61224c565b8381036040850152612592818a61224c565b6060850189905273ffffffffffffffffffffffffffffffffffffffff8816608086015260a0850187905284810360c08601528551808252602080880193509091019060005b818110156125f3578351835292840192918401916001016125d7565b50909c9b505050505050505050505050565b600080600080600080600060e0888a03121561262057600080fd5b612629886121d3565b9650612637602089016121d3565b95506040880135945060608801359350608088013561265581612476565b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561268557600080fd5b61268e836121d3565b915061221f602084016121d3565b600181811c908216806126b057607f821691505b6020821081036126e9577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b808201808211156107d2577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60006020828403121561273b57600080fd5b5051919050565b60006020828403121561275457600080fd5b8151801515811461083757600080fd5b601f821115610f0b576000816000526020600020601f850160051c8101602086101561278d5750805b601f850160051c820191505b818110156127ac57828155600101612799565b505050505050565b815167ffffffffffffffff8111156127ce576127ce6122a9565b6127e2816127dc845461269c565b84612764565b602080601f83116001811461283557600084156127ff5750858301515b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600386901b1c1916600185901b1785556127ac565b6000858152602081207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08616915b8281101561288257888601518255948401946001909101908401612863565b50858210156128be57878501517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600388901b60f8161c191681555b5050505050600190811b01905550565b6000602082840312156128e057600080fd5b815161083781612476565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600060ff831680612983577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b8060ff84160691505092915050565b600082516129a4818460208701612228565b919091019291505056fea2646970667358221220b0f3eb6e105b6395f35c90533e932c9741798d46cbcfb25adee8c4918a4455be64736f6c63430008190033

Verified Source Code Full Match

Compiler: v0.8.25+commit.b61c2a91 EVM: paris Optimization: Yes (20000 runs)
StUSR.sol 94 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {ERC20RebasingPermitUpgradeable} from "./ERC20RebasingPermitUpgradeable.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IStUSR} from "./interfaces/IStUSR.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract StUSR is ERC20RebasingPermitUpgradeable, IStUSR {
    using Math for uint256;
    using SafeERC20 for IERC20Metadata;

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function initialize(
        string memory _name,
        string memory _symbol,
        address _usrAddress
    ) public initializer {
        __ERC20Rebasing_init(_name, _symbol, _usrAddress);
        __ERC20RebasingPermit_init(_name);
    }

    function deposit(uint256 _usrAmount, address _receiver) public {
        uint256 shares = previewDeposit(_usrAmount);
        //slither-disable-next-line incorrect-equality
        if (shares == 0) revert InvalidDepositAmount(_usrAmount);

        IERC20Metadata usr = super.underlyingToken();
        super._mint(_receiver, shares);
        usr.safeTransferFrom(msg.sender, address(this), _usrAmount);
        emit Deposit(msg.sender, _receiver, _usrAmount, shares);
    }

    function deposit(uint256 _usrAmount) external {
        deposit(_usrAmount, msg.sender);
    }

    function depositWithPermit(
        uint256 _usrAmount,
        address _receiver,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) public {
        IERC20Metadata usr = super.underlyingToken();
        IERC20Permit usrPermit = IERC20Permit(address(usr));
        // the use of `try/catch` allows the permit to fail and makes the code tolerant to frontrunning.
        // solhint-disable-next-line no-empty-blocks
        try usrPermit.permit(msg.sender, address(this), _usrAmount, _deadline, _v, _r, _s) {} catch {}
        deposit(_usrAmount, _receiver);
    }

    function depositWithPermit(
        uint256 _usrAmount,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external {
        depositWithPermit(_usrAmount, msg.sender, _deadline, _v, _r, _s);
    }

    function withdraw(uint256 _usrAmount) external {
        withdraw(_usrAmount, msg.sender);
    }

    function withdrawAll() external {
        withdraw(super.balanceOf(msg.sender), msg.sender);
    }

    function withdraw(uint256 _usrAmount, address _receiver) public {
        uint256 shares = previewWithdraw(_usrAmount);
        super._burn(msg.sender, shares);

        IERC20Metadata usr = super.underlyingToken();
        usr.safeTransfer(_receiver, _usrAmount);
        emit Withdraw(msg.sender, _receiver, _usrAmount, shares);
    }

    function previewDeposit(uint256 _usrAmount) public view returns (uint256 shares) {
        return _convertToShares(_usrAmount, Math.Rounding.Floor);
    }

    function previewWithdraw(uint256 _usrAmount) public view returns (uint256 shares) {
        return _convertToShares(_usrAmount, Math.Rounding.Ceil);
    }
}
IStUSR.sol 41 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

interface IStUSR {

    event Deposit(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);
    event Withdraw(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);

    error InvalidDepositAmount(uint256 _usrAmount);

    function deposit(uint256 _usrAmount, address _receiver) external;

    function deposit(uint256 _usrAmount) external;

    function depositWithPermit(
        uint256 _usrAmount,
        address _receiver,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external;

    function depositWithPermit(
        uint256 _usrAmount,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external;

    function withdraw(uint256 _usrAmount, address _receiver) external;

    function withdraw(uint256 _usrAmount) external;

    function withdrawAll() external;

    function previewDeposit(uint256 _usrAmount) external view returns (uint256 shares);

    function previewWithdraw(uint256 _usrAmount) external view returns (uint256 shares);
}
ERC20RebasingUpgradeable.sol 423 lines
// SPDX-License-Identifier: MIT
/* solhint-disable defi-wonderland/wonder-var-name-mixedcase */
pragma solidity ^0.8.25;

import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20Rebasing} from "./interfaces/IERC20Rebasing.sol";

/**
 * @title ERC20RebasingUpgradeable
 * @dev This contract is an ERC20-like token that uses a rebasing mechanism.
 * The contract uses the OpenZeppelin ERC20Upgradeable implementation.
 */
abstract contract ERC20RebasingUpgradeable is Initializable, ContextUpgradeable, IERC20Rebasing {
    using Math for uint256;

    /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
    struct ERC20Storage {
        mapping(address account => uint256) _sharesBalances;

        // Allowances are nominated in underlying tokens, not shares.
        mapping(address account => mapping(address spender => uint256)) _allowances;

        uint256 _totalSharesSupply;

        string _name;
        string _symbol;

        IERC20Metadata _underlyingToken;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC20_STORAGE_LOCATION = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;

    function _getERC20Storage() private pure returns (ERC20Storage storage $) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            $.slot := ERC20_STORAGE_LOCATION
        }
    }

    /**
     * @dev Sets the values for {name}, {symbol} and {underlyingToken}.
     *
     * All these values are immutable: they can only be set once during
     * construction.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __ERC20Rebasing_init(
        string memory name_,
        string memory symbol_,
        address underlyingTokenAddress_
    ) internal onlyInitializing {
        __ERC20Rebasing_init_unchained(name_, symbol_, underlyingTokenAddress_);
    }

    // solhint-disable-next-line func-name-mixedcase
    function __ERC20Rebasing_init_unchained(
        string memory name_,
        string memory symbol_,
        address underlyingTokenAddress_
    ) internal onlyInitializing {
        ERC20Storage storage $ = _getERC20Storage();
        $._name = name_;
        $._symbol = symbol_;

        if (underlyingTokenAddress_ == address(0)) revert InvalidUnderlyingTokenAddress();
        $._underlyingToken = IERC20Metadata(underlyingTokenAddress_);
        if ($._underlyingToken.decimals() != 18) revert InvalidUnderlyingTokenDecimals();
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory tokenName) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory tokenSymbol) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._symbol;
    }

    /**
     * @dev Returns the decimals places of the rebasing token.
     */
    function decimals() public pure returns (uint8 tokenDecimals) {
        return 18;
    }

    /**
     * @dev Returns the total supply of rebasing tokens, denominated in underlying tokens.
     */
    function totalSupply() public view returns (uint256 totalUnderlyingTokens) {
        return _totalUnderlyingTokens();
    }

    /**
     * @dev Returns the balance of rebasing tokens for a specific account, denominated in underlying tokens.
     */
    function balanceOf(address _account) public view returns (uint256 balance) {
        return convertToUnderlyingToken(sharesOf(_account));
    }

    /**
     * @dev Returns the underlying token
     */
    function underlyingToken() public view returns (IERC20Metadata token) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._underlyingToken;
    }

    /**
     * @dev Moves a `_underlyingTokenAmount` amount of tokens from the caller's account to `_to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event with `_underlyingTokenAmount` as a value
     * Emits a {TransferShares} event with the corresponding number of shares
     *
     * Requirements:
     *
     * - `_to` cannot be the zero address.
     * - the caller must have a balance of at least `_underlyingTokenAmount`.
     *
     * !IMPORTANT!
     * Due to rounding errors when converting the underlying amount to shares, the number of shares transferred
     * may be less than expected. In some cases, the number of shares can be zero if the exchange rate is highly inflated,
     * leading to no change in balances for both the sender and recipient. This function will successfully execute even if
     * the recipient ends up receiving zero shares.
     *
     * To avoid such issues, it is recommended to use the {transferShares} function instead.
     */
    function transfer(address _to, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
        address owner = _msgSender();
        uint256 shares = convertToShares(_underlyingTokenAmount);
        // To ensure accuracy in the `Transfer` event, utilize `convertToUnderlyingToken(shares)`
        // instead of using `_underlyingTokenAmount` as is.
        // This prevents discrepancies between the reported 'value' and the actual token amount transferred
        // due to floor rounding during the conversion to shares.
        _transfer(owner, _to, convertToUnderlyingToken(shares), shares);
        return true;
    }

    /**
     * @dev Moves a `_shares` amount from the caller's account to `_to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event with `_underlyingTokenAmount` as a value
     * Emits a {TransferShares} event with the corresponding number of shares
     *
     * Requirements:
     *
     * - `_to` cannot be the zero address.
     * - the caller must have a balance of at least `_shares`.
     */
    function transferShares(address _to, uint256 _shares) public returns (bool isSuccess) {
        address owner = _msgSender();
        uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
        _transfer(owner, _to, underlyingTokenAmount, _shares);
        return true;
    }

    /**
     * @dev Returns the remaining number of underlying tokens that `_spender` will be
     * allowed to spend on behalf of `_owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address _owner, address _spender) public view returns (uint256 ownerAllowance) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._allowances[_owner][_spender];
    }

    /**
     * @dev Sets a `_underlyingTokenAmount` amount of tokens as the allowance of `_spender` over the
     * caller's tokens.
     *
     * Emits an {Approval} event.
     */
    function approve(address _spender, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
        address owner = _msgSender();
        _approve(owner, _spender, _underlyingTokenAmount);
        return true;
    }

    /**
     * @dev Moves a `_underlyingTokenAmount` amount of tokens from `_from` to `_to` using the
     * allowance mechanism. `_underlyingTokenAmount` is then deducted from the caller's
     * allowance.
     *
     * !IMPORTANT!
     * Due to rounding errors when converting the underlying amount to shares, the number of shares transferred
     * may be less than expected. In some cases, the number of shares can be zero if the exchange rate is highly inflated,
     * leading to no change in balances for both the sender and recipient. This function will successfully execute even if
     * the recipient ends up receiving zero shares. The transferred allowance will be fully consumed even if the recipient
     * receives zero shares (and consequently, zero underlying assets).
     *
     * To avoid such issues, it is recommended to use the {transferSharesFrom} function instead.
     */
    function transferFrom(address _from, address _to, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
        address spender = _msgSender();
        uint256 shares = convertToShares(_underlyingTokenAmount);
        // To ensure accuracy in the `Transfer` event and allowance, utilize `convertToUnderlyingToken(shares)`
        // instead of using `_underlyingTokenAmount` as is.
        // This prevents discrepancies between the reported 'value' and the actual token amount transferred
        // due to floor rounding during the conversion to shares.
        uint256 underlyingTokenAmount = convertToUnderlyingToken(shares);
        _spendAllowance(_from, spender, underlyingTokenAmount);
        _transfer(_from, _to, convertToUnderlyingToken(shares), shares);
        return true;
    }

    /**
     * @dev Moves a `_shares` amount from `_from` to `_to` using the
     * allowance mechanism. `_underlyingTokenAmount` is then deducted from the caller's
     * allowance.
     */
    function transferSharesFrom(address _from, address _to, uint256 _shares) public returns (bool isSuccess) {
        address spender = _msgSender();
        uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
        _spendAllowance(_from, spender, underlyingTokenAmount);
        _transfer(_from, _to, underlyingTokenAmount, _shares);
        return true;
    }

    /**
     * @dev Moves a `_underlyingTokenAmount` of tokens from `_from` to `_to`.
     *
     * Emits a {Transfer} event with `_underlyingTokenAmount` as a value
     * Emits a {TransferShares} event with the corresponding number of shares
     */
    function _transfer(address _from, address _to, uint256 _underlyingTokenAmount, uint256 _shares) internal {
        if (_from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (_to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(_from, _to, _underlyingTokenAmount, _shares);
    }

    /**
     * @dev Transfers a `_underlyingTokenAmount` of tokens from `_from` to `_to`, or alternatively mints (or burns) if `_from`
     * (or `_to`) is the zero address.
     *
     * Emits a {Transfer} event with `_underlyingTokenAmount` as a value
     * Emits a {TransferShares} event with the corresponding number of shares
     */
    function _update(address _from, address _to, uint256 _underlyingTokenAmount, uint256 _shares) internal {
        ERC20Storage storage $ = _getERC20Storage();
        if (_from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSharesSupply never overflows
            $._totalSharesSupply += _shares;
        } else {
            uint256 fromBalance = $._sharesBalances[_from];
            if (fromBalance < _shares) {
                revert ERC20InsufficientBalance(_from, fromBalance, _shares);
            }
            unchecked {
            // Overflow not possible: shares <= fromBalance <= totalSharesSupply.
                $._sharesBalances[_from] = fromBalance - _shares;
            }
        }

        if (_to == address(0)) {
            unchecked {
            // Overflow not possible: shares <= totalSharesSupply or shares <= fromBalance <= totalSharesSupply.
                $._totalSharesSupply -= _shares;
            }
        } else {
            unchecked {
            // Overflow not possible: sharesBalances + shares is at most totalSharesSupply, which we know fits into a uint256.
                $._sharesBalances[_to] += _shares;
            }
        }

        emit Transfer(_from, _to, _underlyingTokenAmount);
        emit TransferShares(_from, _to, _shares);
    }

    /**
     * @dev Creates a `_shares` amount of tokens and assigns them to `_account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `_from` set to the zero address.
     *
     */
    function _mint(address _account, uint256 _shares) internal {
        if (_account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
        _update(address(0), _account, underlyingTokenAmount, _shares);
    }

    /**
     * @dev Destroys a `_shares` amount of tokens from `_account`, lowering the total shares supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `_to` set to the zero address.
     */
    function _burn(address _account, uint256 _shares) internal {
        if (_account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
        _update(_account, address(0), underlyingTokenAmount, _shares);
    }

    /**
     * @dev Sets `_underlyingTokenAmount` as the allowance of `_spender` over the `_owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address _owner, address _spender, uint256 _underlyingTokenAmount) internal {
        _approve(_owner, _spender, _underlyingTokenAmount, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address _owner, address _spender, uint256 _underlyingTokenAmount, bool _emitEvent) internal {
        ERC20Storage storage $ = _getERC20Storage();
        if (_owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (_spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        $._allowances[_owner][_spender] = _underlyingTokenAmount;
        if (_emitEvent) {
            emit Approval(_owner, _spender, _underlyingTokenAmount);
        }
    }

    /**
     * @dev Updates `_owner` s allowance for `_spender` based on spent `_underlyingTokenAmount`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address _owner, address _spender, uint256 _underlyingTokenAmount) internal {
        uint256 currentAllowance = allowance(_owner, _spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < _underlyingTokenAmount) {
                revert ERC20InsufficientAllowance(_spender, currentAllowance, _underlyingTokenAmount);
            }
            unchecked {
                _approve(_owner, _spender, currentAllowance - _underlyingTokenAmount, false);
            }
        }
    }

    /*
    * @dev Returns the total number of shares.
    */
    function totalShares() public view returns (uint256 shares) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._totalSharesSupply;
    }

    /*
    * @dev Returns the number of shares owned by a specific account.
    */
    function sharesOf(address _account) public view returns (uint256 shares) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._sharesBalances[_account];
    }

    function convertToShares(uint256 _underlyingTokenAmount) public view returns (uint256 shares) {
        return _convertToShares(_underlyingTokenAmount, Math.Rounding.Floor);
    }

    function convertToUnderlyingToken(uint256 _shares) public view returns (uint256 underlyingTokenAmount) {
        return _convertToUnderlyingToken(_shares, Math.Rounding.Floor);
    }

    function _convertToShares(
        uint256 _underlyingTokenAmount,
        Math.Rounding _rounding
    ) internal view returns (uint256 shares) {
        return _underlyingTokenAmount.mulDiv(totalShares() + 1000, _totalUnderlyingTokens() + 1, _rounding);
    }

    function _convertToUnderlyingToken(
        uint256 _shares,
        Math.Rounding _rounding
    ) internal view returns (uint256 underlyingTokenAmount) {
        return _shares.mulDiv(_totalUnderlyingTokens() + 1, totalShares() + 1000, _rounding);
    }

    function _totalUnderlyingTokens() internal view returns (uint256 underlyingTokenAmount) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._underlyingToken.balanceOf(address(this));
    }
}
/* solhint-disable defi-wonderland/wonder-var-name-mixedcase */
IERC20Rebasing.sol 27 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";

interface IERC20Rebasing is IERC20, IERC20Metadata, IERC20Errors {
    event TransferShares(address indexed _from, address indexed _to, uint256 _shares);

    error InvalidUnderlyingTokenDecimals();
    error InvalidUnderlyingTokenAddress();

    function underlyingToken() external view returns (IERC20Metadata token);

    function transferShares(address _to, uint256 _shares) external returns (bool isSuccess);

    function transferSharesFrom(address _from, address _to, uint256 _shares) external returns (bool isSuccess);

    function totalShares() external view returns (uint256 shares);

    function sharesOf(address _account) external view returns (uint256 shares);

    function convertToShares(uint256 _underlyingTokenAmount) external view returns (uint256 shares);

    function convertToUnderlyingToken(uint256 _shares) external view returns (uint256 underlyingTokenAmount);
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
ERC20RebasingPermitUpgradeable.sol 92 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712Upgradeable} from "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
import {NoncesUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/NoncesUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {ERC20RebasingUpgradeable} from "./ERC20RebasingUpgradeable.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * The contract uses the OpenZeppelin ERC20PermitUpgradeable implementation.
 */
abstract contract ERC20RebasingPermitUpgradeable is Initializable, ERC20RebasingUpgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
    bytes32 private constant PERMIT_TYPEHASH =
    keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 _deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address _signer, address _owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __ERC20RebasingPermit_init(string memory name) internal onlyInitializing {
        __EIP712_init_unchained(name, "1");
    }

    // solhint-disable-next-line func-name-mixedcase, no-empty-blocks
    function __ERC20RebasingPermit_init_unchained(string memory) internal onlyInitializing {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address _owner,
        address _spender,
        uint256 _value,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) public virtual {
        if (block.timestamp > _deadline) {
            revert ERC2612ExpiredSignature(_deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, _owner, _spender, _value, _useNonce(_owner), _deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, _v, _r, _s);
        if (signer != _owner) {
            revert ERC2612InvalidSigner(signer, _owner);
        }

        _approve(_owner, _spender, _value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(
        address _owner
    ) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256 currentNonce) {
        return super.nonces(_owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32 domainSeparator) {
        return _domainSeparatorV4();
    }
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}
NoncesUpgradeable.sol 66 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract NoncesUpgradeable is Initializable {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    /// @custom:storage-location erc7201:openzeppelin.storage.Nonces
    struct NoncesStorage {
        mapping(address account => uint256) _nonces;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;

    function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
        assembly {
            $.slot := NoncesStorageLocation
        }
    }

    function __Nonces_init() internal onlyInitializing {
    }

    function __Nonces_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        NoncesStorage storage $ = _getNoncesStorage();
        return $._nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        NoncesStorage storage $ = _getNoncesStorage();
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return $._nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
ContextUpgradeable.sol 34 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
Initializable.sol 228 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
EIP712Upgradeable.sol 210 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267 {
    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:storage-location erc7201:openzeppelin.storage.EIP712
    struct EIP712Storage {
        /// @custom:oz-renamed-from _HASHED_NAME
        bytes32 _hashedName;
        /// @custom:oz-renamed-from _HASHED_VERSION
        bytes32 _hashedVersion;

        string _name;
        string _version;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;

    function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
        assembly {
            $.slot := EIP712StorageLocation
        }
    }

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        EIP712Storage storage $ = _getEIP712Storage();
        $._name = name;
        $._version = version;

        // Reset prior values in storage if upgrading
        $._hashedName = 0;
        $._hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        EIP712Storage storage $ = _getEIP712Storage();
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal view virtual returns (string memory) {
        EIP712Storage storage $ = _getEIP712Storage();
        return $._version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = $._hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        EIP712Storage storage $ = _getEIP712Storage();
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = $._hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }
}

Read Contract

DOMAIN_SEPARATOR 0x3644e515 → bytes32
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
convertToShares 0xc6e6f592 → uint256
convertToUnderlyingToken 0xffbc2756 → uint256
decimals 0x313ce567 → uint8
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
previewDeposit 0xef8b30f7 → uint256
previewWithdraw 0x0a28a477 → uint256
sharesOf 0xf5eb42dc → uint256
symbol 0x95d89b41 → string
totalShares 0x3a98ef39 → uint256
totalSupply 0x18160ddd → uint256
underlyingToken 0x2495a599 → address

Write Contract 14 functions

These functions modify contract state and require a wallet transaction to execute.

approve 0x095ea7b3
address _spender
uint256 _underlyingTokenAmount
returns: bool
deposit 0x6e553f65
uint256 _usrAmount
address _receiver
deposit 0xb6b55f25
uint256 _usrAmount
depositWithPermit 0x4a970be7
uint256 _usrAmount
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
depositWithPermit 0x50921b23
uint256 _usrAmount
address _receiver
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
initialize 0x077f224a
string _name
string _symbol
address _usrAddress
permit 0xd505accf
address _owner
address _spender
uint256 _value
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
transfer 0xa9059cbb
address _to
uint256 _underlyingTokenAmount
returns: bool
transferFrom 0x23b872dd
address _from
address _to
uint256 _underlyingTokenAmount
returns: bool
transferShares 0x8fcb4e5b
address _to
uint256 _shares
returns: bool
transferSharesFrom 0x6d780459
address _from
address _to
uint256 _shares
returns: bool
withdraw 0x00f714ce
uint256 _usrAmount
address _receiver
withdraw 0x2e1a7d4d
uint256 _usrAmount
withdrawAll 0x853828b6
No parameters

Recent Transactions

No transactions found for this address