Address Contract Verified
Address
0xba1600735a039E2b3bF1d1d2f1A7f80F45973DA7
Balance
0 ETH
Nonce
1
Code Size
10724 bytes
Creator
0x8729dAE4...58BC at tx 0x0de47a97...e19451
Indexed Transactions
0
Contract Bytecode
10724 bytes
0x608060405234801561001057600080fd5b50600436106101d95760003560e01c80636e553f6511610104578063a9059cbb116100a2578063dd62ed3e11610071578063dd62ed3e14610417578063ef8b30f7146103f1578063f5eb42dc1461047c578063ffbc27561461048f57600080fd5b8063a9059cbb146103cb578063b6b55f25146103de578063c6e6f592146103f1578063d505accf1461040457600080fd5b806384b0196e116100de57806384b0196e1461038d578063853828b6146103a85780638fcb4e5b146103b057806395d89b41146103c357600080fd5b80636e553f651461035457806370a08231146103675780637ecebe001461037a57600080fd5b80632495a5991161017c5780633a98ef391161014b5780633a98ef39146102f45780634a970be71461031b57806350921b231461032e5780636d7804591461034157600080fd5b80632495a599146102835780632e1a7d4d146102ca578063313ce567146102dd5780633644e515146102ec57600080fd5b8063095ea7b3116101b8578063095ea7b3146102245780630a28a4771461024757806318160ddd1461026857806323b872dd1461027057600080fd5b8062f714ce146101de57806306fdde03146101f3578063077f224a14610211575b600080fd5b6101f16101ec3660046121fc565b6104a2565b005b6101fb610576565b6040516102089190612296565b60405180910390f35b6101f161021f366004612383565b610631565b6102376102323660046123f7565b6107be565b6040519015158152602001610208565b61025a610255366004612421565b6107d8565b604051908152602001610208565b61025a6107e5565b61023761027e36600461243a565b6107f4565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055460405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610208565b6101f16102d8366004612421565b61083e565b60405160128152602001610208565b61025a61084b565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025461025a565b6101f1610329366004612485565b610855565b6101f161033c3660046124ce565b61086a565b61023761034f36600461243a565b61095d565b6101f16103623660046121fc565b61098f565b61025a610375366004612528565b610a9c565b61025a610388366004612528565b610aaa565b610395610ab5565b6040516102089796959493929190612543565b6101f1610bb1565b6102376103be3660046123f7565b610bc5565b6101fb610beb565b6102376103d93660046123f7565b610c3c565b6101f16103ec366004612421565b610c5f565b61025a6103ff366004612421565b610c69565b6101f1610412366004612605565b610c76565b61025a610425366004612672565b73ffffffffffffffffffffffffffffffffffffffff91821660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace016020908152604080832093909416825291909152205490565b61025a61048a366004612528565b610e42565b61025a61049d366004612421565b610e94565b60006104ad836107d8565b90506104b93382610ea1565b60006104f97f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b905061051c73ffffffffffffffffffffffffffffffffffffffff82168486610f10565b604080518581526020810184905273ffffffffffffffffffffffffffffffffffffffff85169133917ff341246adaac6f497bc2a656f546ab9e182111d630394f0c57c710a59a2cb56791015b60405180910390a350505050565b606060007f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace005b90508060030180546105ad9061269c565b80601f01602080910402602001604051908101604052809291908181526020018280546105d99061269c565b80156106265780601f106105fb57610100808354040283529160200191610626565b820191906000526020600020905b81548152906001019060200180831161060957829003601f168201915b505050505091505090565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000810460ff16159067ffffffffffffffff1660008115801561067c5750825b905060008267ffffffffffffffff1660011480156106995750303b155b9050811580156106a7575080155b156106de576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84547fffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000166001178555831561073f5784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff16680100000000000000001785555b61074a888888610f91565b61075388610fa4565b83156107b45784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b6000336107cc818585610feb565b60019150505b92915050565b60006107d2826001610ff8565b60006107ef61104d565b905090565b6000338161080184610c69565b9050600061080e82610e94565b905061081b87848361110c565b61082f878761082985610e94565b856111fa565b600193505050505b9392505050565b61084881336104a2565b50565b60006107ef6112a6565b61086385338686868661086a565b5050505050565b60006108aa7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fd505accf000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018990526064810187905260ff8616608482015260a4810185905260c48101849052909150819073ffffffffffffffffffffffffffffffffffffffff82169063d505accf9060e401600060405180830381600087803b15801561094157600080fd5b505af1925050508015610952575060015b506107b4888861098f565b6000338161096a84610e94565b905061097786838361110c565b610983868683876111fa565b50600195945050505050565b600061099a83610c69565b9050806000036109de576040517f412ed242000000000000000000000000000000000000000000000000000000008152600481018490526024015b60405180910390fd5b6000610a1e7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace055473ffffffffffffffffffffffffffffffffffffffff1690565b9050610a2a83836112b0565b610a4c73ffffffffffffffffffffffffffffffffffffffff821633308761131a565b604080518581526020810184905273ffffffffffffffffffffffffffffffffffffffff85169133917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d79101610568565b60006107d261049d83610e42565b60006107d282611360565b600060608082808083817fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1008054909150158015610af457506001810154155b610b5a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601560248201527f4549503731323a20556e696e697469616c697a6564000000000000000000000060448201526064016109d5565b610b62611389565b610b6a6113da565b604080516000808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009c939b5091995046985030975095509350915050565b610bc3610bbd33610a9c565b336104a2565b565b60003381610bd284610e94565b9050610be0828683876111fa565b506001949350505050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0480546060917f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00916105ad9061269c565b60003381610c4984610c69565b9050610be08286610c5984610e94565b846111fa565b610848813361098f565b60006107d2826000610ff8565b83421115610cb3576040517f62791302000000000000000000000000000000000000000000000000000000008152600481018590526024016109d5565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610d2c8c73ffffffffffffffffffffffffffffffffffffffff1660009081527f5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb006020526040902080546001810190915590565b60408051602081019690965273ffffffffffffffffffffffffffffffffffffffff94851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090506000610d9482611404565b90506000610da48287878761144c565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610e2b576040517f4b800e4600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff80831660048301528b1660248201526044016109d5565b610e368a8a8a610feb565b50505050505050505050565b6000807f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace005b73ffffffffffffffffffffffffffffffffffffffff90931660009081526020939093525050604090205490565b60006107d282600061147a565b73ffffffffffffffffffffffffffffffffffffffff8216610ef1576040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b6000610efc82610e94565b9050610f0b83600083856114c0565b505050565b60405173ffffffffffffffffffffffffffffffffffffffff838116602483015260448201839052610f0b91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff83818316178352505050506116f9565b610f9961178f565b610f0b8383836117f6565b610fac61178f565b610848816040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506119a0565b610f0b8383836001611a13565b60006108376110257f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025490565b611031906103e86126ef565b61103961104d565b6110449060016126ef565b85919085611b70565b6000807f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0060058101546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015291925073ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156110e2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111069190612729565b91505090565b73ffffffffffffffffffffffffffffffffffffffff83811660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0160209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146111f457818110156111e5576040517ffb8f41b200000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015260248101829052604481018390526064016109d5565b6111f484848484036000611a13565b50505050565b73ffffffffffffffffffffffffffffffffffffffff841661124a576040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff831661129a576040517fec442f05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b6111f4848484846114c0565b60006107ef611bc1565b73ffffffffffffffffffffffffffffffffffffffff8216611300576040517fec442f05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b600061130b82610e94565b9050610f0b60008483856114c0565b60405173ffffffffffffffffffffffffffffffffffffffff84811660248301528381166044830152606482018390526111f49186918216906323b872dd90608401610f4a565b6000807f5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00610e67565b7fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10280546060917fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100916105ad9061269c565b606060007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10061059c565b60006107d26114116112a6565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b60008060008061145e88888888611c35565b92509250925061146e8282611d2f565b50909695505050505050565b600061083761148761104d565b6114929060016126ef565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0254611044906103e86126ef565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0073ffffffffffffffffffffffffffffffffffffffff851661151b578181600201600082825461151091906126ef565b909155506115cd9050565b73ffffffffffffffffffffffffffffffffffffffff8516600090815260208290526040902054828110156115a1576040517fe450d38c00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8716600482015260248101829052604481018490526064016109d5565b73ffffffffffffffffffffffffffffffffffffffff861660009081526020839052604090209083900390555b73ffffffffffffffffffffffffffffffffffffffff84166115f8576002810180548390039055611624565b73ffffffffffffffffffffffffffffffffffffffff841660009081526020829052604090208054830190555b8373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161168391815260200190565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167f9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb846040516116ea91815260200190565b60405180910390a35050505050565b600061171b73ffffffffffffffffffffffffffffffffffffffff841683611e37565b9050805160001415801561174057508080602001905181019061173e9190612742565b155b15610f0b576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201526024016109d5565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005468010000000000000000900460ff16610bc3576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6117fe61178f565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace007f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0361184a85826127b4565b506004810161185984826127b4565b5073ffffffffffffffffffffffffffffffffffffffff82166118a7576040517f887036dd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6005810180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8416908117909155604080517f313ce567000000000000000000000000000000000000000000000000000000008152905163313ce567916004808201926020929091908290030181865afa158015611940573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061196491906128ce565b60ff166012146111f4576040517fd6c7138800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6119a861178f565b7fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d1026119f484826127b4565b5060038101611a0383826127b4565b5060008082556001909101555050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0073ffffffffffffffffffffffffffffffffffffffff8516611a84576040517fe602df05000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff8416611ad4576040517f94280d62000000000000000000000000000000000000000000000000000000008152600060048201526024016109d5565b73ffffffffffffffffffffffffffffffffffffffff808616600090815260018301602090815260408083209388168352929052208390558115610863578373ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925856040516116ea91815260200190565b600080611b7e868686611e45565b9050611b8983611f40565b8015611ba5575060008480611ba057611ba06128eb565b868809115b15611bb857611bb56001826126ef565b90505b95945050505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f611bec611f6d565b611bf4611fe9565b60408051602081019490945283019190915260608201524660808201523060a082015260c00160405160208183030381529060405280519060200120905090565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115611c705750600091506003905082611d25565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015611cc4573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116611d1b57506000925060019150829050611d25565b9250600091508190505b9450945094915050565b6000826003811115611d4357611d4361291a565b03611d4c575050565b6001826003811115611d6057611d6061291a565b03611d97576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115611dab57611dab61291a565b03611de5576040517ffce698f7000000000000000000000000000000000000000000000000000000008152600481018290526024016109d5565b6003826003811115611df957611df961291a565b03611e33576040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600481018290526024016109d5565b5050565b60606108378383600061203f565b6000838302817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098281108382030391505080600003611e9a57838281611e9057611e906128eb565b0492505050610837565b808411611ed3576040517f227bc15300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b60006002826003811115611f5657611f5661291a565b611f609190612949565b60ff166001149050919050565b60007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d10081611f99611389565b805190915015611fb157805160209091012092915050565b81548015611fc0579392505050565b7fc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470935050505090565b60007fa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100816120156113da565b80519091501561202d57805160209091012092915050565b60018201548015611fc0579392505050565b60608147101561207d576040517fcd7860590000000000000000000000000000000000000000000000000000000081523060048201526024016109d5565b6000808573ffffffffffffffffffffffffffffffffffffffff1684866040516120a69190612992565b60006040518083038185875af1925050503d80600081146120e3576040519150601f19603f3d011682016040523d82523d6000602084013e6120e8565b606091505b50915091506120f8868383612102565b9695505050505050565b6060826121175761211282612191565b610837565b815115801561213b575073ffffffffffffffffffffffffffffffffffffffff84163b155b1561218a576040517f9996b31500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016109d5565b5080610837565b8051156121a15780518082602001fd5b6040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b803573ffffffffffffffffffffffffffffffffffffffff811681146121f757600080fd5b919050565b6000806040838503121561220f57600080fd5b8235915061221f602084016121d3565b90509250929050565b60005b8381101561224357818101518382015260200161222b565b50506000910152565b60008151808452612264816020860160208601612228565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000610837602083018461224c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b600082601f8301126122e957600080fd5b813567ffffffffffffffff80821115612304576123046122a9565b604051601f83017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190828211818310171561234a5761234a6122a9565b8160405283815286602085880101111561236357600080fd5b836020870160208301376000602085830101528094505050505092915050565b60008060006060848603121561239857600080fd5b833567ffffffffffffffff808211156123b057600080fd5b6123bc878388016122d8565b945060208601359150808211156123d257600080fd5b506123df868287016122d8565b9250506123ee604085016121d3565b90509250925092565b6000806040838503121561240a57600080fd5b612413836121d3565b946020939093013593505050565b60006020828403121561243357600080fd5b5035919050565b60008060006060848603121561244f57600080fd5b612458846121d3565b9250612466602085016121d3565b9150604084013590509250925092565b60ff8116811461084857600080fd5b600080600080600060a0868803121561249d57600080fd5b853594506020860135935060408601356124b681612476565b94979396509394606081013594506080013592915050565b60008060008060008060c087890312156124e757600080fd5b863595506124f7602088016121d3565b945060408701359350606087013561250e81612476565b9598949750929560808101359460a0909101359350915050565b60006020828403121561253a57600080fd5b610837826121d3565b7fff00000000000000000000000000000000000000000000000000000000000000881681526000602060e0602084015261258060e084018a61224c565b8381036040850152612592818a61224c565b6060850189905273ffffffffffffffffffffffffffffffffffffffff8816608086015260a0850187905284810360c08601528551808252602080880193509091019060005b818110156125f3578351835292840192918401916001016125d7565b50909c9b505050505050505050505050565b600080600080600080600060e0888a03121561262057600080fd5b612629886121d3565b9650612637602089016121d3565b95506040880135945060608801359350608088013561265581612476565b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561268557600080fd5b61268e836121d3565b915061221f602084016121d3565b600181811c908216806126b057607f821691505b6020821081036126e9577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b808201808211156107d2577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60006020828403121561273b57600080fd5b5051919050565b60006020828403121561275457600080fd5b8151801515811461083757600080fd5b601f821115610f0b576000816000526020600020601f850160051c8101602086101561278d5750805b601f850160051c820191505b818110156127ac57828155600101612799565b505050505050565b815167ffffffffffffffff8111156127ce576127ce6122a9565b6127e2816127dc845461269c565b84612764565b602080601f83116001811461283557600084156127ff5750858301515b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600386901b1c1916600185901b1785556127ac565b6000858152602081207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08616915b8281101561288257888601518255948401946001909101908401612863565b50858210156128be57878501517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600388901b60f8161c191681555b5050505050600190811b01905550565b6000602082840312156128e057600080fd5b815161083781612476565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600060ff831680612983577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b8060ff84160691505092915050565b600082516129a4818460208701612228565b919091019291505056fea2646970667358221220b0f3eb6e105b6395f35c90533e932c9741798d46cbcfb25adee8c4918a4455be64736f6c63430008190033
Verified Source Code Full Match
Compiler: v0.8.25+commit.b61c2a91
EVM: paris
Optimization: Yes (20000 runs)
StUSR.sol 94 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {ERC20RebasingPermitUpgradeable} from "./ERC20RebasingPermitUpgradeable.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IStUSR} from "./interfaces/IStUSR.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
contract StUSR is ERC20RebasingPermitUpgradeable, IStUSR {
using Math for uint256;
using SafeERC20 for IERC20Metadata;
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(
string memory _name,
string memory _symbol,
address _usrAddress
) public initializer {
__ERC20Rebasing_init(_name, _symbol, _usrAddress);
__ERC20RebasingPermit_init(_name);
}
function deposit(uint256 _usrAmount, address _receiver) public {
uint256 shares = previewDeposit(_usrAmount);
//slither-disable-next-line incorrect-equality
if (shares == 0) revert InvalidDepositAmount(_usrAmount);
IERC20Metadata usr = super.underlyingToken();
super._mint(_receiver, shares);
usr.safeTransferFrom(msg.sender, address(this), _usrAmount);
emit Deposit(msg.sender, _receiver, _usrAmount, shares);
}
function deposit(uint256 _usrAmount) external {
deposit(_usrAmount, msg.sender);
}
function depositWithPermit(
uint256 _usrAmount,
address _receiver,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) public {
IERC20Metadata usr = super.underlyingToken();
IERC20Permit usrPermit = IERC20Permit(address(usr));
// the use of `try/catch` allows the permit to fail and makes the code tolerant to frontrunning.
// solhint-disable-next-line no-empty-blocks
try usrPermit.permit(msg.sender, address(this), _usrAmount, _deadline, _v, _r, _s) {} catch {}
deposit(_usrAmount, _receiver);
}
function depositWithPermit(
uint256 _usrAmount,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) external {
depositWithPermit(_usrAmount, msg.sender, _deadline, _v, _r, _s);
}
function withdraw(uint256 _usrAmount) external {
withdraw(_usrAmount, msg.sender);
}
function withdrawAll() external {
withdraw(super.balanceOf(msg.sender), msg.sender);
}
function withdraw(uint256 _usrAmount, address _receiver) public {
uint256 shares = previewWithdraw(_usrAmount);
super._burn(msg.sender, shares);
IERC20Metadata usr = super.underlyingToken();
usr.safeTransfer(_receiver, _usrAmount);
emit Withdraw(msg.sender, _receiver, _usrAmount, shares);
}
function previewDeposit(uint256 _usrAmount) public view returns (uint256 shares) {
return _convertToShares(_usrAmount, Math.Rounding.Floor);
}
function previewWithdraw(uint256 _usrAmount) public view returns (uint256 shares) {
return _convertToShares(_usrAmount, Math.Rounding.Ceil);
}
}
IStUSR.sol 41 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
interface IStUSR {
event Deposit(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);
event Withdraw(address indexed _sender, address indexed _receiver, uint256 _usrAmount, uint256 _shares);
error InvalidDepositAmount(uint256 _usrAmount);
function deposit(uint256 _usrAmount, address _receiver) external;
function deposit(uint256 _usrAmount) external;
function depositWithPermit(
uint256 _usrAmount,
address _receiver,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) external;
function depositWithPermit(
uint256 _usrAmount,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) external;
function withdraw(uint256 _usrAmount, address _receiver) external;
function withdraw(uint256 _usrAmount) external;
function withdrawAll() external;
function previewDeposit(uint256 _usrAmount) external view returns (uint256 shares);
function previewWithdraw(uint256 _usrAmount) external view returns (uint256 shares);
}
ERC20RebasingUpgradeable.sol 423 lines
// SPDX-License-Identifier: MIT
/* solhint-disable defi-wonderland/wonder-var-name-mixedcase */
pragma solidity ^0.8.25;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20Rebasing} from "./interfaces/IERC20Rebasing.sol";
/**
* @title ERC20RebasingUpgradeable
* @dev This contract is an ERC20-like token that uses a rebasing mechanism.
* The contract uses the OpenZeppelin ERC20Upgradeable implementation.
*/
abstract contract ERC20RebasingUpgradeable is Initializable, ContextUpgradeable, IERC20Rebasing {
using Math for uint256;
/// @custom:storage-location erc7201:openzeppelin.storage.ERC20
struct ERC20Storage {
mapping(address account => uint256) _sharesBalances;
// Allowances are nominated in underlying tokens, not shares.
mapping(address account => mapping(address spender => uint256)) _allowances;
uint256 _totalSharesSupply;
string _name;
string _symbol;
IERC20Metadata _underlyingToken;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ERC20_STORAGE_LOCATION = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;
function _getERC20Storage() private pure returns (ERC20Storage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := ERC20_STORAGE_LOCATION
}
}
/**
* @dev Sets the values for {name}, {symbol} and {underlyingToken}.
*
* All these values are immutable: they can only be set once during
* construction.
*/
// solhint-disable-next-line func-name-mixedcase
function __ERC20Rebasing_init(
string memory name_,
string memory symbol_,
address underlyingTokenAddress_
) internal onlyInitializing {
__ERC20Rebasing_init_unchained(name_, symbol_, underlyingTokenAddress_);
}
// solhint-disable-next-line func-name-mixedcase
function __ERC20Rebasing_init_unchained(
string memory name_,
string memory symbol_,
address underlyingTokenAddress_
) internal onlyInitializing {
ERC20Storage storage $ = _getERC20Storage();
$._name = name_;
$._symbol = symbol_;
if (underlyingTokenAddress_ == address(0)) revert InvalidUnderlyingTokenAddress();
$._underlyingToken = IERC20Metadata(underlyingTokenAddress_);
if ($._underlyingToken.decimals() != 18) revert InvalidUnderlyingTokenDecimals();
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory tokenName) {
ERC20Storage storage $ = _getERC20Storage();
return $._name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory tokenSymbol) {
ERC20Storage storage $ = _getERC20Storage();
return $._symbol;
}
/**
* @dev Returns the decimals places of the rebasing token.
*/
function decimals() public pure returns (uint8 tokenDecimals) {
return 18;
}
/**
* @dev Returns the total supply of rebasing tokens, denominated in underlying tokens.
*/
function totalSupply() public view returns (uint256 totalUnderlyingTokens) {
return _totalUnderlyingTokens();
}
/**
* @dev Returns the balance of rebasing tokens for a specific account, denominated in underlying tokens.
*/
function balanceOf(address _account) public view returns (uint256 balance) {
return convertToUnderlyingToken(sharesOf(_account));
}
/**
* @dev Returns the underlying token
*/
function underlyingToken() public view returns (IERC20Metadata token) {
ERC20Storage storage $ = _getERC20Storage();
return $._underlyingToken;
}
/**
* @dev Moves a `_underlyingTokenAmount` amount of tokens from the caller's account to `_to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event with `_underlyingTokenAmount` as a value
* Emits a {TransferShares} event with the corresponding number of shares
*
* Requirements:
*
* - `_to` cannot be the zero address.
* - the caller must have a balance of at least `_underlyingTokenAmount`.
*
* !IMPORTANT!
* Due to rounding errors when converting the underlying amount to shares, the number of shares transferred
* may be less than expected. In some cases, the number of shares can be zero if the exchange rate is highly inflated,
* leading to no change in balances for both the sender and recipient. This function will successfully execute even if
* the recipient ends up receiving zero shares.
*
* To avoid such issues, it is recommended to use the {transferShares} function instead.
*/
function transfer(address _to, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
address owner = _msgSender();
uint256 shares = convertToShares(_underlyingTokenAmount);
// To ensure accuracy in the `Transfer` event, utilize `convertToUnderlyingToken(shares)`
// instead of using `_underlyingTokenAmount` as is.
// This prevents discrepancies between the reported 'value' and the actual token amount transferred
// due to floor rounding during the conversion to shares.
_transfer(owner, _to, convertToUnderlyingToken(shares), shares);
return true;
}
/**
* @dev Moves a `_shares` amount from the caller's account to `_to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event with `_underlyingTokenAmount` as a value
* Emits a {TransferShares} event with the corresponding number of shares
*
* Requirements:
*
* - `_to` cannot be the zero address.
* - the caller must have a balance of at least `_shares`.
*/
function transferShares(address _to, uint256 _shares) public returns (bool isSuccess) {
address owner = _msgSender();
uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
_transfer(owner, _to, underlyingTokenAmount, _shares);
return true;
}
/**
* @dev Returns the remaining number of underlying tokens that `_spender` will be
* allowed to spend on behalf of `_owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address _owner, address _spender) public view returns (uint256 ownerAllowance) {
ERC20Storage storage $ = _getERC20Storage();
return $._allowances[_owner][_spender];
}
/**
* @dev Sets a `_underlyingTokenAmount` amount of tokens as the allowance of `_spender` over the
* caller's tokens.
*
* Emits an {Approval} event.
*/
function approve(address _spender, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
address owner = _msgSender();
_approve(owner, _spender, _underlyingTokenAmount);
return true;
}
/**
* @dev Moves a `_underlyingTokenAmount` amount of tokens from `_from` to `_to` using the
* allowance mechanism. `_underlyingTokenAmount` is then deducted from the caller's
* allowance.
*
* !IMPORTANT!
* Due to rounding errors when converting the underlying amount to shares, the number of shares transferred
* may be less than expected. In some cases, the number of shares can be zero if the exchange rate is highly inflated,
* leading to no change in balances for both the sender and recipient. This function will successfully execute even if
* the recipient ends up receiving zero shares. The transferred allowance will be fully consumed even if the recipient
* receives zero shares (and consequently, zero underlying assets).
*
* To avoid such issues, it is recommended to use the {transferSharesFrom} function instead.
*/
function transferFrom(address _from, address _to, uint256 _underlyingTokenAmount) public returns (bool isSuccess) {
address spender = _msgSender();
uint256 shares = convertToShares(_underlyingTokenAmount);
// To ensure accuracy in the `Transfer` event and allowance, utilize `convertToUnderlyingToken(shares)`
// instead of using `_underlyingTokenAmount` as is.
// This prevents discrepancies between the reported 'value' and the actual token amount transferred
// due to floor rounding during the conversion to shares.
uint256 underlyingTokenAmount = convertToUnderlyingToken(shares);
_spendAllowance(_from, spender, underlyingTokenAmount);
_transfer(_from, _to, convertToUnderlyingToken(shares), shares);
return true;
}
/**
* @dev Moves a `_shares` amount from `_from` to `_to` using the
* allowance mechanism. `_underlyingTokenAmount` is then deducted from the caller's
* allowance.
*/
function transferSharesFrom(address _from, address _to, uint256 _shares) public returns (bool isSuccess) {
address spender = _msgSender();
uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
_spendAllowance(_from, spender, underlyingTokenAmount);
_transfer(_from, _to, underlyingTokenAmount, _shares);
return true;
}
/**
* @dev Moves a `_underlyingTokenAmount` of tokens from `_from` to `_to`.
*
* Emits a {Transfer} event with `_underlyingTokenAmount` as a value
* Emits a {TransferShares} event with the corresponding number of shares
*/
function _transfer(address _from, address _to, uint256 _underlyingTokenAmount, uint256 _shares) internal {
if (_from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (_to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(_from, _to, _underlyingTokenAmount, _shares);
}
/**
* @dev Transfers a `_underlyingTokenAmount` of tokens from `_from` to `_to`, or alternatively mints (or burns) if `_from`
* (or `_to`) is the zero address.
*
* Emits a {Transfer} event with `_underlyingTokenAmount` as a value
* Emits a {TransferShares} event with the corresponding number of shares
*/
function _update(address _from, address _to, uint256 _underlyingTokenAmount, uint256 _shares) internal {
ERC20Storage storage $ = _getERC20Storage();
if (_from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSharesSupply never overflows
$._totalSharesSupply += _shares;
} else {
uint256 fromBalance = $._sharesBalances[_from];
if (fromBalance < _shares) {
revert ERC20InsufficientBalance(_from, fromBalance, _shares);
}
unchecked {
// Overflow not possible: shares <= fromBalance <= totalSharesSupply.
$._sharesBalances[_from] = fromBalance - _shares;
}
}
if (_to == address(0)) {
unchecked {
// Overflow not possible: shares <= totalSharesSupply or shares <= fromBalance <= totalSharesSupply.
$._totalSharesSupply -= _shares;
}
} else {
unchecked {
// Overflow not possible: sharesBalances + shares is at most totalSharesSupply, which we know fits into a uint256.
$._sharesBalances[_to] += _shares;
}
}
emit Transfer(_from, _to, _underlyingTokenAmount);
emit TransferShares(_from, _to, _shares);
}
/**
* @dev Creates a `_shares` amount of tokens and assigns them to `_account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `_from` set to the zero address.
*
*/
function _mint(address _account, uint256 _shares) internal {
if (_account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
_update(address(0), _account, underlyingTokenAmount, _shares);
}
/**
* @dev Destroys a `_shares` amount of tokens from `_account`, lowering the total shares supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `_to` set to the zero address.
*/
function _burn(address _account, uint256 _shares) internal {
if (_account == address(0)) {
revert ERC20InvalidSender(address(0));
}
uint256 underlyingTokenAmount = convertToUnderlyingToken(_shares);
_update(_account, address(0), underlyingTokenAmount, _shares);
}
/**
* @dev Sets `_underlyingTokenAmount` as the allowance of `_spender` over the `_owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address _owner, address _spender, uint256 _underlyingTokenAmount) internal {
_approve(_owner, _spender, _underlyingTokenAmount, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Requirements are the same as {_approve}.
*/
function _approve(address _owner, address _spender, uint256 _underlyingTokenAmount, bool _emitEvent) internal {
ERC20Storage storage $ = _getERC20Storage();
if (_owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (_spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
$._allowances[_owner][_spender] = _underlyingTokenAmount;
if (_emitEvent) {
emit Approval(_owner, _spender, _underlyingTokenAmount);
}
}
/**
* @dev Updates `_owner` s allowance for `_spender` based on spent `_underlyingTokenAmount`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address _owner, address _spender, uint256 _underlyingTokenAmount) internal {
uint256 currentAllowance = allowance(_owner, _spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < _underlyingTokenAmount) {
revert ERC20InsufficientAllowance(_spender, currentAllowance, _underlyingTokenAmount);
}
unchecked {
_approve(_owner, _spender, currentAllowance - _underlyingTokenAmount, false);
}
}
}
/*
* @dev Returns the total number of shares.
*/
function totalShares() public view returns (uint256 shares) {
ERC20Storage storage $ = _getERC20Storage();
return $._totalSharesSupply;
}
/*
* @dev Returns the number of shares owned by a specific account.
*/
function sharesOf(address _account) public view returns (uint256 shares) {
ERC20Storage storage $ = _getERC20Storage();
return $._sharesBalances[_account];
}
function convertToShares(uint256 _underlyingTokenAmount) public view returns (uint256 shares) {
return _convertToShares(_underlyingTokenAmount, Math.Rounding.Floor);
}
function convertToUnderlyingToken(uint256 _shares) public view returns (uint256 underlyingTokenAmount) {
return _convertToUnderlyingToken(_shares, Math.Rounding.Floor);
}
function _convertToShares(
uint256 _underlyingTokenAmount,
Math.Rounding _rounding
) internal view returns (uint256 shares) {
return _underlyingTokenAmount.mulDiv(totalShares() + 1000, _totalUnderlyingTokens() + 1, _rounding);
}
function _convertToUnderlyingToken(
uint256 _shares,
Math.Rounding _rounding
) internal view returns (uint256 underlyingTokenAmount) {
return _shares.mulDiv(_totalUnderlyingTokens() + 1, totalShares() + 1000, _rounding);
}
function _totalUnderlyingTokens() internal view returns (uint256 underlyingTokenAmount) {
ERC20Storage storage $ = _getERC20Storage();
return $._underlyingToken.balanceOf(address(this));
}
}
/* solhint-disable defi-wonderland/wonder-var-name-mixedcase */
IERC20Rebasing.sol 27 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
interface IERC20Rebasing is IERC20, IERC20Metadata, IERC20Errors {
event TransferShares(address indexed _from, address indexed _to, uint256 _shares);
error InvalidUnderlyingTokenDecimals();
error InvalidUnderlyingTokenAddress();
function underlyingToken() external view returns (IERC20Metadata token);
function transferShares(address _to, uint256 _shares) external returns (bool isSuccess);
function transferSharesFrom(address _from, address _to, uint256 _shares) external returns (bool isSuccess);
function totalShares() external view returns (uint256 shares);
function sharesOf(address _account) external view returns (uint256 shares);
function convertToShares(uint256 _underlyingTokenAmount) external view returns (uint256 shares);
function convertToUnderlyingToken(uint256 _shares) external view returns (uint256 underlyingTokenAmount);
}
Address.sol 159 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
ERC20RebasingPermitUpgradeable.sol 92 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712Upgradeable} from "@openzeppelin/contracts-upgradeable/utils/cryptography/EIP712Upgradeable.sol";
import {NoncesUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/NoncesUpgradeable.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {ERC20RebasingUpgradeable} from "./ERC20RebasingUpgradeable.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* The contract uses the OpenZeppelin ERC20PermitUpgradeable implementation.
*/
abstract contract ERC20RebasingPermitUpgradeable is Initializable, ERC20RebasingUpgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 _deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address _signer, address _owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
// solhint-disable-next-line func-name-mixedcase
function __ERC20RebasingPermit_init(string memory name) internal onlyInitializing {
__EIP712_init_unchained(name, "1");
}
// solhint-disable-next-line func-name-mixedcase, no-empty-blocks
function __ERC20RebasingPermit_init_unchained(string memory) internal onlyInitializing {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address _owner,
address _spender,
uint256 _value,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) public virtual {
if (block.timestamp > _deadline) {
revert ERC2612ExpiredSignature(_deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, _owner, _spender, _value, _useNonce(_owner), _deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, _v, _r, _s);
if (signer != _owner) {
revert ERC2612InvalidSigner(signer, _owner);
}
_approve(_owner, _spender, _value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(
address _owner
) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256 currentNonce) {
return super.nonces(_owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32 domainSeparator) {
return _domainSeparatorV4();
}
}
IERC20.sol 79 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
draft-IERC6093.sol 161 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
SafeERC20.sol 118 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
NoncesUpgradeable.sol 66 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract NoncesUpgradeable is Initializable {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
/// @custom:storage-location erc7201:openzeppelin.storage.Nonces
struct NoncesStorage {
mapping(address account => uint256) _nonces;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00;
function _getNoncesStorage() private pure returns (NoncesStorage storage $) {
assembly {
$.slot := NoncesStorageLocation
}
}
function __Nonces_init() internal onlyInitializing {
}
function __Nonces_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
NoncesStorage storage $ = _getNoncesStorage();
return $._nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
NoncesStorage storage $ = _getNoncesStorage();
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return $._nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}
IERC20Permit.sol 90 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
ContextUpgradeable.sol 34 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
Initializable.sol 228 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
IERC20Metadata.sol 26 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
EIP712Upgradeable.sol 210 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*/
abstract contract EIP712Upgradeable is Initializable, IERC5267 {
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
/// @custom:storage-location erc7201:openzeppelin.storage.EIP712
struct EIP712Storage {
/// @custom:oz-renamed-from _HASHED_NAME
bytes32 _hashedName;
/// @custom:oz-renamed-from _HASHED_VERSION
bytes32 _hashedVersion;
string _name;
string _version;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100;
function _getEIP712Storage() private pure returns (EIP712Storage storage $) {
assembly {
$.slot := EIP712StorageLocation
}
}
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
__EIP712_init_unchained(name, version);
}
function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
EIP712Storage storage $ = _getEIP712Storage();
$._name = name;
$._version = version;
// Reset prior values in storage if upgrading
$._hashedName = 0;
$._hashedVersion = 0;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
return _buildDomainSeparator();
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
EIP712Storage storage $ = _getEIP712Storage();
// If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
// and the EIP712 domain is not reliable, as it will be missing name and version.
require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized");
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
* are a concern.
*/
function _EIP712Name() internal view virtual returns (string memory) {
EIP712Storage storage $ = _getEIP712Storage();
return $._name;
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
* are a concern.
*/
function _EIP712Version() internal view virtual returns (string memory) {
EIP712Storage storage $ = _getEIP712Storage();
return $._version;
}
/**
* @dev The hash of the name parameter for the EIP712 domain.
*
* NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
*/
function _EIP712NameHash() internal view returns (bytes32) {
EIP712Storage storage $ = _getEIP712Storage();
string memory name = _EIP712Name();
if (bytes(name).length > 0) {
return keccak256(bytes(name));
} else {
// If the name is empty, the contract may have been upgraded without initializing the new storage.
// We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
bytes32 hashedName = $._hashedName;
if (hashedName != 0) {
return hashedName;
} else {
return keccak256("");
}
}
}
/**
* @dev The hash of the version parameter for the EIP712 domain.
*
* NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
*/
function _EIP712VersionHash() internal view returns (bytes32) {
EIP712Storage storage $ = _getEIP712Storage();
string memory version = _EIP712Version();
if (bytes(version).length > 0) {
return keccak256(bytes(version));
} else {
// If the version is empty, the contract may have been upgraded without initializing the new storage.
// We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
bytes32 hashedVersion = $._hashedVersion;
if (hashedVersion != 0) {
return hashedVersion;
} else {
return keccak256("");
}
}
}
}
Read Contract
DOMAIN_SEPARATOR 0x3644e515 → bytes32
allowance 0xdd62ed3e → uint256
balanceOf 0x70a08231 → uint256
convertToShares 0xc6e6f592 → uint256
convertToUnderlyingToken 0xffbc2756 → uint256
decimals 0x313ce567 → uint8
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
name 0x06fdde03 → string
nonces 0x7ecebe00 → uint256
previewDeposit 0xef8b30f7 → uint256
previewWithdraw 0x0a28a477 → uint256
sharesOf 0xf5eb42dc → uint256
symbol 0x95d89b41 → string
totalShares 0x3a98ef39 → uint256
totalSupply 0x18160ddd → uint256
underlyingToken 0x2495a599 → address
Write Contract 14 functions
These functions modify contract state and require a wallet transaction to execute.
approve 0x095ea7b3
address _spender
uint256 _underlyingTokenAmount
returns: bool
deposit 0x6e553f65
uint256 _usrAmount
address _receiver
deposit 0xb6b55f25
uint256 _usrAmount
depositWithPermit 0x4a970be7
uint256 _usrAmount
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
depositWithPermit 0x50921b23
uint256 _usrAmount
address _receiver
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
initialize 0x077f224a
string _name
string _symbol
address _usrAddress
permit 0xd505accf
address _owner
address _spender
uint256 _value
uint256 _deadline
uint8 _v
bytes32 _r
bytes32 _s
transfer 0xa9059cbb
address _to
uint256 _underlyingTokenAmount
returns: bool
transferFrom 0x23b872dd
address _from
address _to
uint256 _underlyingTokenAmount
returns: bool
transferShares 0x8fcb4e5b
address _to
uint256 _shares
returns: bool
transferSharesFrom 0x6d780459
address _from
address _to
uint256 _shares
returns: bool
withdraw 0x00f714ce
uint256 _usrAmount
address _receiver
withdraw 0x2e1a7d4d
uint256 _usrAmount
withdrawAll 0x853828b6
No parameters
Recent Transactions
No transactions found for this address