Address Contract Verified
Address
0xe2ce6a9F4813A70c01ff862C02530C687d531e93
Balance
0 ETH
Nonce
1
Code Size
7113 bytes
Creator
Create2 Deployer at tx 0xb2f98121...9aedc6
Last Active
Indexed Transactions
1 (24,460,122 → 24,460,122)
Gas Used (indexed)
114,542
Contract Bytecode
7113 bytes
0x608080604052600436101561001357600080fd5b600090813560e01c908163146ca531146113b45750806317c4de35146113445780631b5c56001461131e5780633394e86f1461096d578063350580ea146108835780634154e9251461080f57806342cde4e8146107e757806343c184b0146107c95780634a7acd83146107a25780636e16014f14610784578063715018a61461071457806373e66cf5146106d057806379ba5097146106285780637ecebe00146105f057806384b0196e146104b157806386c1ff681461040b5780638da5cb5b146103e55780638f2d2aee14610397578063c36e9bea14610349578063d8bff5a514610311578063e30c3978146102ea578063ee04cd241461026d578063f0232d0a1461024f578063f2fde38b146101d8578063f4ab9adf1461017c5763f9643c041461013f57600080fd5b3461017957806003193601126101795760206040517f86f3f3b2f2d44d88b37dcc943aa8f35251495d6d41abbcfc14d2491329bc8dc38152f35b80fd5b5034610179576020366003190112610179576001600160a01b0361019e6113dd565b6101a66114da565b166101b081611a98565b507fa636f4a11e2d3ba7f89d042ecb0a6b886716e98cd49d8fd876ee0f73bced42b88280a280f35b5034610179576020366003190112610179576101f26113dd565b6101fa6114da565b6001600160a01b03809116908173ffffffffffffffffffffffffffffffffffffffff1960015416176001558254167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227008380a380f35b50346101795780600319360112610179576020600b54604051908152f35b50346101795760203660031901126101795760043565ffffffffffff81168091036102e65761029a6114da565b600181106102b55765ffffffffffff19600c541617600c5580f35b602490604051907fc2ac01980000000000000000000000000000000000000000000000000000000082526004820152fd5b5080fd5b503461017957806003193601126101795760206001600160a01b0360015416604051908152f35b50346101795760203660031901126101795760406020916001600160a01b036103386113dd565b168152600a83522054604051908152f35b5034610179576020366003190112610179577f2bf3a0c0ead867e8a35e395cd20afcbd246e8b23fcad4520bf437548ba34c4be60206004356103896114da565b80600d55604051908152a180f35b5034610179576020366003190112610179577f91c8f3fd4ad69ea6a579e6e009ed2af628735d4ae7ea9d2752e400ab7930e11760206004356103d76114da565b80600755604051908152a180f35b50346101795780600319360112610179576001600160a01b036020915416604051908152f35b5034610179576020366003190112610179576001600160a01b0361042d6113dd565b6104356114da565b1661043f816119ab565b50808252600a6020526040822054610479575b7fa14a79af012d1756818f9bd59ccfc9ad185a71df86b9392d9059d9e6faf6d6448280a280f35b600b54801561049d5760001901600b55808252600a60205260006040832055610452565b602483634e487b7160e01b81526011600452fd5b50346101795780600319360112610179576104eb7f4e6176557064617465720000000000000000000000000000000000000000000a61178f565b906105157f312e302e300000000000000000000000000000000000000000000000000000056118d3565b9060405190602090602083019383851067ffffffffffffffff8611176105da5792849260206105908896610582986040528585526040519889987f0f000000000000000000000000000000000000000000000000000000000000008a5260e0858b015260e08a01906113f8565b9088820360408a01526113f8565b924660608801523060808801528460a088015286840360c088015251928381520193925b8281106105c357505050500390f35b8351855286955093810193928101926001016105b4565b634e487b7160e01b600052604160045260246000fd5b50346101795760203660031901126101795760406020916001600160a01b036106176113dd565b168152600483522054604051908152f35b50346101795780600319360112610179576001546001600160a01b0333818316036106a05773ffffffffffffffffffffffffffffffffffffffff198092166001556000549133908316176000553391167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b60246040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152fd5b503461017957806003193601126101795760206040516001600160a01b037f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad168152f35b503461017957806003193601126101795761072d6114da565b60006001600160a01b0373ffffffffffffffffffffffffffffffffffffffff19806001541660015582549081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b50346101795780600319360112610179576020600d54604051908152f35b503461017957806003193601126101795760206001600160a01b0360095416604051908152f35b50346101795780600319360112610179576020600754604051908152f35b5034610179578060031936011261017957602067ffffffffffffffff60085416604051908152f35b5034610179576020366003190112610179576004356001600160a01b0381168091036102e65761083d6114da565b8073ffffffffffffffffffffffffffffffffffffffff1960095416176009557f3308b9900606ee9c819f2790e08e5d12cf2b2f4b967d8f49786567ee8ac523238280a280f35b5034610179578060031936011261017957600580546108a1816114c2565b926108af6040519485611484565b8184526108bb826114c2565b6020938585019391601f1901368537825b82811061091d5750505060405193838594850191818652518092526040850193925b8281106108fd57505050500390f35b83516001600160a01b0316855286955093810193928101926001016108ee565b61092b819795969497611742565b90549086518310156109595760031b1c6001600160a01b031681831b860185015293959294936001016108cc565b602489634e487b7160e01b81526032600452fd5b50346101795760a0366003190112610179576109876113dd565b6024356001600160a01b0381168103610f495767ffffffffffffffff6064351660643503610f495767ffffffffffffffff60843511610f4957366023608435011215610f495767ffffffffffffffff6084356004013511610f495736602460843560040135608435010111610f49576001600160a01b038216835260066020526040832054156112f4576001600160a01b037f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad166001600160a01b038216036112925760443515801561126e575b61123c5767ffffffffffffffff60085460401c168067ffffffffffffffff60643516036111f95750610b8c6042610b95926001600160a01b0385168652600460205260408620805490600182019055604051906001600160a01b0360208301937f86f3f3b2f2d44d88b37dcc943aa8f35251495d6d41abbcfc14d2491329bc8dc38552166040830152604435606083015267ffffffffffffffff60643516608083015260a082015260a08152610b0a8161144c565b519020610b156114ee565b90604051917f190100000000000000000000000000000000000000000000000000000000000083526002830152602282015220610b57608435600401356114a6565b90610b656040519283611484565b60843560048101358084529060240160208401378560206084356004013584010152611608565b90929192611644565b6001600160a01b038083169116036111cf576001600160a01b0381168252600a6020526040822054156111b8575b6001600160a01b0381168252600a60205260443560408320557fe105ba82d5ab62952997f7283bfbb3447c28777284ef38f5efeb42f3c3f505f96001600160a01b0360405192169180610c326064356044358390929167ffffffffffffffff6020916040840195845216910152565b0390a2600b5460085467ffffffffffffffff8116821015610c51578280f35b6005548392600019918490815b81811061114b575050811561113757049267ffffffffffffffff91610c8291611735565b9160401c169060075481106000146110fb57506001600160a01b036009541665ffffffffffff6040517fd84a70a30000000000000000000000000000000000000000000000000000000081526001600160a01b037f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad1660048201528142166024820152604081604481865afa8691816110b5575b50610fa9575090503d15610fa2573d610d2e816114a6565b90610d3c6040519283611484565b81523d85602083013e5b602081805181010312610f9e5760208101517fffffffff000000000000000000000000000000000000000000000000000000008116809103610f9a577f80fc84740000000000000000000000000000000000000000000000000000000003610f58575083906001600160a01b036009541690610dc681600c541642611712565b1690803b15610f4957604051636dd0e0d360e01b81527f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad6001600160a01b031660048201526024810186905265ffffffffffff92909216604483015282908290606490829084905af18015610f4d57610f35575b50505b60085467ffffffffffffffff8160401c1667ffffffffffffffff8114610f21576fffffffffffffffff000000000000000060017fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff920160401b1691161760085582600b55825b600554811015610edd57806001600160a01b03610ec1600193611742565b90549060031b1c168552600a6020526000604086205501610ea3565b506040805192835267ffffffffffffffff9190911660208301527f3f0dbda102b25f9171f7c00ceaf1f4d33590f96c54613ab7a5a08141f1cb528b91a15b38808280f35b602485634e487b7160e01b81526011600452fd5b610f3e90611438565b610f49578238610e3a565b8280fd5b6040513d84823e3d90fd5b610f96906040519182917f08c379a00000000000000000000000000000000000000000000000000000000083526020600484015260248301906113f8565b0390fd5b8580fd5b8480fd5b6060610d46565b84818111156110a75790610fbc91611735565b600d548082116110705750509081610fd98693600c541642611712565b16813b15610f4957604051636dd0e0d360e01b81527f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad6001600160a01b031660048201526024810186905265ffffffffffff91909116604482015291908290606490829084905af1801561106557611052575b50610e3d565b61105e90939193611438565b913861104c565b6040513d86823e3d90fd5b60449250604051917f9b338fe800000000000000000000000000000000000000000000000000000000835260048301526024820152fd5b6110b091611735565b610fbc565b9091506040813d6040116110f3575b816110d160409383611484565b810103126110ef5760208151910151838116036110ef579038610d16565b8680fd5b3d91506110c4565b916060917f7a2f5c19a69cfa66e805a7af5d201df38ea927b0061be0cb15b7217af94531869360405192835260208301526040820152a1610f1b565b602486634e487b7160e01b81526012600452fd5b6001600160a01b0361115c82611742565b90549060031b1c168852600a60205260408820549283156111ae578361118191611712565b928581106111a6575b87811161119d575b506001905b01610c5e565b96506001611192565b94508461118a565b9250600190611197565b600b54600019811461049d57600101600b55610bc3565b60046040517f8baa579f000000000000000000000000000000000000000000000000000000008152fd5b604490604051907f2341ec20000000000000000000000000000000000000000000000000000000008252600482015267ffffffffffffffff606435166024820152fd5b60246040517f21bf4f800000000000000000000000000000000000000000000000000000000081526044356004820152fd5b50780100000000000000000000000000000000000000000000000060443511610a55565b6044906001600160a01b03604051917ffd9271e8000000000000000000000000000000000000000000000000000000008352817f000000000000000000000000c314b8637b05a294ae9d9c29300d5f667c748bad166004840152166024820152fd5b60046040517f8ba2d958000000000000000000000000000000000000000000000000000000008152fd5b5034610179578060031936011261017957602065ffffffffffff600c5416604051908152f35b50346101795760203660031901126101795760043567ffffffffffffffff81168091036102e65760207f8ec0f9701c6f540597310d23ddd952a203d0532c49b652e60b09cb01fb69ff50916113976114da565b8067ffffffffffffffff196008541617600855604051908152a180f35b9050346102e657816003193601126102e65760209067ffffffffffffffff60085460401c168152f35b600435906001600160a01b03821682036113f357565b600080fd5b919082519283825260005b848110611424575050826000602080949584010152601f8019910116010190565b602081830181015184830182015201611403565b67ffffffffffffffff81116105da57604052565b60c0810190811067ffffffffffffffff8211176105da57604052565b6040810190811067ffffffffffffffff8211176105da57604052565b90601f8019910116810190811067ffffffffffffffff8211176105da57604052565b67ffffffffffffffff81116105da57601f01601f191660200190565b67ffffffffffffffff81116105da5760051b60200190565b6001600160a01b036000541633036106a057565b6001600160a01b037f000000000000000000000000e2ce6a9f4813a70c01ff862c02530c687d531e93163014806115df575b15611549577ffbd1df453899fab4ff13f324f3a97876456e35498cdd359923bba7a7718e875490565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f0b043fda80e76945229995162c5d94e77bd48504ac435f0487333f837e2e43ab60408201527f06c015bd22b4c69690933c1058878ebdfef31f9aaae40bbe86d8a09fe1b2972c60608201524660808201523060a082015260a081526115d98161144c565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000014614611520565b81519190604183036116395761163292506020820151906060604084015193015160001a90611b03565b9192909190565b505060009160029190565b60048110156116fc5780611656575050565b600181036116885760046040517ff645eedf000000000000000000000000000000000000000000000000000000008152fd5b600281036116c157602482604051907ffce698f70000000000000000000000000000000000000000000000000000000082526004820152fd5b6003146116cb5750565b602490604051907fd78bce0c0000000000000000000000000000000000000000000000000000000082526004820152fd5b634e487b7160e01b600052602160045260246000fd5b9190820180921161171f57565b634e487b7160e01b600052601160045260246000fd5b9190820391821161171f57565b6005548110156117795760056000527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db00190600090565b634e487b7160e01b600052603260045260246000fd5b60ff81146117e55760ff811690601f82116117bb57604051916117b183611468565b8252602082015290565b60046040517fb3512b0c000000000000000000000000000000000000000000000000000000008152fd5b5060405160006002549060018260011c90600184169384156118c9575b60209485841081146118b557838752869493929181156118955750600114611836575b505061183392500382611484565b90565b9093915060026000527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace936000915b81831061187d57505061183393508201013880611825565b85548784018501529485019486945091830191611865565b91505061183394925060ff191682840152151560051b8201013880611825565b602485634e487b7160e01b81526022600452fd5b91607f1691611802565b60ff81146118f55760ff811690601f82116117bb57604051916117b183611468565b5060405160006003549060018260011c90600184169384156119a1575b60209485841081146118b55783875286949392918115611895575060011461194257505061183392500382611484565b9093915060036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b936000915b81831061198957505061183393508201013880611825565b85548784018501529485019486945091830191611971565b91607f1691611912565b6000818152600660205260408120549091908015611a935760001990808201818111610f215760055490838201918211611a7f57818103611a34575b5050506005548015611a20578101906119ff82611742565b909182549160031b1b19169055600555815260066020526040812055600190565b602484634e487b7160e01b81526031600452fd5b611a69611a43611a5293611742565b90549060031b1c928392611742565b819391549060031b91821b91600019901b19161790565b90558452600660205260408420553880806119e7565b602486634e487b7160e01b81526011600452fd5b505090565b600081815260066020526040812054611afe5760055468010000000000000000811015611aea579082611ad6611a5284600160409601600555611742565b905560055492815260066020522055600190565b602482634e487b7160e01b81526041600452fd5b905090565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411611b8757926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15611b7b5780516001600160a01b03811615611b7257918190565b50809160019190565b604051903d90823e3d90fd5b5050506000916003919056fea26469706673582212201de6d26da01e91bfb9cc727d536a6b1bcc02ff0850f601a06f3a35ba3f2e8ea064736f6c63430008180033
Verified Source Code Full Match
Compiler: v0.8.24+commit.e11b9ed9
EVM: paris
Optimization: Yes (1000 runs)
Ownable.sol 100 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Ownable2Step.sol 59 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
IERC5267.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
Context.sol 28 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
ECDSA.sol 174 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
EIP712.sol 160 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
MessageHashUtils.sol 86 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
Math.sol 415 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
SignedMath.sol 43 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
Nonces.sol 46 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}
ShortStrings.sol 123 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
StorageSlot.sol 135 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
Strings.sol 94 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
EnumerableSet.sol 378 lines
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
IVaultNav.sol 28 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
interface IVaultNav {
event NavUpdated(address indexed lsd, uint256 nav, uint256 timestamp);
event SetNavUpdater(address indexed lsd, address updater);
error NavNotFound(uint48 _timestamp);
error InvalidNavUpdater(address updater);
error NavInvalidValue(uint256 nav);
error TimestampTooLarge();
error InvalidUpdatePeriod();
error NavUpdateInvalidTimestamp();
function appendNav(address lsd, uint256 nav, uint48 timestamp) external;
function setNavUpdater(address lsd, address updater) external;
function getNavByTimestamp(
address vaultType,
uint48 timestamp
) external view returns (uint256 nav, uint48 updateTime);
function lsdToTokenE18AtTime(address _lsd, uint256 _amount, uint48 _timestamp) external view returns (uint256);
function tokenE18ToLsdAtTime(
address _lsd,
uint256 _tokenAmountE18,
uint48 _timestamp
) external view returns (uint256);
}
NavUpdater.sol 323 lines
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import { Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { Nonces } from "@openzeppelin/contracts/utils/Nonces.sol";
import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { IVaultNav } from "../IVaultNav.sol";
/// @title NavUpdater
/// @notice This contract manages the updating of NAV (Net Asset Value) for LSD tokens
/// @dev Implements a multi-signature mechanism for NAV updates
contract NavUpdater is Ownable2Step, EIP712, Nonces {
using EnumerableSet for EnumerableSet.AddressSet;
/// @dev The EIP-712 typehash for the UpdateNav function
bytes32 public constant UPDATE_NAV_TYPEHASH =
keccak256("UpdateNav(address lsd,uint256 nav,uint64 roundID,uint256 nonce)");
/// @notice The address of the LSD token for which this contract updates the NAV
address public immutable LSD;
/// @dev Set of addresses eligible to vote on NAV values
EnumerableSet.AddressSet private _voters;
/// @notice The maximum allowed difference between the highest and lowest NAV values from voters
uint256 public maxNavDiff;
/// @notice The minimum number of voters required to update the NAV value
uint64 public threshold;
/// @notice The current voting round ID
uint64 public round;
/// @notice The VaultNav contract interface
IVaultNav public vaultNav;
/// @notice Mapping of voter addresses to their submitted NAV values for the current round
mapping(address voter => uint256 nav) public votes;
/// @notice The number of voters who have submitted votes for the current round
uint256 public votedCount;
/// @notice The effective delay for updating the NAV.
uint48 public effectiveDelay;
/// @notice The maximum allowed difference between NAV values per round.
uint256 public maxPerRoundNavDiff;
/// @notice Emitted when the VaultNav address is updated
event VaultNavUpdated(address indexed newVaultNav);
/// @notice Emitted when a new voter is added
event VoterAdded(address indexed voter);
/// @notice Emitted when a voter is removed
event VoterRemoved(address indexed voter);
/// @notice Emitted when the maximum NAV difference is updated
event MaxNavDiffUpdated(uint256 newMaxNavDiff);
/// @notice Emitted when the voting threshold is updated
event ThresholdUpdated(uint64 newThreshold);
/// @notice Emitted when a new NAV vote is submitted
event NavVoteSubmitted(address indexed voter, uint256 nav, uint64 round);
/// @notice Emitted when the NAV is updated
event NavUpdated(uint256 newNav, uint64 round);
/// @notice Emitted when the NAV update fails
event NavUpdateFailed(uint256 nav, uint256 navDiff, uint64 round);
/// @notice Emitted when the maximum allowed difference between NAV values per round is updated
event MaxPerRoundNavDiffUpdated(uint256 newMaxPerRoundNavDiff);
/// @dev Thrown when the provided signature is invalid
error InvalidSignature();
/// @dev Thrown when an invalid signer attempts to vote
error InvalidVoter();
/// @dev Thrown when an invalid voting round is provided
/// @param expected The expected round number
/// @param got The provided round number
error InvalidVoteRound(uint64 expected, uint64 got);
/// @dev Thrown when an invalid LSD address is provided
/// @param expected The expected LSD address
/// @param got The provided LSD address
error InvalidLSD(address expected, address got);
/// @dev Thrown when an invalid NAV value is provided
/// @param nav The invalid NAV value
error InvalidNav(uint256 nav);
/// @dev Thrown when an invalid effective delay is provided, e.g. less than 1 second.
error InvalidEffectiveDelay(uint48 delay);
/// @dev Thrown when the NAV difference is out of range of maxPerRoundNavDiff.
error NavDiffIsOutOfRange(uint256 diff, uint256 maxDiff);
/// @notice Initializes the NavUpdater contract
/// @param _owner The address of the contract owner
/// @param _signers An array of initial voter addresses
/// @param _vaultNav The address of the VaultNav contract
/// @param _lsd The address of the LSD token
/// @param _maxNavDiff The maximum allowed difference between NAV votes
/// @param _threshold The minimum number of votes required to update the NAV
constructor(
address _owner, // solhint-disable-line no-unused-vars
address[] memory _signers,
IVaultNav _vaultNav,
address _lsd,
uint256 _maxNavDiff,
uint64 _threshold,
uint48 _effectiveDelay,
uint256 _maxPerRoundNavDiff
) Ownable(_owner) EIP712("NavUpdater", "1.0.0") {
for (uint256 i = 0; i < _signers.length; i++) {
_voters.add(_signers[i]);
}
vaultNav = _vaultNav;
LSD = _lsd;
maxNavDiff = _maxNavDiff;
threshold = _threshold;
effectiveDelay = _effectiveDelay;
maxPerRoundNavDiff = _maxPerRoundNavDiff;
}
/// @notice Sets a new VaultNav contract address
/// @param _vaultNavAddress The address of the new VaultNav contract
function setVaultNav(IVaultNav _vaultNavAddress) external onlyOwner {
vaultNav = _vaultNavAddress;
emit VaultNavUpdated(address(_vaultNavAddress));
}
/// @notice Adds a new voter
/// @param _voter The address of the new voter
function addVoter(address _voter) external onlyOwner {
_voters.add(_voter);
emit VoterAdded(_voter);
}
/// @notice Removes a voter
/// @param _voter The address of the voter to remove
function removeVoter(address _voter) external onlyOwner {
_voters.remove(_voter);
// remove votes if the voter has voted for this round.
if (votes[_voter] != 0) {
votedCount--;
delete votes[_voter];
}
emit VoterRemoved(_voter);
}
/// @notice Sets the maximum allowed difference between NAV votes
/// @param _maxNavDiff The new maximum NAV difference
function setMaxNavDiff(uint256 _maxNavDiff) external onlyOwner {
maxNavDiff = _maxNavDiff;
emit MaxNavDiffUpdated(_maxNavDiff);
}
/// @notice Sets the minimum number of votes required to update the NAV
/// @param _threshold The new threshold value
function setThreshold(uint64 _threshold) external onlyOwner {
threshold = _threshold;
emit ThresholdUpdated(_threshold);
}
/// @notice Sets the effective delay for updating the NAV
/// @param _effectiveDelay The new effective delay value
function setEffectiveDelay(uint48 _effectiveDelay) external onlyOwner {
if (_effectiveDelay < 1) {
revert InvalidEffectiveDelay(_effectiveDelay);
}
effectiveDelay = _effectiveDelay;
}
/// @notice Sets the maximum allowed difference between NAV values per round, the diff
/// is computed from abs((new_nav * 1e18 / old_nav) - 1e18).
/// @dev Emits a `MaxPerRoundNavDiffUpdated` event
/// @param _maxPerRoundNavDiff The new maximum allowed difference
function setMaxPerRoundNavDiff(uint256 _maxPerRoundNavDiff) external onlyOwner {
maxPerRoundNavDiff = _maxPerRoundNavDiff;
emit MaxPerRoundNavDiffUpdated(_maxPerRoundNavDiff);
}
/// @notice Submits a NAV update vote and try to update the NAV if the threshold is reached.
/// In general, we trust signers to submit valid NAV values, so we just need to make sure
/// that if they made any mistake, like voted for too large or too small value),
/// they will be able to correct it by sending another vote.
/// In the worst case, owner can always remove the signer from the list.
/// @param _signer The address of the signer
/// @param _lsd The address of the LSD token
/// @param _nav The proposed NAV value
/// @param _round The current voting round
/// @param _signature The signature of the voter
function updateNav(address _signer, address _lsd, uint256 _nav, uint64 _round, bytes calldata _signature) external {
if (!_voters.contains(_signer)) {
revert InvalidVoter();
}
if (_lsd != LSD) {
revert InvalidLSD(LSD, _lsd);
}
// prevent _nav overflow during summation and zero value
if (_nav == 0 || _nav > 2 ** 192) {
revert InvalidNav(_nav);
}
if (_round != round) {
revert InvalidVoteRound(round, _round);
}
// verify the signature
bytes32 hash = _hashTypedDataV4(
keccak256(abi.encode(UPDATE_NAV_TYPEHASH, _lsd, _nav, _round, _useNonce(_signer)))
);
if (ECDSA.recover(hash, _signature) != _signer) {
revert InvalidSignature();
}
// update vote
if (votes[_signer] == 0) {
// A new vote
votedCount++;
}
votes[_signer] = _nav;
emit NavVoteSubmitted(_signer, _nav, _round);
// try to update the NAV, if possible
_tryUpdateNav();
}
/// @notice Returns the list of voters
function voters() external view returns (address[] memory) {
address[] memory voters_ = new address[](_voters.length());
for (uint256 i = 0; i < _voters.length(); i++) {
voters_[i] = _voters.at(i);
}
return voters_;
}
/// @notice Tries to update the NAV if the threshold is reached
/// and the NAV difference is within the limit.
function _tryUpdateNav() private {
if (votedCount >= threshold) {
(uint256 newNav, uint256 maxDiff) = _calculateAverageNav();
uint64 _round = round;
if (maxDiff < maxNavDiff) {
_updateNav(newNav);
_completeRound();
emit NavUpdated(newNav, _round);
} else {
emit NavUpdateFailed(newNav, maxDiff, _round);
}
}
}
/// @dev Updates the NAV value in the VaultNav contract
/// @param _nav The new NAV value to set
function _updateNav(uint256 _nav) private {
try vaultNav.getNavByTimestamp(LSD, uint48(block.timestamp)) returns (uint256 lastNav, uint48 updateTime) {
uint256 valueDiff = 0;
if (_nav > lastNav) {
valueDiff = _nav - lastNav;
} else {
valueDiff = lastNav - _nav;
}
if (valueDiff > maxPerRoundNavDiff) {
revert NavDiffIsOutOfRange(valueDiff, maxPerRoundNavDiff);
}
vaultNav.appendNav(LSD, _nav, uint48(block.timestamp + effectiveDelay));
} catch (bytes memory reason) {
bytes4 errorSelector = abi.decode(reason, (bytes4));
// if the NAV is not found, append the new NAV directly
// normally this only happens when a new vault is created
if (errorSelector == IVaultNav.NavNotFound.selector) {
vaultNav.appendNav(LSD, _nav, uint48(block.timestamp + effectiveDelay));
} else {
revert(string(reason));
}
}
}
/// @dev Completes the current voting round and prepares for the next
function _completeRound() private {
round++;
votedCount = 0;
for (uint256 i = 0; i < _voters.length(); i++) {
delete votes[_voters.at(i)];
}
}
/// @notice Calculates the average NAV and the maximum difference between NAV votes
/// @dev This function iterates through all votes, calculates the sum, and finds the min and max NAV values
/// @return _nav The calculated average NAV
/// @return _maxDiff The difference between the highest and lowest NAV votes
function _calculateAverageNav() private view returns (uint256 _nav, uint256 _maxDiff) {
uint256 sum = 0;
uint256 minNav = type(uint256).max;
uint256 maxNav = 0;
for (uint256 i = 0; i < _voters.length(); i++) {
address voter = _voters.at(i);
uint256 nav = votes[voter];
// Skip voters that did not submit a vote in this round
if (nav == 0) {
continue;
}
sum += nav;
if (nav < minNav) {
minNav = nav;
}
if (nav > maxNav) {
maxNav = nav;
}
}
return (sum / votedCount, maxNav - minNav);
}
}
Read Contract
LSD 0x73e66cf5 → address
UPDATE_NAV_TYPEHASH 0xf9643c04 → bytes32
effectiveDelay 0x1b5c5600 → uint48
eip712Domain 0x84b0196e → bytes1, string, string, uint256, address, bytes32, uint256[]
maxNavDiff 0x43c184b0 → uint256
maxPerRoundNavDiff 0x6e16014f → uint256
nonces 0x7ecebe00 → uint256
owner 0x8da5cb5b → address
pendingOwner 0xe30c3978 → address
round 0x146ca531 → uint64
threshold 0x42cde4e8 → uint64
vaultNav 0x4a7acd83 → address
votedCount 0xf0232d0a → uint256
voters 0x350580ea → address[]
votes 0xd8bff5a5 → uint256
Write Contract 11 functions
These functions modify contract state and require a wallet transaction to execute.
acceptOwnership 0x79ba5097
No parameters
addVoter 0xf4ab9adf
address _voter
removeVoter 0x86c1ff68
address _voter
renounceOwnership 0x715018a6
No parameters
setEffectiveDelay 0xee04cd24
uint48 _effectiveDelay
setMaxNavDiff 0x8f2d2aee
uint256 _maxNavDiff
setMaxPerRoundNavDiff 0xc36e9bea
uint256 _maxPerRoundNavDiff
setThreshold 0x17c4de35
uint64 _threshold
setVaultNav 0x4154e925
address _vaultNavAddress
transferOwnership 0xf2fde38b
address newOwner
updateNav 0x3394e86f
address _signer
address _lsd
uint256 _nav
uint64 _round
bytes _signature
Top Interactions
| Address | Txns | Sent | Received |
|---|---|---|---|
| 0xdD4F3294...7a98 | 1 | 1 |
Recent Transactions
|
| Hash | Block | Age | From/To | Value | |
|---|---|---|---|---|---|
| 0x767d7e63...6f70a3 | 24,460,122 | IN | 0xdD4F3294...7a98 | 0 ETH |